
Spons & Shields:
Practical Isolation for Trusted Execution

Vasily A. Sartakov
v.sartakov@imperial.ac.uk
Imperial College London

United Kingdom

Daniel O’Keee
daniel.okeee@rhul.ac.uk

Royal Holloway University of London
United Kingdom

David Eyers
dme@cs.otago.ac.nz
University of Otago

New Zealand

Lluís Vilanova
vilanova@imperial.ac.uk
Imperial College London

United Kingdom

Peter Pietzuch
prp@imperial.ac.uk

Imperial College London
United Kingdom

Abstract
Trusted execution environments (TEEs) give a cost-eective,
“lift-and-shift” solution for deploying security-sensitive ap-
plications in untrusted clouds. For this, they must support
rich, multi-component applications, risking a large trusted
computing base inside the TEE. Fine-grained compartmen-
talisation can increase security through defense-in-depth,
but current solutions either run all software components
unprotected in the same TEE, lack ecient shared memory
support, or isolate application processes using separate TEEs,
impacting performance and compatibility.
We describe the Spons & Shields framework (SSF) for In-

tel SGX TEEs. Spons and Shields are new abstractions that
generalise process, library and user/kernel isolation inside
the TEE while allowing for ecient memory sharing. For
unmodied multi-component applications in a TEE, SSF dy-
namically creates Spons (one per POSIX process or library)
and Shields (to enforce a memory access policy). Applica-
tions can be hardened easily, e.g., by using a separate Shield
to isolate an SSL library. SSF uses compiler instrumentation
to protect Shield boundaries, exploiting MPX instructions
if available. We evaluate SSF using a complex application
service (NGINX, PHP interpreter and PostgreSQL) and show
that its overhead is comparable to process isolation.

CCS Concepts: • Security and privacy → Trusted com-
puting; Operating systems security.

Keywords: trusted execution, isolation, compartments, SGX

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for prot or commercial advantage and that copies bear
this notice and the full citation on the rst page. Copyrights for components
of this work owned by others than ACMmust be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specic permission and/or a fee. Request
permissions from permissions@acm.org.
VEE ’21, April 16, 2021, Virtual, USA
© 2021 Association for Computing Machinery.
ACM ISBN 978-1-4503-8394-3/21/04. . . $15.00
hps://doi.org/10.1145/3453933.3454024

ACM Reference Format:
Vasily A. Sartakov, Daniel O’Keee, David Eyers, Lluís Vilanova,
and Peter Pietzuch. 2021. Spons & Shields: Practical Isolation for
Trusted Execution. In Proceedings of the 17th ACM SIGPLAN/SIGOPS
International Conference on Virtual Execution Environments (VEE
’21), April 16, 2021, Virtual, USA.ACM, New York, NY, USA, 15 pages.
hps://doi.org/10.1145/3453933.3454024

1 Introduction
Increasingly more cloud providers [2, 28, 48] oer hardware
support for trusted execution environments (TEEs) [16, 26, 32].
TEEs enable cloud tenants to deploy applications that are pro-
tected from other privileged system software or direct access
by cloud administrators. The initial use of TEE technolo-
gies [16, 26] followed an SDK model in which users devel-
oped security-sensitive software components running inside
TEEs, resulting in a small trusted computing base (TCB).

More recently, came “lift-and-shift” models, in which con-
tainerised applications or entire virtual machines (VMs) ex-
ecute inside of TEEs. This requires a trusted OS inside the
TEE (TEE OS). TEE technologies such as Intel SGX [16] sup-
port the execution of unmodied Linux applications by im-
plementing library OSs as the TEE OS [4, 6, 21, 58]; AMD
SEV-SNP [3] and Intel TDX [30] support full VM execution,
which allows a regular guest OS kernel as the TEE OS.

The ease of “lift-and-shift” is popular with cloud tenants,
but it raises security concerns due to the large TCB size of
entire applications executing inside TEEs.
Traditionally, compartmentalisation [7, 59, 83] has been

used as a defense-in-depth technique to contain vulnera-
bilities in large TCBs. It requires isolation mechanisms to
separate software components from each other. We argue
that existing isolation mechanisms, however, are insucient
to improve the security of large applications inside of TEEs:
Process isolation is a coarse-grained isolation mechanism that
assumes that an application is structured as a set of processes.
Extracting security-sensitive functionality into separate pro-
cesses, however, can be a complex task and subsequently
impact application performance [62–64]. Process isolation

186

https://doi.org/10.1145/3453933.3454024
https://doi.org/10.1145/3453933.3454024

VEE ’21, April 16, 2021, Virtual, USA Vasily A. Sartakov, Daniel O’Keee, David Eyers, Lluís Vilanova, and Peter Pietzuch

(a) Attacks without intra-TEE isolation

(b) Intra-TEE isolation provided by Spons and Shields

Figure 1. Isolation mechanisms for TEEs

also requires enforcement by the OS kernel and MMU hard-
ware. Yet, OS and MMU support inside the TEE may be lim-
ited, as the TEE cannot rely on cooperation by the untrusted
host. For example, SGX TEEs cannot implement fork-based
process semantics faithfully and eciently [5, 12, 72].
User/kernel isolation is designed to protect a trusted ker-
nel from untrusted userspace applications. Inside TEEs, this
threat model is inverted: typically an outside attacker uses
the host interface to the TEE as an attack vector, e.g., launch-
ing Iago attacks [13] against the TEE OS. Traditional user/k-
ernel space isolation therefore does not prevent vulnerabili-
ties in application components from being exploited.
Multi-TEE isolation [9, 68] uses separate TEEs to isolate ap-
plication components. For example, it has been used to im-
plement process isolation for SGX TEEs [12]. This isolation
approach, however, is inecient: creating TEEs dynamically
is expensive, and using multiple TEEs prevents ecient data
sharing due to data copying and encryption overheads.
To understand the isolation requirements for TEEs, we

consider the example in Fig. 1a, which shows a medical
record service that is protected by a TEE. The service con-
sists of four application components, which are not mutually
isolated: (i) an NGNIX web server; (ii) an SSL library to en-
crypt external communication; (iii) a PHP scripting engine
for business logic; and (iv) a PostgreSQL DBMS. For the ser-
vice to execute, it must be able to create multiple processes
inside the TEE and use inter-process communication (IPC)
between them (Fig. 1a, top). For example, the web server,
PHP and DBMS components execute as functionally sepa-
rate processes, and PostgreSQL uses a pool of processes to
implement functionality such as handling incoming requests.

From a security point-of-view, we require process isolation
inside the TEE (Fig. 1a, top-right side) so that an attacker
cannot use web server requests as an attack vector to access
security-sensitive data in the memory of other processes

such as the DBMS [65, 70]. We also require more ne-grained
isolation between software components through library iso-
lation (Fig. 1a, left). For example, by isolating the SSL library
itself, we can protect its cryptographic keys from access after
the web server has been compromised. Similarly, the PHP
interpreter should be isolated from its modules, which are
written in type-unsafe C code. Finally, we want to protect
the TEE OS through traditional user/kernel isolation: with-
out it, a compromised web server may tamper with the TEE
OS (e.g., to access other processes), thus bypassing process
isolation. Processes should only be able to access the TEE
OS and security-critical libraries via controlled entry points.
Despite the above need for ne-grained isolation, iso-

lated components must also eciently share memory for
performance reasons. For example, PostgresSQL processes
use shared memory IPC to exchange data; the SSL library
must access memory of the web server to implement its plug-
in model. Process memory must also remain accessible by
the TEE OS, e.g., to control user-level thread scheduling.

