
Grand Challenge:
Scalable Stateful Stream Processing for Smart Grids

Raul Castro Fernandez,
Matthias Weidlich, Peter Pietzuch

Imperial College London
{rc3011, m.weidlich, prp}@imperial.ac.uk

Avigdor Gal
Technion - Israel Institute of Technology

avigal@ie.technion.ac.il

ABSTRACT
We describe a solution to the ACM DEBS Grand Challenge 2014,
which evaluates event-based systems for smart grid analytics. Our
solution follows the paradigm of stateful data stream processing
and is implemented on top of the SEEP stream processing platform.
It achieves high scalability by massive data-parallel processing and
the option of performing semantic load-shedding. In addition, our
solution is fault-tolerant, ensuring that the large processing state of
stream operators is not lost after failure.

Our experimental results show that our solution processes 1 month
worth of data for 40 houses in 4 hours. When we scale out the system,
the time reduces linearly to 30 minutes before the system bottle-
necks at the data source. We then apply semantic load-shedding,
maintaining a low median prediction error and reducing the time fur-
ther to 17 minutes. The system achieves these results with median
latencies below 30 ms and a 90th percentile below 50 ms.

Categories and Subject Descriptors
H2.4 [Database Management]: Systems

Keywords
Stream processing, distributed systems, load shedding

1. INTRODUCTION
The goal of the ACM DEBS Grand Challenge is to conduct a

comparative evaluation of event-based systems by offering real-life
event data and requirements for event queries. The 2014 edition
of the challenge [15] focuses on smart grid analytics and is based
on measurements of energy consumption at the level of individual
electricity plugs in smart home installations. The event queries
focus on two types of analytics: (i) short-term load forecasting and
(ii) load statistics for real-time demand management.

We observe three main characteristics of the 2014 challenge:
High data volume. The data includes load and work events of
individual plugs at a rate of approximately one measurement per
second. For the considered 40 houses with roughly 2000 plugs, this
yields a volume of more than 4 billion events for one month. Given

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from Permissions@acm.org.
DEBS’14, May 26–29, 2014, MUMBAI, India.
Copyright 2014 ACM 978-1-4503-2737-4/14/05 . . . $15.00.
http://dx.doi.org/10.1145/2611286.2611326.

0

20

40

60

80

100

 0 5 10 15 20 25 30#
 E

v
e

n
ts

 (
lo

a
d

 m
e

a
s
u

re
m

e
n

ts
)

 (
1

K
 e

/s
)

Days (5 min windows)

Figure 1: Load measurements (five min window) indicating change
of more than five watts.

future predicted growth, applications of smart grid analytics can
be expected to process data of hundreds to thousands of houses,
increasing the volume by one or two orders of magnitude.
Unbounded and global state. The event queries require sophis-
ticated handling of processing state. Short-term load forecasting
requires aggregates to be maintained for an unbounded time win-
dow. This is challenging due to the ever-growing state to be stored.
Performance of computation on this state is likely to degrade over
time. Also, load statistics for real-time demand management re-
quire global aggregation over all houses and plugs, which limits the
options to distribute processing.
Large measurement variability. For the load and work values in
the dataset, we observe a large variability in the frequency with
which the values change over time. Some plugs report close to con-
stant load for long periods of time, and significant changes in load
are correlated between plugs, following global energy consumption
patterns. This effect is shown in Figure 1, which depicts the num-
ber of load measurements per five-minute window when ignoring
changes of less than five watts. Considering only the events that
indicate larger changes in load, the amount of events that need to be
processed varies by up to a factor of seven over time.

Given these characteristics, we present a solution to the challenge
that is based on the SEEP stream processing platform [7]. SEEP
executes event processing queries as stateful distributed dataflow
graphs. It supports the definition of stream processing operators as
user-defined functions (UDFs). The main features of our solution
using SEEP are as follows:
1. Data-parallel processing. To handle the high volume of events,

our solution scales the processing of events in a data-parallel
fashion on a cluster of nodes.

