When users submit new queries to a distributed stream processing system (DSPS), a query planner must allocate physical resources, such as CPU cores, memory and network bandwidth, from a set of hosts to queries. Allocation decisions must provide the correct mix of resources required by queries, while achieving an efficient overall allocation to scale in the number of admitted queries. By exploiting overlap between queries and reusing partial results, a query planner can conserve resources but has to carry out more complex planning decisions.
In this paper, we describe SQPR, a query planner that targets DSPSs in data centre environments with heterogeneous resources. SQPR models query admission, allocation and reuse as a single constrained optimisation problem and solves an approximate version to achieve scalability. It prevents individual resources from becoming bottlenecks by re-planning past allocation decisions and supports different allocation objectives. As our experimental evaluation in comparison with a state-of-the-art planner shows SQPR makes efficient resource allocation decisions, even with a high utilisation of resources, with acceptable overheads.