We describe the Spons & Shields framework (SSF),
which introduces two abstractions, Spons and Shields (see
Fig. 1b). The two abstractions provide a uniform mechanism
for ne-grained compartmentalisation in TEEs, unifying pro-
cess, library and user/kernel isolation while permitting e-
cient memory sharing. By disentangling the execution and
memory protection aspects of isolation, SSF can provide ef-
cient mechanisms that full the functional and security
requirements for ecient and practical intra-TEE isolation:

(i) Spons encapsulate the execution contexts of applica-
tion components, as well as the entry points exported to
other Spons. Developers can create Spons dynamically at
low cost to express multi-programming and concurrency.
Multi-threaded processes are supported by active Spons,
which contain one or more execution contexts controlled by
the user; passive Spons can shield libraries as portions of
an active Spon. Spons can call into other Spons only via well-
dened entry points, and passive Spons obtain an execution
context from their caller (either a passive or active Spon).

(ii) Shields dene a hierarchy ofmemory protection bound-
aries across Spons. This hierarchical approach allows devel-
opers to use nested Shields to support the isolation shown
in Fig. 1b: (1) the TEE OS sits at the root, with system calls as
well-dened entry points, to provide user/kernel isolation;
(2) the web server, PHP and DBMS processes are dened as
nested Shields to provide process isolation. All DBMS pro-
cesses use the same Shield to permit shared memory IPC;
and (3) the SSL library is nested between the OS and the web
server, which oers library isolation to protect the crypto-
graphic keys, while allowing the library to access the web
server’s connection data with minor application changes.

Interestingly, this hierarchical approach of Shields allows
for ecient and practical memory protection without assum-
ing virtual memory and OS support by the TEE hardware.
Given the limited hardware support in some TEEs, a TEE OS

187

Spons & Shields: Practical Isolation for Trusted Execution VEE ’21, April 16, 2021, Virtual, USA

may provide process functionality but no isolation among
them [6, 34, 37, 45]; others provide process isolation at the
expense of performance [12] and support for shared mem-
ory [12, 72] (e.g., a requirement for PostgreSQL).

Our SSF prototype uses Intel SGX because it is a minimal-
ist extreme in TEE design. SGX restricts hardware features
the TEE OS can use (e.g., the MMU can only be used with
cooperation by the untrusted host OS). Since SGX provides
no hardware mechanisms to enforce intra-TEE isolation, SSF
uses compiler-based instrumentation—an LLVM pass [39]—
to protect Shield boundaries using well-known software fault
isolation (SFI) [81] and control ow integrity (CFI) [1] tech-
niques. To reduce the overheads, SSF exploits MPX instruc-
tions to perform bounds checks [61].
The Linux kernel library (LKL) is our SSF implementa-

tion’s TEE OS, which provides a full Linux ABI inside SGX
TEEs. It utilises user-level scheduling for security [84] and
performance reasons [4, 53]. To maintain user/kernel isola-
tion, SSF therefore partitions the standard C library, dividing
threading metadata between the TEE OS and the application.
We evaluate SSF with two applications in SGX TEEs, a

complex service similar to the healthcare scenario above
(NGINX, PHP, and PostgreSQL) and the PyCryptodome cryp-
tographic framework [54]. Our results show that PostgreSQL
and PHP only see overheads of 10% and 22%, respectively,
compared to a non-isolated system; NGINX can isolate its
SSL library with negligible overheads; and Python isolates
the PyCryptodome C extensions with 21%–57% overhead.
Compared to a multi-TEE design, SSF spawns processes 7×
more quickly and handles requests with 27% lower latency.

2 Isolation Support for Trusted Execution
Next we provide background on hardware TEEs (§2.1) and
the OS support within TEEs (§2.2). We then discuss the re-
quirements for intra-TEE isolation (§2.3) and survey existing
isolation approaches (§2.4).

2.1 Hardware TEEs

Data processing in cloud infrastructures entails a major
risk: the cloud provider has privileged data and code access.
Major CPU vendors responded with extensions to support
trusted execution environments (TEEs). ARM CPUs provide
TrustZone [26], which isolates a single “secure world” TEE
from the rest of the CPU, limiting its applicability in multi-
tenant IaaS scenarios. AMD oers Secure Encrypted Virtual-
ization (SEV) [32], targeting runtime encryption for VMs.
In contrast, Intel’s Software Guard Extensions (SGX) [47]

provide a minimal TEE targeted at application-level code,
where SGX enclaves (TEE instances) lack typical hardware
mechanisms to manage privilege levels and page tables. SGX
enclaves use memory that is isolated from the rest of a pro-
cess’ address space. The physical memory of enclaves, as part
of the Enclave Page Cache (EPC), is located inside the Proces-
sor Reserved Memory (PRM) region. The hardware controls

Threading system Linux Kernel Library

Host OS

System backend (Storage, Signals, Network)

Standard C library

Unmodified Application

libc API

TEE: SGX enclave

TEE OS

Host interface

Figure 2. TEE OS architecture using library OS approach

access to the PRM and transparently encrypts its contents
using the Memory Encryption Engine (MEE), thus protecting
enclaves from adversaries with physical access [23]. SGX en-
claves require a mix of user-space OS support (using a TEE
OS linked against the application) and interaction with the
host OS –which is outside the enclave’s TCB – to perform op-
erations such as I/O or dynamic EPC page allocation [31, 46].

2.2 OS Support Within TEEs

TEEs can be used to protect complex POSIX applications
from an untrusted host. TEEs such as AMD SEV allow exe-
cuting an unmodied, virtualised guest OS (as the TEE OS).
While this oers an easy “lift-and-shift” approach, it also
results in a large TCB by running a large unmodied stock
OS kernel. In contrast, TEEs such as Intel SGX require a
bespoke library OS as the TEE OS that oers OS functions to
applications. Existing library OSs for TEEs provide various
levels of OS functionality, ranging from memory allocation,
le and network I/O, to thread scheduling and synchroni-
sation [4, 6, 12, 58]. By tailoring the TEE OS to the TEE,
large parts of traditional OS kernel code, e.g., related to de-
vice drivers, low-level hardware management and multi-user
support, become unnecessary, leading to smaller TCB sizes
and stronger security. Therefore we assume a library OS
based approach for the TEE OS in the rest of the paper.

Fig. 2 shows a representative design of an application de-
ployed with a library OS as the TEE OS. The application
is linked against a standard C library interface, which is
exposed by a TEE OS layer. The TEE OS layer includes the
implementation of the standard C library (e.g.,musl libc [50]),
which performs direct function calls to the system call imple-
mentations in the TEE OS instead of using hardware traps.
The TEE OS provides the OS functionality required and may
be implemented from scratch [12] or may reuse parts of an
existing OS kernel (e.g., the Linux Kernel Library (LKL) [60]).

2.3 Threat Model and System Requirements

We consider a threat model in which the application code
may contain vulnerabilities. The TEEs do not trust the host
OS, which can be malicious or compromised, nor external
clients interacting with the TEE. We assume that the TEE
hardware implementation is correct and do not consider side-
channel attacks, which can be addressed orthogonally using

188

VEE ’21, April 16, 2021, Virtual, USA Vasily A. Sartakov, Daniel O’Keee, David Eyers, Lluís Vilanova, and Peter Pietzuch

Table 1. Isolation approaches for trusted execution (7/3 indicates requirement partially satised).

Approach Description (R1) Fine-grained
isolation

(R2) Ecient
memory
sharing

(R3) POSIX
compatibility

(R4) TEE
implementable

Domains
ERIM [78]
Shred [14]
CubicleOS [67]

Process-level
domains with
isolated threads

7/3 7 3 3

ISA
extension

IMIX [18]
CHERI [83]

Hardware
isolation
primitives

3 3 3 7

Kernel-level
LwCs [42]
SeCage [43]

Kernel/Hypervisor/MMU
enforced isolation 7/3 3 3 7

Compiler
SGXBounds [38]
ConfLLVM [8]

Code
instrumentation 7/3 3 7 3

Occlum[72] Process isolation
for TEEs 7 7 7/3 7/3

SSF
Decoupled TEE
execution/isolation
abstractions

3 3 3 3

well-known techniques [35, 41, 79, 86]. We also assume that
the TEE OS and the compiler are implemented correctly, and
thus part of our runtime TCB. Our goal is to protect untrusted
application components (e.g., libraries or processes) from
each other, and also protect the TEE OS from them.