2. Optimised stateful operators. Given the complex state of the
event queries, our solution exploits stream operators with ef-
ficient state handling specific to a given query, e.g. through
indexed in-memory data structures.

3. Filtering and elasticity. We exploit the long periods of rela-
tively constant load measurements in the dataset by performing
semantic load-shedding, thus reducing the total events to process
downstream. To support resource-efficient deployments when
the input event rate varies over time, our solution can dynami-
cally provision processing resources on-demand.

4. Fault tolerance. Our solution supports fault-tolerant processing,
which is crucial for any continuously running data analytics
application on a cluster of nodes. Instead of reprocessing all
events after failure, operator state is recovered from periodic
state checkpoints with low overhead.

Our experimental evaluation shows that our implementation pro-
cesses the challenge dataset with a throughput of 300,000 events per
second for the load forecasting and 100,000 events per second for
the outlier detection, with median latencies of 17 ms and 136 ms,
respectively. The resulting speed-up over real-time processing is
200× (load forecasting) and 100× (outlier detection).

Our solution also scales linearly in the number of used cluster
nodes. With 6 (load forecasting) and 7 (outlier detection) nodes, the
speed-up over real-time increases up to 1200× and 900×, respec-
tively. Moreover, we show that semantic load-shedding leads to a
modest median error in the query results, but increases the speed-up
by two orders of magnitude. With this set-up, our solution processes
one month worth of data for 40 houses in 17 mins.

The remainder of the paper is structured as follows. In Section 2,
we give an overview of the SEEP stream processing platform used by
our solution. Section 3 gives details on the implemented operators.
Section 4 presents our evaluation results. We discuss related work
in Section 5, before concluding in Section 6.

2. THE SEEP PLATFORM
Our solution follows the paradigm of stateful stream processing,

providing a natural way to implement the proposed queries: it sup-
ports custom state and its manipulation by UDFs. Event processing
systems such as Esper [1] and SASE [3] provide high-level query
languages but lack the possibility to fine tune the data structures used
to maintain the query state. In contrast, stateful stream processing
can offer efficient state handling for each specific scenario.

Recently, a new generation of data-parallel stream processing
systems based on dataflow graphs have been proposed, including
Twitter Storm [9] and Apache S4 [11]. Although these systems
allow for massive parallelisation of stream processing operators,
they assume that dataflow graphs are static and operators are state-
less: they cannot react to varying input rates or efficiently recovery
operator state after failure.

In contrast, the SEEP platform [7] implements a stateful stream
processing model and can (i) dynamically partition operator state
to scale out a query in order to increase processing throughput;
and (ii) recover operator state after a failure, while maintaining
deterministic execution. As a result, SEEP achieves the following
three features:

(1) SEEP is highly scalable, allowing the handling of high vol-
ume data. For the given challenge, this is an important feature
because a realistic set-up for smart grid analytics would require the
processing of events emitted by more than 40 houses.

Prior work [7] has shown that SEEP scales to close to a hun-
dred virtual machines (VMs) in the Amazon EC2 public cloud. It
achieves this through data parallelism—stateless and stateful opera-
tors are scaled out, i.e. multiple instances of operators are deployed
in the cluster. Each instance operates on a subset of the event data.
Events are dispatched to instances based on query semantics, e.g. in
the challenge dataset the event streams may be hash-partitioned by

Filter

Q1

Q2
Plug

Q2
Global

Source Sink
<input>

<input>
<heartbeat>

<plug prediction>
<house prediction>

<plug update><input> <house outliers>

Figure 2: The dataflow graph of our solution.

houses. In addition, SEEP exploits pipeline parallelism—chains of
operators are deployed on different nodes to reduce latency.

(2) SEEP is fault tolerant, which is critical when operator state
depends on a large number of past events. The load forecasting in the
challenge relies on a model learned from historic data, and outlier
detection employs windows with up to 100,000,000 events. Even
under the assumption of a reliable event source with access to the full
event stream, losing operator state would require the reprocessing of
all events. Instead, SEEP creates periodic checkpoints of operator
state, which are backed up to remote nodes and used to quickly
recover state after failure.