Intra-TEE isolation approaches must satisfy requirements:
(R1) Fine-grained isolation. The approach should provide
primitives to compartmentalise the components of TEE ap-
plications [22]. Compartmentalisation should be applicable
to both processes and libraries with little developer interven-
tion and low performance overhead. In addition, the library
OS inside the TEE should be regarded as another (set of)
software components, thus unifying user/kernel isolation.
(R2) Ecient memory sharing. Inter-component commu-
nication is performance critical for many applications. The
approach should support ecient shared memory commu-
nication between a subset of application components when
required, while isolating components from the rest of the
application and the TEE OS.
(R3) Compatiblewith existing POSIX applications.The
approach should provide abstractions that are compatible
with existing applications built from processes, threads and
types of IPC. The primitives should be available at runtime
and not impose restrictions on the number of execution and
isolation units (e.g., threads, processes and compartments),
only subject to the available memory.
(R4) Implementable within TEEs. Compartmentalisation
should be available inside TEEs and be compatible with their
security model. In particular, the soundness of compartments
should not depend on support from the untrusted host or
access to hardware features not widely available on TEEs.

2.4 Existing Isolation Approaches

Since a single process can host more than one TEE, a straw-
man solution for isolation is to spawn multiple TEEs [12,
68, 73]. A multi-TEE design, however, must use encrypted
communication between TEEs. Such communication may
require partial redevelopment of an application (e.g., to move

from RPCs to message-passing), and the required encryption
can slow down data exchange by up to 10× [68]. A multi-
TEE design thus does not satisfy R2 or R3 due to the extra
development eort and performance costs.
In Tab. 1, we compare other approaches for intra-process

isolation of userspace code (see §7 for more related work).
Intra-process domains. Dierent hardware mechanisms
can be used to compartmentalise processes. Intel MPK [29]
enforces domains inside a process by assigning tags to mem-
ory pages. Similarly, tags can be assigned to threads, bind-
ing them within particular domains. Shred [14] (uses Arm
domains that are similar to Intel MPK), ERIM [78] and Cubi-
cleOS [67] introduce system abstractions for MPK, but only
a few (16) isolated contexts can be used, contradicting R3.
libMPK [55] lifts this limitation by virtualising protection
keys but requires trusting the OS kernel, contradicting R4.
Hardware isolation extensions. Researchers have also
proposed new hardware extensions for isolation. IMIX [18]
introduces in-memory isolation for x86 that allow develop-
ers to mark memory pages as security sensitive. CHERI [83]
and CODOMs [80] introduce hardware-supported capability
systems, which support program compartmentalisation. All
these approaches rely on hardware extensions unavailable
on commodity TEE platforms, contradicting R4.
Kernel-enforced isolation.TheOS kernel can isolate parts
of a process using its own primitives and the MMU. Light-
weight Contexts (LwCs) [42] are an abstraction for intra-
process isolation. Each LwC has its own heap and stack
but can access only limited memory ranges. Switching be-
tween LwCs involves the OS kernel, as it changes virtual
memory mappings, le table entries and more. As with
other proposals such as SeCage [43] or Secure Memory
Views [27], for some TEEs, this requires relying on a trusted
host OS/hypervisor, violating R4.
Compiler instrumentation.TEE code can be instrumented
by the compiler to protect pointers. Using Intel MPX [61] or
SGXBounds [38], developers add checks to all pointer-related

189

Spons & Shields: Practical Isolation for Trusted Execution VEE ’21, April 16, 2021, Virtual, USA

TEE OS

Passive Spon OpenSSL (SponSSL)

Active Spon NGINX (SponWeb)

SSL_read(buf,…)

main(…)

bar(...)

SSL_read(buf)

TEE OS

sys_write(…)

x

*address

execve()

x

Co
nt

ex
t s

w
itc

h

*buf

Shield

Spon

call_spon(fc, buf)

LibOS

Context
switch

Shieldweb

ShieldSSL

comp1

Active Spon PHP (SponPHP)
main(…)

execve()

ShieldPHP

socket(…)

x x

Figure 3. Anatomy of Spons and Shields

operations. MPX uses hardware bounds registers to check
buers; SGXBounds encodes buer sizes into unused bits of
SGX TEE pointers. Both can protect SGX TEE code but do not
oer a programming abstraction for existing multi-process
applications, contradicting R3.

Compiler instrumentation can also protect code at a coarser
granularity. ConfLLVM [8] creates two partitions inside a
process, one trusted and one untrusted. It instruments the
untrusted partition and guarantees that its code can never
reach the trusted one. It only supports two partitions, con-
tradicting R3. Occlum [72] supports multi-process isolation
inside SGX TEEs using MPX. However, it does not support
library isolation (R1) and only supports a very limited form
of memory sharing between pairs of processes with overlap-
ping memory ranges (R2). Occlum also relies on the host OS
for scheduling and synchronisation, reducing performance
through costly TEE transitions and making it possible to
introduce and exploit races in otherwise safe code (R4).

In summary, while many techniques have been proposed
to isolate userspace components, they either require addi-
tional hardware, the involvement of the untrusted host OS
kernel, or do not oer a suitable programming abstraction.

3 Spons and Shields
This section introduces Spons and Shields, the core abstrac-
tions in SSF to isolate execution in SGX TEEs. We give
an overview of Spons and Shields (§3.1), describe their us-
age (§3.2) and explain their API (§3.3).

3.1 Overview

Fig. 3 shows a TEE with multiple Spons and Shields to pro-
tect the NGINX web server and the OpenSSL library in our
example healthcare scenario. Spons encapsulate execution
contexts: executable code with a set of known function entry
points, per-thread contexts and stacks, and a heap allocator.
SSF supports two types of Spons: passive Spons (SponSSL)
encapsulate arbitrary code components with entry point

functions specied by the developer (SSL_read in the ex-
ample); active Spons (e.g., Sponweb in Fig. 3) are used to
encapsulate POSIX processes (with their main entry point).

All user code is associated with a Spon, which serves both
as an execution context handle and as the minimum unit
of memory protection. Memory protection policies are ex-
pressed in SSF by assigning one Shield to each Spon (multi-
ple Spons can be assigned to the same Shield), and by dening
a hierarchical nested relationship between Shields. SSF then
enforces the following invariant: Spon S is allowed to access
all the code and data of all Spons contained in the Shield
immediately enclosing S (recall that a Spon encapsulates the
code, data, and heap associated with it).

The TEE OS executes on a default, outermost Shield that
is also assigned by default to all Spons that did not specify a
Shield. To make threading more ecient and secure against
certain attacks from the host, each Spon has a set of user-level
threadsmultiplexed over host OS threads [4, 53, 84]. Invoking
a function of another Spon through the TEE OS results in a
user-level context switch (see §4). Note that passive Spons
are called synchronously, but contain independent thread
stacks to preserve isolation from their calling Spons.

SSF instruments Spon code to check every memory access
lies within its assigned Shield. Spons cannot directly access
the TEE OS; instead, SSF deploys a callback table on each
Spon with pointers to trusted trampolines into the TEE OS.
Calls into the TEE OS thus have no context-switching over-
head, and the trusted TEE OS itself is not instrumented. Note
that the TEE OS is hardened to prevent unauthorised cross-
Shield interactions (see §4.3), and our threat model relies on
users deploying instrumented application code (see §2.3).

Users can declare Spons and Shields when starting a TEE
(by mapping program paths to Spons) to compartmentalise
unmodied applications (see §3.3). The same operations are
also available to dynamically create Spons and Shields inside
a TEE, allowing more sophisticated use cases (see §3.2).

3.2 Use Cases for Spon and Shield Separation

The simplest use case for SSF is to have one Shield per Spon
– a symmetric conguration, which achieves the equivalent
of conventional process-based isolation. This conguration
works between processes of the same program e.g., processes
isolating network connection handling [51, 76], or between
the web server and PHP processes in our healthcare scenario.

Conversely, SSF supports multiple processes sharing mem-
ory in the form of “one Shield for multiple Spons”. Shared
memory is not readily supported by existing single-TEE [72]
or multi-TEE solutions [12] when isolating processes from
each other. For PostgreSQL with SSF (see §6.1), each DBMS
process is placed on its own Spon but assigned to a sin-
gle Shield, allowing access to shared memory. This policy is
weaker than process-based isolation (all DBMS processes can
access each other, not just the shared memory region), but

190

VEE ’21, April 16, 2021, Virtual, USA Vasily A. Sartakov, Daniel O’Keee, David Eyers, Lluís Vilanova, and Peter Pietzuch

Table 2. SSF interface to manage Spons and Shields
API function Description

Ahead-of-time and run-time operations
sid_t alloc_shield(sid_t sid, size_t size) Allocate size bytes for a Shield (nested if sid ! = 0)
int free_shield(sid_t sid) Free an empty Shield sid

int register_spon(sid_t sid, const char *path, size_t spon_size)
Once created, allocate a Spon from path with Shield sid and
spon_size bytes

int deregister_spon(sid_t sid, const char *path) Remove record about path from Shield sid

func_type call_spon(const char *path, const char *func_name, ...)
Create a pre-registered passive Spon and call func_ptr from
it (arguments must be scalar, or within the inner Shield)

Run-time operations
void *alloc_mem(sid_t sid, size_t size) Allocate size bytes from Shield sid
int free_mem(void *ptr) Return buer ptr to the Shield

Mapping of POSIX-like to SSF operations
int execve(const char *path, char **argv, char **envp) Create and run a Spon from a pre-registered path
int execves(sid_t sid, const char *path, char **argv, char **envp) Create and run a Spon from path inside sid

Figure 4. Asymmetric memory protection with Shields

it does not require application changes to provide security
guarantees across other application components.

Fig. 4 shows a conguration not available in conventional
processes (see §6.1 for details). The separation of Spons and
Shields and the nesting of Shields permits asymmetric mem-
ory protection, which is crucial for the defense-in-depth pro-
tection for non-trivial applications.

In the left-hand gure, the hardened version of theOpenSSL
library uses a passive Spon to isolate its private encryption
key (variable key) from the rest of the web server. SponSSL is
a passive Spon that can access all memory inside ShieldSSL,
which includes Sponweb. This way, OpenSSL can directly ac-
cess the network data received by Sponweb (variable data).
Conversely, Sponweb is an active Spon that can only access its
own memory (i.e., it is constrained by Shieldweb), and must
use the TEE OS to access the decryption function in SponSSL
(i.e., the entry point SSL_read registered by SponSSL).

In the right-hand gure, a Python interpreter (active Sponpy)
calls an unsafe C module (passive Sponmod); this is useful to
isolate native libraries such as pyOpenssl and Numpy that
may have vulnerabilities. The module is constrained by cre-
ating the nested Shieldmod. In this case, the caller (Sponpy)
marshals the function arguments into the callee (Sponmod)
and calls into an exported function through the TEE OS,
which performs a context switch into the callee’s Spon.When
Sponmod executes, it is constrained to its Shield, hardening the
application against attacks to the memory-unsafe C module.
3.3 Spon API

SSF extends the TEE OS POSIX primitives with additional
calls to manage Spons and Shields. Tab. 2 shows the API calls
used to congure an arbitrary number of Spons and Shields:

(1) Ahead-of-time operations. The rst group of calls cre-
ates a set of rules in the TEE OS to congure an unmodi-
ed application when creating a TEE. The alloc_shield
and free_shield operations manage the size and hierarchy
of Shields. The sid argument in alloc_shield allows the
creation of nested Shields (see §3.2), whereas the size argu-
ment establishes the maximum aggregate memory size that
all its associated Spons can allocate, setting the per-Spon
heap space. The calls register/deregister_spon modify
the set of rules in the TEE OS that map executable paths to
Spons and assigned Shields.

Calling call_spon creates a passive Spon for a path pre-
viously registered with register_spon. The TEE OS allo-
cates space, loads the path into the target Spon’s Shield, and
dynamically creates a code thunk in the caller’s Spon that ap-
plication code uses to call into func_name. The call_spon
operation only accepts public symbols exported by path
(similar to dynamic linking), and the generated code thunk
directs execution into the TEE OS to context-switch into the
user-level thread of the target passive Spon. Any argument
passed to this code thunk must be a scalar, or a pointer to
memory allocated within the target Spon’s Shield (see next).
(2) Run-time operations. The alloc/free_mem calls
manage a Shield’s memory. The TEE OS uses these calls to
perform per-Shield allocations, e.g., when loading a program.
Applications can also use them to have shared memory, e.g.,
to allow the Python interpreter to allocate the data buer
of the Sponmod in Fig. 4, which is then used to pass the argu-
ments of call_spon’s resulting thunk.
(3) POSIX-like operations. SSF provides POSIX-like execve
and execves calls. They consider the binary code paths reg-
istered with register_spon to instantiate the necessary
Spons and Shields. Other functions such as posix_spawn
and exec* can easily be supported using the same approach.

On a pathmatch, SSF uses the assigned Shield memory to
store the Spon’s code, heap and stack. SSF also maps memory
allocation primitives to alloc/free_mem using the calling
thread’s Shield. This is similar to how mmap/munmap are used
to implement user-level sub-allocators.

191

Spons & Shields: Practical Isolation for Trusted Execution VEE ’21, April 16, 2021, Virtual, USA

Linux Kernel Library

Host Call Interface

TEE OS interface

Spon Binary (PHP)
spn-musl

Spon 1 data/code

Spon 1 heap

Spon 1 stack

TEE OS/App
data/code

Ex
po

rt
ed

 T
EE

 O
S

In
te

rfa
ce

Enclave

Memory map +size

Spon Binary (PostgreSQL#1)

spn-musl

Spon Binary (PostgreSQL#2)

spn-musl

Shared memory

Spon 2 data/code

Spon 2 heap

Spon 2 stack

Spon 3 data/code

Spon 3 heap

Spon 3 stack

Shared memory

Sh
ie

ld
 2

Sh
ie

ld
 0Sh

ie
ld

 1

comp

Figure 5. Memory layout of an application with SSF

Example of ahead-of-time conguration: Let us consider how
to deploy the healthcare application scenario without code
changes: (1) use alloc_shield to create three, non-nested
shields, Shieldweb, ShieldPHP, and ShieldDB; (2) register the
Spons for all components with register_spon, assigning
each to their own Shield; and (3) when the application starts,
each call to execve triggers the creation of the necessary
active Spons and Shields, and invokes their main function.

4 SSF Implementation
Next we explain how Spons and Shields are implemented
in SSF. We describe the memory layout (§4.1), how memory
accesses are constrained (§4.2), how the TEE OS interface
is protected (§4.3), how to support multi-threaded execu-
tion (§4.4) and how to deploy applications with Spons (§4.5).

4.1 Memory Layout

In SSF, applications inside an SGX TEE consist of three
parts (see §2.2): (i) the deployed application, (ii) a shared
library with a standard C library interface (musl [50]), and
(iii) the TEE OS kernel (LKL [60]). A TEE OS layer combines
these components and provides SGX-related functionality,
such as a host interface, user-level threading and locking.
The SGX TEE starts executing an init program that is

linked against all the TEEOS components, and is contained in
the outermost “zero” Shield, which has access to all the TEE
memory (never shown for brevity). Fig. 5 shows the memory
layout of the init program and the Spons and Shields that it
creates by sub-dividing the available TEEmemory. Each Spon
has its own text, data, and bss segments loaded into the
memory of its respective Shield, as well as an independent
dynamic memory sub-allocator and per-thread stack.

To execute programs inside a Spon, we statically link them
with spn-musl, a libC-compatible library for Spons. SSF then
instantiates a callback table for each Spon to redirect invoca-
tions to required TEE OS functions.