(3) SEEP is elastic—it dynamically scales out stateful operators at
runtime by partitioning their state. This functionality is particularly
useful for event queries with high variability in the input rate. When
pre-filtering events in the challenge to ignore minor changes in load,
the input rate varies. SEEP can adapt to such workload changes,
using cluster resource more efficiently.

3. QUERY IMPLEMENTATION
This section describes how we implemented the event queries

from the challenge on the SEEP platform. We first give an overview
of the main ideas behind the queries (Section 3.1), before we give
details of the operator implementations (Sections 3.2–3.4).

3.1 Overview
The structure of the logical dataflow graph of the queries is shown

in Figure 2. An operator filter performs semantic load-shedding
across all load and work measurements (denoted by <input>). This
permits, for example, filtering of events that indicate only a minor
change in load for a certain plug. The filter operator can be scaled
out so that different instances realise data parallelism by partitioning
the event stream <input> per house, household or even plug.

The actual queries are implemented by three operators, namely
Q1, Q2 Plug, and Q2 Global. Load forecasting and outlier detection
are independent queries—their execution is done in parallel.
Load forecasting is realised by operator Q1, and it is done at two
levels of aggregation, i.e., plugs and houses. Hence, the operator
can be scaled out by partitioning the respective event stream for
the most coarse-grained aggregation, i.e., per house. Data-parallel
processing is of particular importance for this operator because the
query requires the maintenance of an unbounded time window.

At the same time, the query also requires frequent updates of the
result stream, i.e. every 30 seconds as specified by the timestamps
of the events. When events are streamed faster than real-time and
distributed over a large number of operator instances, however, it
becomes impossible to identify the intervals for updating the result
stream at a particular instance. To solve this issue, we implement a
heartbeat mechanism in the filter operator, which emits a signal to
operator Q1 whenever an update is due.

Heartbeat generation is implemented in operator filter because the
pre-processing of data is less costly than the actual load prediction.
Hence, the number of instances of operator filter can be expected to

be much smaller than the number of instances of operator Q1. To
cope with data quality issues such as missing values, e.g. as seen
around days 20 and 28 in Figure 1, operator Q1 also features a cor-
rection mechanism that is based on the measurements of cumulative
work per plug, which will be detailed below.
Outlier detection is split up into two operators. Here, the idea is
to separate the part of the query that can be parallelised from the
part that requires global state. Operator Q2 Plug thus takes the input
stream and maintains the median of the load per plug for each of the
time windows. The operator can be scaled out at the level of plugs.

Operator Q2 Global, in turn, maintains the global median over all
plugs by receiving all changes to medians propagated by upstream
nodes. It also realises the outlier detection and emits the results. Due
to its global state, the operator cannot be scaled out. To reduce the
amount of computation done at the singleton instance of operator Q2
Global, it relies on the information about which measurements
entered or left one of the investigated time windows (denoted by
<plug update> in Figure 2). As a consequence, a large part of
the effort to maintain the time windows per plug is performed by
operator Q2 Plug, which can be scaled out. In particular, we do not
approximate the global median but rather implement an efficient
propagation mechanism to keep it accurate.

3.2 Filter
The filter operator realises the following functionality:

Duplicate elimination. To filter duplicate measurements, the opera-
tor maintains the timestamps of the last load and work measurements
for each plug. Only measurements with a timestamp larger than the
last observed (per plug) are forwarded.
Variability-based filtering. To leverage the large variability in the
frequency with which load values change over time for optimisation,
the filter operator can perform semantic load-shedding, ignoring
measurements that denote a minor change in load with respect
to the last non-filtered measurement. Note that measurements of
work are only forwarded if the load measurement with the same
timestamp has not been removed by the filter procedure. In Section 4,
we evaluate the trade-off between this type of filtering and the
correctness of the query results.
Heartbeat generation. The aforementioned heartbeats are gener-
ated based on the timestamps of the processed events. Whenever an
event with a timestamp larger than the time of the last heartbeat plus
the heartbeat interval is received, a new heartbeat is emitted.