4.2 Execution and Memory Access Isolation

SSF must enforce Shield boundaries without relying on the
untrusted host OS (R4). Since Spons and Shields can be

created dynamically, wemust not limit themaximumnumber
of isolated regions (R3).
SGX does not oer hardware support for memory pro-

tection. SSF thus combines software fault isolation (SFI) [81],
control ow integrity (CFI) [1, 77], andMPX hardware acceler-
ation [52, 61] to perform bounds checks on memory accesses.
The combination of SFI and CFI is aimed at thwarting ex-
ternal attacks that try to bypass the isolation guarantees of
SSF [65, 70], and supports unmodied application code.
To protect Shield boundaries, SSF “attens” their hierar-

chical relationship, as dened through alloc_shield, into
memory ranges in the TEE’s virtual address space. Every
non-nested Shield simply gets consecutive memory ranges of
a known size, specied by argument size in alloc_shield,
whereas each nested Shield recursively gets a portion of the
memory range assigned to its immediately enclosing Shield.

Note that users are allowed to deploy Spons in the “zero”
Shield, in which case no instrumentation is necessary for
that code (i.e., it exists in the same Shield as the TEE OS).
Compiler-based bounds-checking. SSF provides a new
compiler pass (SSFPass) that add bounds-checking instruc-
tions to every memory access in a Spon; code accessing
memory outside the Shield will generate an exception.
SSFPass reserves one MPX bounds register (BND0) that

contains the bounds of the currently active Shield, and inserts
the necessary upper and lower bounds check instructions
(bndcl and bndcu) for every memory access in the Spon. The
pass also veries that instrumented code does not modify
the bounds register, which is only updated by the TEE OS
when switching between Shields (via bndmk).

SSFPass is implemented using LLVM version 9.0 [39], with
roughly 300 lines of C++ code. The pass operates on the in-
termediate representation (IR) of a Spon program linked
with spn-musl (see §4.5) and does not require source code
changes. It also supports assembly code if implemented as
C inlines, for which it adds argument protection. Note that
MPX support cannot be disabled by a malicious host OS
because it is controlled by the untrusted XCR0 register (man-
aged by the TEE), and SGX ensures its integrity.
To decrease instrumentation overhead, SSFPass elides

bounds checks on addresses known to be safe; e.g., temporary
stack variables or standard memory-related functions with
a known buer size (such as memcopy, memset, or memcmp),
which can be checked just once during their rst access.
Further compiler optimisations that remove unnecessary
instrumentation could be added to SSFPass [72, 87].
Enforcing control ow integrity. SSFPass leverages
LLVM’s ne-grained forward-edge CFI [77] to restrict indi-
rect function calls. It enforces that function calls take place
using a function of the correct dynamic type, matching the
static type originating from the call [44].

This approach provides limited CFI guarantees with “for-
ward-edge protection” (i.e., calls), but not “backward-edge

192

VEE ’21, April 16, 2021, Virtual, USA Vasily A. Sartakov, Daniel O’Keee, David Eyers, Lluís Vilanova, and Peter Pietzuch

TEE OS

Loader

M pthreads

sched

sched

sched

sched

N lthreads
enclave

SponWeb

SponSSL

host
LKL

sched

threads

Figure 6. User-level multi-threading with Spons (Spon
threads are scheduled by the TEE OS lthread scheduler.)

protection” (i.e., returns). More extensive techniques could
be readily applied [11, 49], and we anticipate future hardware
enhancements such as Intel’s recently announced CET [71]
to provide full protection with low performance overheads.

4.3 Protecting the TEE OS Interface

The system call interface and user/kernel mode separation
protect the host OS. SSF’s TEE OS is the in-enclave equiva-
lent of the host OS kernel, and it must thus provide similar
isolation guarantees when Spons interact with it.

Consider the following two functions: memcpy(void *dst,
const *src, size_t n) to copy memory, and write(int
fd, void *buf, size_t count) to write to a le descriptor.
In both cases, an attacker may use a valid src pointer with
a large size value that reaches outside the caller’s Shield.
The memcpy function is implemented by spn-musl and

therefore secured by the caller’smemory protection (see §4.2).
The write function, however, is implemented by the TEE OS
and invoked via the callback table (see §4.1). As in other OS
kernels, all public TEE OS functions check that all arguments
are bounded by the calling Shield’s memory region.
The functions exported to a Spon’s callback table are de-

ned at compile time, and can be ltered through a white
list. The TEE OS interface supports the following functions:
(i) 27 functions cannot be performed or emulated inside LKL
and are mapped onto the host interface (e.g., SYS_write to
an I/O device outside the enclave); (ii) 12 SGX-LKL functions
are emulated within the enclave (e.g., SYS_futex and all
pthread functions are implemented by the user-level thread-
ing library);1 and (iii) LKL implements over 300 system calls,
of which 119 use pointer arguments.

SSF ensures the validity of pointer arguments for all func-
tions of the rst and second types (39 in total), as well as for
30 functions from the system call interface that are used in
the evaluation. Other functions can be similarly protected.

1This group of functions also includes those that bridge LKL and musl, as
well as some debug functions.

4.4 Multi-Threading Support

SSF’s TEE OS uses user-level threading (see §2.2). Fig. 6
shows the intra-TEE threading model used by the TEE OS
(SGX-LKL). Each hardware thread (i.e., a pthread in the host
OS) has a user-level scheduler that manages a pool of user-
level lthreads. The user-level scheduler simply dequeues
a runnable lthread descriptor from the pool, and context-
switches to the target lthread.

The default implementation in SGX-LKL assumes no intra-
TEE memory protection. This is incompatible with SSF be-
cause certain data (e.g., the thread stack and the errno vari-
able) must be accessed by both the Spons and the scheduler.
Solving this is challenging, since moving the scheduling logic
into the Spons would require using the host OS during en-
clave run-time to map each lthread into a pthread and using
its synchronisation primitives. Using the host OS not only
incurs additional overheads, but also allows it to introduce
and exploit data races in the TEE code [84].
To solve this problem, SSF maintains a centralised user-

level scheduler in the TEE OS and instead partitions the
lthread-specic data: lthread-related objects that are not used
by Spons are allocated inside the TEE OS, while the rest are
explicitly allocated within a Spon’s Shield. We also remove
thread-related code from spn-musl, redirecting calls to the
TEE OS. This guarantees that all threads and synchronisation
primitives use the same functionality, and Spons do not refer
to thread metadata outside of their Shield.

4.5 Building and Deploying Programs With SSF

Compilation of SSF programs is not dissimilar to ordinary
TEE programs (R3). Programs must be compiled to an ELF
le or a shared library. The SGX-LKL TEE OS currently only
supports the musl standard C library [50], so application
code must be linked against it.
The compilation process works as follows: (i) the pro-

gram’s source code is compiled into its LLVM intermediate
representation (IR); (ii) the IR code is linked with the IR of
spn-musl; (iii) the linked code is then processed by SSFPass
and LLVM’s CFI pass;2 and (iv) the resulting code is compiled
into a TEE PIE library.

SSF has an application loader that works as follows: (i) allo-
cates a memory region for the target Spon using its assigned
Shield; (ii) loads the Spon binary into this region and popu-
lates the callback table to link it with the shared TEE OS in-
terface; (iii) allocates and populates per-Spon variables such
as environ, errno, argc, argv and envp; (iv) allocates mem-
ory for the stack of the rst thread (the remaining memory is
used for the heap); and (v) sets up the MPX memory bounds
register for the Spon’s Shield and creates its rst thread.

2The CFI pass assigns types to the functions in LLVM’s IR and builds a
jump table, which is used to validate dynamically matching function types
in forward-edge indirect control ow transfers.

193

Spons & Shields: Practical Isolation for Trusted Execution VEE ’21, April 16, 2021, Virtual, USA

W
ire

gu
ar

d

TEE OS
TCP/IP Stack

PostgreSQL PHP

https

TEE OS

TCP/IP
Stack

PostgreSQL

Client

https

Client

NGINX OpenSSL

TEE OS

TCP/IP
Stack

PHP

TEE OS

TCP/IP
Stack

NGINX

Shield Shield

(a) Multi-enclave deployment

W
ire

gu
ar

d

TEE OS
TCP/IP Stack

PostgreSQL PHP

https

TEE OS

TCP/IP
Stack

PostgreSQL

Client

https

Client

NGINX OpenSSL

TEE OS

TCP/IP
Stack

PHP

TEE OS

TCP/IP
Stack

NGINX

Shield Spon

(b) Deployment with SSF

Figure 7. Enclaved, multi-component web service

MD5

TEE OS

Python

DES3
AESNI

encrypt(…)
decrypt(…)

start(…)
stop(…)

PyCryptodome

TEE OS

postmaster

bgworker

checkpoint

stats
collector

vacuum

WAL writer

shared
memory

Shield Spon

Figure 8. PostgreSQL with Spons
TEE OS

Python

AESNI
encrypt(…)
decrypt(…)

start(…)
stop(…)

PyCryptodome

TEE OS

postmaster

bgworker

checkpoint

stats
collector

vacuum

WAL writer

shared
memory

Shield Spon

M
D5

DE
S

Figure 9.Module isolation

SSF does not preclude the use of security-sensitive instruc-
tions such as EMODPE [72]. Existing techniques are applicable
here, e.g., an additional code generation pass to avoid in-
serting such instructions [78], or compiler labelling with
post-compilation binary inspection [72].

5 Discussion
SSF oers better, yet portable compartmentalisation abstrac-
tions for TEEs. It uses TEE technologies (SGX here) to re-
move trust from the host OS, enforces the isolation between
application components as well as the trusted TEE OS, and
provides a narrow host interface to minimise reliance on crit-
ical host OS features (fullling our intended threat model).
Spons and Shields can be applied at arbitrary granulari-

ties, from processes to libraries (R1 in §2.3), support shared
memory by using a single Shield for multiple Spons (R2)
and are thus able to enhance the security of existing POSIX
applications (R3). SSF also oers insights into the minimum
requirements for compartmentalisation inside a TEE (R4).
SGX is particularly challenging due to its lack of extensive
hardware support, and we show a promising direction that
couples simple hardware support (MPX) with software mech-
anisms (SSFPass and the TEE OS primitives).
More importantly, the semantics of Spons and Shields

allow SSF to take advantage of both existing and future
hardware mechanisms to further improve compartmentalisa-
tion performance. For example, we envision future incarna-
tions of SSF using hardware such as CHERI capabilities, Intel
MPK, or Intel’s CET extensions. Finally, note that SSF uses
SGXv1 and thus cannot self-manage execution permissions
on pages; nevertheless, switching to SGXv2 would close that
gap by using the new EMODPE and EMODPR instructions.

6 Evaluation
We explore the performance of SSF using two real-world
applications: a multi-process multi-component web service,
as introduced in Fig. 1 (§6.2) and a Python cryptographic
library (§6.3). We also measure the overhead of the compiler
instrumentation (§6.4), and the cost of Spon creation (§6.5).
We deploy the workloads on SGX-enabled servers with

Intel Xeon E3-1280 v6 CPUs (microcode version 0xca), each

with 4 cores at 3.90 GHz, 8 MB of LLC and disabled hyper-
threading and Turbo Boost. The servers have 64 GB of RAM,
a 10 Gbps NIC, and run Ubuntu Linux 18.04 with Linux ker-
nel 4.15.0-46. The version of the Intel SGX driver is 2.5.

6.1 Application Use Cases

We consider two application use cases for ne-grained com-
partmentalisation: (i) a web service inspired by our health-
care example with a mix of active/passive Spons and nested
Shields; and (ii) a Python cryptographic framework that uses
passive Spons for hardening against vulnerabilities in its C
libraries. These represent dierent types of workloads: the
former involves a pointer-heavy interpreter, an I/O-intensive
web server, and a database with a complex child/parent life-
cycle; the latter heavily invokes isolated modules.
Healthcareweb service.Weevaluate a typical LAMP-based
architecture, with a front-end web server (NGINX v.1.16.1),
a PHP interpreter (v.7.3.7), and a database backend (Post-
greSQL v.12.2). The NGINX web server plays a crucial role
in terms of security – it establishes encrypted network con-
nections with its clients, and redirects their requests to the
PHP interpreter, which in turn, interacts with the DBMS.
NGINX redirects client connections to pre-forked PHP

processes using FastCGI over sockets, applying a well-un-
derstood balance between isolating requests across separate
PHP processes, and avoiding the cost of per-request PHP pro-
cess creation. We use PostgreSQL because it is fully-featured
(vs. SQLite) and yet has a small memory – and thus EPC –
footprint (e.g., compared to MySQL). PostgreSQL spawns
at least six processes that perform dierent functions; each
process is derived from the same binary, and all processes
use shared memory to exchange data (see Fig. 8).
Fig. 7 shows two deployments for our web service: the

rst uses vanilla SGX-LKL [58] to deploy the application in
multiple SGX TEEs; the second uses a single SGX TEE with
SSF. Note that SSF can isolate the web server and its SSL
library, which is not possible in the multi-TEE conguration
without compromising performance. Existing solutions also
cannot isolate shared libraries, and previous approaches to
emulating isolated processes within an SGX TEE [72] lack
the shared memory support required to run PostgreSQL.

194

VEE ’21, April 16, 2021, Virtual, USA Vasily A. Sartakov, Daniel O’Keee, David Eyers, Lluís Vilanova, and Peter Pietzuch

2K 8K 32K 128K512K 2M
0

2,000

4,000

Transfer size (B), log scale

La
te
nc
y
(m

se
c) Multi-TEE

Spons (with Shields)
Spons (no Shields)

Figure 10. Request latency (Multi-
process web service)

16 256 4K 64K 1M 16M101

101.5

102

Transfer size (B), log scale

La
te
nc
y
(m

se
c)
,l
og Baseline

Isolated SSL
Instrumented

Figure 11. Request latency (Single-
process NGINX)

20 40 60 80 100
0

5

10

15

20

Number of instances

Ti
m
e
(s
ec
s)

SGX TEEs
Spons

Figure 12. Creation time (Spons vs.
SGX TEE)

Fig. 7b shows how we map the application to SSF. Spon
and Shield pairs transparently replace processes, and execve
replaces fork + exec. NGINX isolates its OpenSSL library
and the private encryption keys into a separate passive Spon
with a nested Shield, and all PostgreSQL Spons use a sin-
gle Shield to allow shared memory (see Fig. 8). We compile
all components using SSFPass, link them against spn-musl,
change process creation to use execve, and congure the
loader to create appropriate Spons and Shields. We also min-
imally modify NGINX to isolate its OpenSSL component
into a nested Shield using spon_call (the OpenSSL function
wrappers do not require data marshalling and can directly
operate on the pointers provided by NGINX).
Python cryptographic library. PyCryptodome [54] is a
popular cryptography framework for Python, implemented
as a wrapper over C functions. High-level cryptographic
operations in Python invoke binary modules written in C
that can e.g., use hardware cryptographic instructions such
as AES-NI. Since the low-level cryptographic modules may
have memory safety issues, we use Shields to isolate them.

Fig. 9 shows the design of Python code that isolates each
of the PyCryptodome modules (i.e., ciphers written in C)
using separate passive Spons. A single Python interpreter
uses a set of Spon-Shield pairs. PyCryptodome’s indirection
layermanages themodules, creating the necessary Spons and
Shields and invoking their functions. We create a new Spon-
Shield pair for each encryption context in PyCryptodome,
which contains functions that can be called multiple times.