3.3 Query 1: Load Forecasting
Operator Q1 for load forecasting is implemented as follows:

Prediction model. As a baseline, we rely on the prediction model
defined in the challenge description, which combines current load
measurements with a model over historical data. More specifically,
the load prediction for the time window following the next one is
based on the average load of the current window and the median of
the average loads of windows covering the same time of all past days.
The generation of prediction values is triggered by the heartbeats.
Work-based correction. To address the issues stemming from
missing load measurements, our operator exploits the cumulative
work per plug. Correction is triggered when the operator receives a
work measurement, and the number of recorded load measurements
for the preceding window is less than a threshold (chosen based on
the expected rate for load measurements).

Since work is measured at a coarse resolution (1 kWh), the work
values enable us to derive only an approximation of the actual aver-
age load. Therefore, the threshold on the number of load measure-

ments allows for tuning how many load values are at least required
to avoid computation of the window average based on work values.

If applied, the correction mechanism determines the maximal
interval of adjacent windows with insufficient load measurements.
The difference between the first and last work measurement for this
period is used to conclude on the average load for all the windows.
State handling. Load forecasting relies on the average load per
window per plug over the complete history. To cope with the un-
bounded state of the query, our implementation strives for reducing
the size of the state as much as possible.

First, we observe that although results have to be provided for five
different window sizes, all of them can be expressed as multiples of
the smallest window of one minute. Therefore, our implementation
only stores the state for the smallest windows.

Second, since prediction is based on the load average, our operator
keeps only a sliding average for the current smallest window and
the average load for all historic windows. Load averages are kept
in a two-dimensional array (per plug, per window), and an index
structure allows for quick access of a global identifier for a plug.
The index is implemented as a three-dimensional array over the
house, household, and plug identifiers.

For the work-based correction mechanism, additional state needs
to be maintained. For each plug and window, the number of load
measurements and the first recorded work value is maintained in
further two-dimensional arrays.

3.4 Query 2: Outliers
Outlier detection is realised by operators Q2 Plug and Q2 Global.

The former focuses on the calculation of windows and the median
load per plug. Q2 Global maintains the global median and performs
the actual outlier detection.
Plug windows and median. To maintain the time windows and
calculate the median load per plug, operator Q2 Plug proceeds
as follows. On the arrival of a load measurement, the value and
timestamp is added to either window (1 hour and 24 hours) for the
respective plug. The timestamp of the received event is used to
remove old events from both windows. Then, the median of the load
values for the plug is calculated. If both, the median and the multiset
of values of both windows, did not change, no event is forwarded to
operator Q2 Global. If there was a change, the new median for the
plug as well as the load values added or removed to either window
are sent to Q2 Global (<plug update>).
Outlier detection. To detect outliers, operator Q2 Global compares
the median values per plug as computed by operator Q2 Plug with
the global median. To compute the latter, the operator maintains
two time windows over all plugs. However, these windows are
updated only based on the values provided by the events of the
<plug update> stream generated by operator Q2 Plug.

Receiving an event of the <plug update> stream leads to re-
calculation of the global median for the respective window. If that
has not changed, only the house related to the plug for which the
update has been received is considered in the outlier detection. If
the global median changed, the plugs of all houses are checked. If
the percentage of plugs with a median load higher than the global
median changes, the result stream is updated.
State handling. To implement the time windows, for each plug, op-
erator Q2 Plug maintains two double-ended queues, one containing
the timestamps and one containing the load values. Implemented
as linked lists, these queues allow to insert new measurements in
constant time. Accessing and removing events from the other end
of the queue is done in constant time. The queue containing the

timestamps is used to determine whether elements of the queue
containing the load values should be removed.

To compute the median over the load values per plug, Q2 Plug
maintains an indexable skip-list [12]. Such a skip-list holds an
ordered sequence of elements and also maintains a linked hierarchy
of sub-sequences that skip certain elements of the original list. We
use the probabilistic and indexable version of this data structure—
the skip paths are randomly chosen and, for each skip path, we also
store the length in terms of the number of skipped elements.