The web service and PyCryptodome applications show-
case the use of asymmetric memory protection in oppo-
site ways. In the web service, NGINX calls into a protected
OpenSSL encryption library, whereas in PyCryptodome, the
Python interpreter protects itself from the memory-unsafe
cryptographic functions that it invokes. As a consequence,
PyCryptodome’s indirection layer is responsible for (un)mar-
shalling the arguments and results for the C-module func-
tions into/from their assigned Shield (via alloc_mem; see §3.3).

6.2 Multi-Process Web Service

We deploy the multi-process web service with SSF with a
PHP-based content management system (CMS) that serves
markdown pages stored in the DBMS. We generate 500 MB

of markdown les of 2 KB to 2 MB in size, and measure the
request latency of a client requesting random pages.

Fig. 10 compares the request latency for dierent le sizes
with SSF to a multi-TEE deployment. (The data points show
the mean over 10 runs for each le size; the shaded extent in-
dicates one standard deviation.) The distribution of latencies
is always similar, but SSF provides a consistent improvement.
Small le sizes (2–32 KB) have an almost constant latency
that grows linearly with the le size, because PostgreSQL cre-
ates a new Spon on each connection, which requires constant
time (tied to the size of the Spon); for larger les, the over-
head is small in comparison to the data processing and trans-
fer costs across components. The deployment with Spons and
Shields has, on average, 2.6× lower request latencies than
the multi-TEE one; a deployment without Shields achieves
4.4× lower latencies. (CPU load is consistent.)

These results conrm that, in the multi-TEE deployment,
the need to use encryption between TEEs and the absence of
caches adds more overhead than the SSF’s instrumentation.

6.3 Python Cryptographic Library

To measure the overhead when passive Spons are invoked,
we compare the performance of PyCryptodome when exe-
cuted inside a TEE in three congurations: (i) without Spons
as a baseline; (ii) with Spons but without memory instrumen-
tation; and (iii) with Spons and memory instrumentation.

As a workload, we use the pct-speedtest.py benchmark
provided by PyCryptodome. It measures the performance
of various cryptographic operations such as encryption and
key initialisation for ciphers. We focus on one benchmark,
AESNI, with two forms of the AES cipher (GCM and CTR)
with dierent key lengths (128, 192 and 256 bits).

Fig. 13 shows the key set-up speed, measured in thousands
of key initialisations per second. As can be seen from the
results, while dierent ciphers have dierent performance
characteristics, there is a similar trend across all experiments:
the use of Spons reduces performance by 1%–3%. Memory in-
strumentation adds a further 1%–2% overhead. This is smaller
than in the previous experiment with active Spons because
this workload dereferences fewer pointers.

Next we consider the encryption performance. As Fig. 14
shows, the impact of Spons here is more signicant. Using

195

Spons & Shields: Practical Isolation for Trusted Execution VEE ’21, April 16, 2021, Virtual, USA

128-C 128-G 192-C 192-G 256-C 256-G
0

10

20

30

Cypher congurationKe
y
se
t-
up

s(
10
00

ke
ys
/s
ec
) Spons Spons (no instr.) Baseline

Figure 13. Key set-up benchmark

128-C 128-G 192-C 192-G 256-C 256-G
0

200

400

Cypher conguration

En
cr
yp

tio
n
(M

B/
se
c)

Figure 14. AES-NI benchmark

128-C 128-G 192-C 192-G 256-C 256-G
0

200

400

Cypher conguration

En
cr
yp

tio
n
(M

B/
se
c)

Figure 15. AES benchmark

mat
h

strin
g_n

umb
er_c

onc
at

strin
g_n

umb
er_f

orm
at

strin
g_si

mpl
e_fu

ncti
ons

strin
g_m

ultib
yte

strin
g_m

anip
ulat

ion rege
x
hash

ing cryp
t

json
_en

cod
e

json
_de

cod
e
seri

aliz
e

uns
eria

lize loop
s

loop
_ife

lse

loop
_ter

nary

loop
_de

ne
d_a

cces
s

loop
_un

de
ned

_acc
ess

type
_fun

ctio
ns

type
_co

nve
rsio

n
0

10

20

30

Ex
ec
ut
io
n
tim

e
(s
ec
s)

Baseline Spons

Figure 16. Performance of various PHP functions for instrumented and non-instrumented php-fcgi compartments (The
instrumentation decreases performance by 22% on average.)

Spons decreases performance by 53%–76% for CTR, and by
38%–44% for GCM. Adding memory instrumentation reduces
performance further by 5%–7% for CTR, and by 2% for GCM.
.
In the previous experiment, the time spent on memory

copies is signicant compared to computation time. If com-
putation is expensive, the overhead decreases: the results in
Fig. 15 are from the same experiment but without hardware-
accelerated AES-NI instructions. The impact of using Spons
is also lower: on average, non-instrumented Spons have 57%
lower performance for CTR, and 21% for GCM.

6.4 Instrumentation Overhead

Next we benchmark Spon instances to determine if there is
a dierence in overhead for dierent types of computation
inside Spons. We also consider the impact on binary size.

Since bounds-checking overheads depend on the specic
instrumented code, we explore the incurred overheads us-
ing three workloads: (1) we run a PHP interpreter inside
a Spon and use a benchmark suite [66] that measures the
performance of various PHP functions. In contrast to the
experiments in §6.2, we directly invoke the PHP interpreter
to remove the data exchange overhead between the web
server and the PHP worker; (2) we use the pgbench bench-
mark from PostgreSQL, providing TPC-B-like queries with
ve SELECT, UPDATE, and INSERT commands per transac-
tion [56, 57]. We use a scale factor of 10 to generate the
initial database, which results in 1,000,000 rows, or almost

Table 3. Impact of SSF’s memory instrumentation

PHP PostgreSQL NGINX
Size Time Size Tx per sec. Size

No instr. 16 MB 243 s 11 MB 528 6.3 MB
Instr. 27 MB 292 s 21 MB 473 11 MB

330 MB of data; and (3) we use the NGNIX web server with
the OpenSSL library, and have clients fetching static objects
of dierent sizes.

The PHP benchmark suite allows us to compare the perfor-
mance of PHP functions; pgbench and NGINX benchmarks,
measure overall performance. The NGINX benchmark helps
us understand the cost of an asymmetric Spon with OpenSSL.
Performance overhead. For all three benchmarks, we com-
pare deployments under two congurations: (i) an uninstru-
mented baseline and (ii) Spons with instrumentation.

Tab. 3 shows that the instrumented version has an increase
in total execution time of 20%. Fig. 16 gives a detailed break-
down of the PHP results: the average overhead is 22% across
all benchmarks, with performance degrading from 1.55 to
1.26 million operations per second.

The table also shows the results of the PostgreSQL bench-
mark. Compared to PHP, PostgreSQL exhibits only a 10%
performance decrease: the number of transactions changes
from 528 to 473 transactions per second.
In contrast to the Python benchmark, NGINX does not

copy data to/from the Spon, and thus the invocation should
have less overhead. To measure this, we generate 513 MB

196

VEE ’21, April 16, 2021, Virtual, USA Vasily A. Sartakov, Daniel O’Keee, David Eyers, Lluís Vilanova, and Peter Pietzuch

of random les and fetch them via HTTPS using the curl
utility in a single thread. In total, we have 30 les (with sizes
from 1 byte to 256 MB, each size a power of 2). We fetch each
remote le at least 10 times and measure request latency.

Fig. 11 shows the results for (i) a baseline without instru-
mentation; (ii) a Spon with instrumentation only; and (iii) a
Spon with instrumentation and isolated OpenSSL. For sizes
smaller than 100 KB, the response time is the same, and there
is no signicant overhead from the instrumentation or the
use of Spons. For bigger sizes, the response time grows lin-
early with size, which shows that the overhead is negligible
compared to the trac encryption time.
Binary size overhead. SSFPass’s (see §4.2) memory instru-
mentation adds new instructions each time the target code
accesses pointers. The stripped binary of php-fcgi is 16 MB,
whereas the Spon-based PHP interpreter is 1.7× larger at
27 MB (see Tab. 3). The instrumentation increases the size of
the NGINX binary, which also includes the statically-linked
OpenSSL library, by 1.7× (11 MB vs. 6.3 MB), and the size of
the PostgreSQL binary by 1.9× (21 MB vs. 11 MB).