The indexable skip-list allows for inserting, deleting and search-
ing load values as well as accessing the load value at a particular list
index in logarithmic time. Median calculation is traced back to a
list lookup. Since the query requires the lookup only for the median
element, and not for an arbitrary index, we also keep a pointer to
the current median element of the list, which is updated with every
insertion or deletion. Hence, the median is derived in constant time.

Although bounded, handling the state of operator Q2 Global is
challenging due to the sheer number of measurements that need to
be kept (up to 100,000,000 events) and the update frequency. For
both windows, our implementation relies on an indexable skip-list
and uses a pointer to the median elements of these lists.

4. EVALUATION
We evaluate the performance of our system by investigating:
• if it scales. Does the system support more houses?
• if it can cope with the current load with headroom. Can the

system process faster than real time?
• how fast it can incorporate predictions. Does the system

achieve low latency, even when it is distributed?
We deploy our solution in a private cluster composed of 10 Intel

Xeon E3-1220 V2 4-core nodes (3.1 Ghz) with 8 GB of RAM,
running SEEP on a Linux kernel 3.2.0 with Java 7. We execute
SEEP with the fault tolerant mechanism enabled.
Scalability. To measure scalability, we report relative throughput,
where we normalise the throughput of the system for the baseline
case, and show how it increases as we add cluster nodes. We explain
the bottlenecks observed when conducting the experiments.
Throughput. After analysing the available datasets, we find that
we need a system capable of processing 377 events/s, 696 events/s
and 1565 events/s, on average, for the 10-, 20- and 40-house dataset,
respectively, to process the incoming input rate over a month. SEEP
processes three orders of magnitude faster than this. For this reason,
we report speedup over RT (real time) as the number of times that
the system process faster than required to run the queries. As an
example, consider a speedup over RT of 200×, which would allow
for processing one month worth of data in 15 days.
Latency. We measure the end-to-end latency of those events that
close windows in both queries. To measure latency accurately, we
place the source and sink of our system on the same node so that
both operators use the same clock.

For the given event queries, the processing cost per event is close
to constant regardless of the dataset size. Dataset sizes, however,
have an impact on the total memory required to run the queries. We
exploit the stateful capabilities of SEEP to provide an implementa-
tion that expresses the state efficiently. Note that under this scenario,
larger datasets do not impact the throughput of our system, but only
the speedup, as there are more events to process.

4.1 Query 1: Load Forecasting
Our implementation of query 1 consists of two operators, a filter

and Q1 (see Figure 2). For the baseline system, each of the operators

0

100

200

300

400

500

10 20 40
 0

 200

 400

 600

 800

 1000

 1200

 1400

T
h

ro
u

g
h

p
u

t
(1

K
 e

/s
)

S
p

e
e

d
u

p
 o

v
e

r
R

T
 (

1
x
)

Workload (houses)

Throughput 10th
Throughput 50th
Throughput 90th
Speedup over RT

Figure 3: Throughput and speedup as a function of the number of
houses. With a constant throughput, growing the size of the dataset
implies a lower speedup.

Q1 Dist. Q1 Q2 Dist. Q2

10th 4 ms 3 ms 118 ms 40 ms
50th 17 ms 12 ms 136 ms 150 ms
90th 31 ms 21 ms 160 ms 186 ms

Table 1: Latencies for both queries with baseline and distributed
deployment.

is deployed on a single node of the cluster. For our distributed
deployment, we scale out from 2 to 6 nodes.
Baseline system. Figure 3 shows the 10th, 50th, and 90th percentile
of throughput as requested in the challenge description. As expected,
this is almost constant across the different workload sizes but the
speedup over RT decreases as there are simply more events to pro-
cess. With a speedup over RT of around 900×, the system can
process one month worth of data from 10 houses in about one hour,
while it will take around four hours to do the same for 40 houses.
Distributed system. Ideally, we want the system to scale to support
the data coming from more houses. In our system, this is equivalent
to keep the speedup over RT constant. We exploit data parallelism
to aggregate throughput, thus, keeping constant or even increasing
the speedup over RT.

Figure 4 shows on the x-axis the number of cluster nodes used
during the experiment. The relative throughput increases linearly
from 2 to 3 nodes, sub-linearly until 5, and then we find a spike
when using 6 nodes. The reason for the sub-linear behaviour is due
to the sink operator: it aggregates the results from the distributed
nodes, becoming an IO bottleneck. To confirm this, we scale out
the sink and run the system with 6 nodes, which shows how the
throughput increases again. The speedup over RT in this experiment
always increases, which confirms that our system can scale to bigger
datasets while sustaining the throughput. We stop at 6 nodes when
the source becomes a bottleneck. In a real scenario with distributed
sources, this would not be an issue.

Table 1 shows the latencies for both the baseline system and the
distributed one. The major sources of latency spikes in SEEP are the
buffering mechanism used for fault tolerance, and the interaction
of this with the garbage collector under high memory utilisation
scenarios. Neither of these happen for query 1. Our latencies are
slightly lower than in the non-scaled case. The reason for this is that
the source cannot insert data at higher rates. Events thus traverse the
same number of queues and processing elements as in the non-scaled
case but with more headroom.

0

2

4

6

8

10

2 3 4 5 6
 0

 200

 400

 600

 800

 1000

 1200

 1400
R

e
la

ti
v
e

 T
h

ro
u

g
h

p
u

t

S
p

e
e

d
u

p
 o

v
e

r
R

T
 (

1
x
)

Number of nodes

Relative th.
Speedup over RT

Figure 4: Throughput and speedup over RT as a function of the
number of machines. We increase the speedup by scaling out the
system to aggregate throughput.

0

50

100

150

200

10 20 40
 0

 100

 200

 300

 400

 500

T
h

ro
u

g
h

p
u

t
(1

K
 e

/s
)

S
p

e
e

d
u

p
 o

v
e

r
R

T
 (

1
x
)

Workload (houses)

Throughput 10th
Throughput 50th
Throughput 90th
Speedup over RT

Figure 5: Throughput and speedup as a function of the number of
houses for query 2.

4.2 Query 2: Outliers
Our implementation of query 2 consists of three operators, fil-

ter, Q2 Plug and Q2 Global (see Figure 2). Hence, the baseline
deployment comprises 3 nodes in the cluster. For the distributed
deployment, we scale out from 3 to 7 nodes.
Baseline system. Figure 6 shows the expected behaviour: speedup
decreases as the dataset grows in event size. This query is com-
putationally more expensive than query 1. In our solution, this
translates to a total time of 3.2 hours to process one month of data
for 10 houses to 13 hours to do the same for 40 houses.
Distributed system. We follow the same strategy of scaling out the
system to increase the speedup over the minimum throughput re-
quired by the system, reported in Figure 6. When adding more clus-
ter nodes, the throughput increases, except between 5 and 6 nodes.
The reason for this behaviour is that there were two simultaneous
bottlenecks: a CPU bottleneck, which disappears after scaling from
5 to 6 nodes, gives rise to an IO bottleneck. After scaling out the
IO bottleneck, the speedup can keep increasing. We stop our query
when the source becomes a bottleneck.

The latencies for query 2 are reported in Table 1. They are higher
than for query 1 because, while the bottleneck in query 1 is IO
(serialisation and deserialisation), this query is CPU-bound.

4.3 Impact of Semantic Load-Shedding
To investigate the inherent trade-off of result accuracy and com-

putation efficiency implied by semantic load-shedding, we compare
the load predictions derived by query 1 for a sample of 4 days. We
focus on the predictions derived for the smallest time window (one

0

1

2

3

4

5

3 4 5 6 7
 0

 200

 400

 600

 800

 1000

 1200

 1400

R
e

la
ti
v
e

 T
h

ro
u

g
h

p
u

t

S
p

e
e

d
u

p
 o

v
e

r
R

T
 (

1
x
)

Number of nodes

Relative th.
Speedup over RT

Figure 6: Distributed deployment of query 2. Scaling out the query
aggregates throughput and increases the speedup.

 0

 2

 4

 6

 8

 10

 12

 14

 16

 0 0.5 1 1.5 2 2.5 3 3.5 4A
b

s
.

o
f

p
re

d
ic

ti
o

n
 e

rr
o

r
(W

a
tt

)

Days (5 min windows)

Plug 10th prediction error
Plug 50th prediction error
Plug 90th prediction error

Figure 7: Time series over 4 days showing a low prediction error for
plugs over 5-minute windows. Note that the 10th and 50th percentile
lines overlap with the x-axis.

minute). This window represents the most challenging case because,
for larger windows, the relative importance of filtered events is
smaller and thus accuracy is less affected.

In Figures 7 and 8, we show the absolute prediction error for plugs
and houses, respectively, aggregated for windows of 5 minutes. For
individual plugs, although the 90th percentile shows spikes up to
15 watt, the median error is zero in virtually all cases. For load
prediction of houses, in turn, the median error is largely between
1 and 3 watts and there is little variability in the results. Based on
these results, we conclude that the error is small enough to justify
the use of the mechanism.

Regarding the benefits of load-shedding for processing perfor-
mance, Figure 9 shows the difference in throughput and speedup
over RT when enabling the mechanism. As discussed before, the
throughput per node is mostly unaffected because processing cost
per event is close to constant. However, we observe an improvement
of speedup of two orders of magnitude, meaning that one month
worth of data for 40 houses is processed in 17 minutes. This drastic
speedup together with the low accuracy loss justifies the usage of se-
mantic load-shedding in this scenario—it results in more headroom
to scale out the system to accommodate the load from more houses.

5. RELATED WORK
Our solution is based on the use of distributed stream process-

ing. Various engines for stream processing have been proposed in
the literature, such as Discretized Streams [14], Naiad [10], Twit-
ter Storm [9], Apache S4 [11], MOA [5], Apache Kafka [8] and
Streams [6]. Discretized Streams supports massive parallelisation

 0

 2

 4

 6

 8

 10

 12

 14

 16

 0 0.5 1 1.5 2 2.5 3 3.5 4A
b

s
.

o
f

p
re

d
ic

ti
o

n
 e

rr
o

r
(W

a
tt

)

Days (5 min windows)

House 10th prediction error
House 50th prediction error
House 90th prediction error

Figure 8: Time series over 4 days showing a low prediction error
for houses over 5-minute windows.

0

100

200

300

400

500

10 20 40
 100

 1000

 10000

 100000

T
h

ro
u

g
h

p
u

t
(1

K
 e

/s
)

S
p

e
e

d
u

p
 o

v
e

r
R

T
 (

1
x
)

Workload (houses)

Throughput Original

Throughput Filtered

Speedup over RT (original)

Speedup over RT (filtered)

Figure 9: When applying semantic load-shedding, the speedup
grows by two orders of magnitude (note the logarithmic scale). One
month worth of data for 40 houses is processed in 17 minutes.

and state using Resilient Distributed Datasets but this approach is
based on micro-batching, which increases latency. Naiad [10] can
scale to many nodes but is not designed to be fault tolerant when the
managed state is large. The other systems lack support for managing
stateful operators and for reacting to varying input rates. Both issues
are of particular relevance to the grand challenge—the queries fea-
ture a large and complex state and the number of events indicating
changes in load shows large variability. Therefore, we base our
solution on SEEP [7], which supports stateful operators, dynamic
scale-out and fault tolerant processing.

To improve the processing performance, we apply semantic load-
shedding, dropping input events in a structured way to achieve
timely processing. Load-shedding is a common technique for op-
timising event processing applications, in particular for achieving
high throughput [13, 4]. In some cases, load shedding for dis-
tributed stream processing may in itself become an optimisation
problem [13]. Our approach exploits domain semantics, i.e. the
size of a change of a measurement value, to decide on which events
to filter. Our evaluation shows that this approach results in only
minor inaccuracies in the load forecast. However, filtering leads
to substantial performance improvements—the speedup realised by
the system grows by two orders of magnitude.

6. CONCLUSIONS
We presented a highly scalable solution to the ACM DEBS Grand

Challenge 2014. We based our solution on SEEP, a platform for
stateful stream processing that supports dynamic scale out of op-
erators and recovery of operator state after a failure. To achieve

efficient processing, we presented implementations of the stream
processing operators that are geared towards parallelisation and
effective state management, e.g. using queues and skiplists. In ad-
dition, we exploited the fact that there are long time periods over
which measurement values are relatively constant. Further details
on our solution including a screencast are available at [2].

The experimental evaluation of our solution shows that the system
can handle high volume data, processing it with 300,000 events per
second for the load forecasting and 100,000 events per second for
the outlier detection and median latencies of 17 ms or 136 ms,
respectively. We also conclude that the system can handle larger
workloads because it scales linearly when adding cluster nodes.
Further, we demonstrate that semantic load-shedding can lead to
large performance gains. While filtering leads to approximate query
results only, the resulting bias was modest, with a low median
error for the prediction. However, the speedup over real time was
increased by two orders of magnitude, which allowed us to process
the whole dataset in 17 minutes.

Our approach to filter events for more efficient stream processing
opens several directions for future work. Generation of filter con-
ditions based on given bounds for the tolerated inaccuracies would
allow for automating the approach. Then, probing unfiltered results
for certain time intervals would enable to assess the consequences
of filtering and adapt the selectivity of filter conditions dynamically.

7. REFERENCES
[1] http://esper.codehaus.org/.
[2] http://lsds.doc.ic.ac.uk/projects/seep/debs14-gc.
[3] J. Agrawal, Y. Diao, D. Gyllstrom, and N. Immerman.

Efficient pattern matching over event streams. In SIGMOD,
pages 147–160. ACM, 2008.

[4] B. Babcock, M. Datar, and R. Motwani. Load shedding in
data stream systems. In Data Streams, volume 31 of Advances
in Database Systems, pages 127–147. Springer, 2007.

[5] A. Bifet, G. Holmes, R. Kirkby, and B. Pfahringer. Moa:
Massive online analysis. The Journal of Machine Learning
Research, 99:1601–1604, 2010.

[6] C. Bockermann and H. Blom. The streams framework.
Technical Report 5, TU Dortmund University, 2012.

[7] R. C. Fernandez, M. Migliavacca, E. Kalyvianaki, and
P. Pietzuch. Integrating scale out and fault tolerance in stream
processing using operator state management. In SIGMOD,
pages 725–736. ACM, 2013.

[8] J. Kreps, N. Narkhede, and J. Rao. Kafka: A distributed
messaging system for log processing. In NetDB, 2011.

[9] N. Marz. Storm - distributed and fault-tolerant realtime
computation, 2013.

[10] D. G. Murray, F. McSherry, et al. Naiad: A Timely Dataflow
System. In SOSP, 2013.

[11] L. Neumeyer, B. Robbins, A. Nair, and A. Kesari. S4:
Distributed stream computing platform. In Data Mining
Workshops (ICDMW), pages 170–177. IEEE, 2010.

[12] W. Pugh. Skip lists: A probabilistic alternative to balanced
trees. Commun. ACM, 33(6):668–676, 1990.

[13] N. Tatbul, U. Çetintemel, and S. Zdonik. Staying fit: Efficient
load shedding techniques for distributed stream processing. In
VLDB, pages 159–170. VLDB Endowment, 2007.

[14] M. Zaharia, T. Das, H. Li, T. Hunter, S. Shenker, and I. Stoica.
Discretized Streams: Fault-tolerant Streaming Computation at
Scale. In SOSP, 2013.

[15] H. Ziekow and Z. Jerzak. The DEBS 2014 Grand Challenge.
In DEBS, Mubai, India, July 2014. ACM.