6.5 Instantiation Time

Finally, we compare the time to instantiate Spons against
SGX TEEs using the SGX-LKL TEE OS. Our simple bench-
mark measures the time to create sequentially 100 Spons and
SGX TEEs, respectively, in batches of 10. We deploy a simple
program in each enclave, and limit the enclave size to 8 MB.

Fig. 12 shows that both SSF and regular SGX TEEs scale
linearly in the number of instances, but Spons require sig-
nicantly less time. On average, Spons are created in 30 ms,
while the regular SGX TEE needs 210 ms.

7 Related Work
Partitioning frameworks. Wedge [7] creates isolation en-
tities inside processes using a default-deny security model.
Wedge’s Crowbar tool helps developers nd which parts of
the program to isolate. PrivTrans [10] is a source-level parti-
tioning tool that splits an application into two separate parts,
trusted and untrusted. Both PrivTrans andWedge rely on the
kernel for isolation and cannot be used within some TEEs.

Glamdring [40] partitions an application to use SGX TEEs
according to source-level annotations. SOAAP [22] is an
LLVM-based tool to help developers reason about what to
isolate. Such partitioning policies could potentially be en-
forced using SSF’s isolation primitives.

Panoply [73] is an SGX-based partitioning infrastructure
that supports the fork system call by spawning a new TEE
and copying data from the parent enclave: stronger isolation
but with higher overhead. GOTEE [19] enables automatic
partitioning of applications written in Go into TEE and un-
trusted code, but does not isolate application components
within a TEE. Komodo [17] proposes a exible software-
dened TEE model. SSF provides interfaces for compartmen-
talising applications inside TEEs, that could use Komodo.

Coarse-grained sandboxing. Past work on software fault
isolation (SFI) [20, 69, 81] shares SSF’s goal of coarse-grained
sandboxing. LikeMemSentry [36], SSFPass uses IntelMPX in-
stead of software-only sandboxing to improve performance,
but SSF’s use of MPX diers—MemSentry adds one bound
check but relies on Intel MPK and Intel’s VM functions (VM-
FUNC). SSFPass adds two bounds checks but is not restricted
in the number of domains (MPK) or dependent on technology
unavailable inside some TEEs (VMFUNC). SEIMI [82] oers
an intra-process isolation technique based on Supervisor-
mode Access Prevention (SMAP), but requires code to be
executed in privileged mode. Janus [24, 25] supports switch-
ing of protection domains without involving the kernel, but
also relies on either MPK or VMFUNC. As well as sandboxing
mechanisms, SSF provides a exible abstraction for isolation
of existing applications, and addresses TEE-specic issues
such as secure and ecient interaction with a TEE OS.

Moat [75] and SIR [74] separate TEE code into untrusted
and trusted parts, and certify that untrusted machine code
cannot leak condential information. However, similar to
ConfLLVM [8], they only support two compartments. MP-
TEE [88] uses Intel MPX to provide memory isolation of
program regions and implements trusted memory attributes
missing in Intel SGXv1. This technology can be potentially
applied in SSF to enforce its control-ow integrity.
Embedded systems. Since embedded systems often lack
MMU support, recent work has used memory-protection
units (MPUs) for compartmentalisation (e.g., for ARM [15,
33] and RISC-V [85]). Similar to Intel MPK, MPUs are re-
stricted in the maximum number of domains (16 on some
ARM hardware). TIMBER-V [85] addresses this limitation by
combining MPUs with tagged memory, but requires custom
hardware support unavailable in SGX TEEs. None of these
approaches allow for secure and ecient TEE OS interaction.

8 Conclusions
TEEs isolate applications from the host system software and
even physical attacks but vulnerabilities in TEE code remain
an issue. Fine-grained compartmentalisation increases secu-
rity through defense-in-depth, but current solutions sacri-
ce performance and compatibility. We introduce Spons and
Shields, new exible isolation abstractions for TEEs. Spons
are self-contained isolated memory regions that can behave
like sandboxed libraries or processes. Spons are isolated in-
side Shields by the compiler and use hardware acceleration
for bounds-checking. We show how Spons and Shields can
help compartmentalise an existing application inside a TEE
and to port a multi-process application to a TEE.

Acknowledgements
This work was partially funded by the UK Government’s
Industrial Strategy Challenge Fund (ISCF) under the Digital
Security by Design (DSbD) Programme.

197

Spons & Shields: Practical Isolation for Trusted Execution VEE ’21, April 16, 2021, Virtual, USA

References
[1] Martín Abadi, Mihai Budiu, Úlfar Erlingsson, and Jay Ligatti. 2005.

Control-Flow Integrity. In Proceedings of the 12th ACM Conference on
Computer and Communications Security (Alexandria, VA, USA) (CCS
’05). 340–353.

[2] Alibaba Cloud. 2020. ECS Bare Metal Instance. hps://www.
alibabacloud.com/product/ebm. Last accessed: March 8, 2021.

[3] AMD 2020. AMD SEV-SNP: Strengthening VM Isolation with Integrity
Protection and More. AMD.

[4] Sergei Arnautov, Bohdan Trach, Franz Gregor, Thomas Knauth, Andre
Martin, Christian Priebe, Joshua Lind, Divya Muthukumaran, Dan
O’Keee, Mark L. Stillwell, David Goltzsche, David Eyers, Rüdiger
Kapitza, Peter Pietzuch, and Christof Fetzer. 2016. SCONE: Secure
Linux Containers with Intel SGX. In Proceedings of the 12th USENIX
Conference on Operating Systems Design and Implementation (OSDI’16).
USENIX Association, 689–703.

[5] Andrew Baumann, Jonathan Appavoo, Orran Krieger, and Timothy
Roscoe. 2019. A Fork() in the Road. In Proceedings of the Workshop on
Hot Topics in Operating Systems (HotOS ’19). ACM, 14–22.

[6] Andrew Baumann, Marcus Peinado, and Galen Hunt. 2015. Shield-
ing Applications from an Untrusted Cloud with Haven. ACM Trans.
Comput. Syst. 33, 3, Article 8 (Aug. 2015), 26 pages.

[7] Andrea Bittau, Petr Marchenko, Mark Handley, and Brad Karp. 2008.
Wedge: Splitting Applications into Reduced-Privilege Compartments.
In 5th USENIX Symposium on Networked Systems Design and Imple-
mentation (NSDI 08). USENIX Association.

[8] Ajay Brahmakshatriya, Piyus Kedia, Derrick P. McKee, Deepak Garg,
Akash Lal, Aseem Rastogi, Hamed Nemati, Anmol Panda, and Pratik
Bhatu. 2019. ConfLLVM: A Compiler for Enforcing Data Conden-
tiality in Low-Level Code. In Proceedings of the Fourteenth EuroSys
Conference 2019 (EuroSys ’19). ACM, Article 4, 15 pages.

[9] Stefan Brenner, Colin Wulf, David Goltzsche, Nico Weichbrodt,
Matthias Lorenz, Christof Fetzer, Peter Pietzuch, and Rüdiger Kapitza.
2016. SecureKeeper: Condential ZooKeeper Using Intel SGX. In Pro-
ceedings of the 17th International Middleware Conference (Middleware
’16). ACM, Article 14, 13 pages.

[10] David Brumley and Dawn Song. 2004. Privtrans: Automatically Par-
titioning Programs for Privilege Separation. In 13th USENIX Security
Symposium (USENIX Security 04). USENIX Association, San Diego, CA.

[11] Nathan Burow, Xinping Zhang, and Mathias Payer. 2019. SoK: Shining
Light on Shadow Stacks. In 2019 IEEE Symposium on Security and
Privacy, SP 2019, San Francisco, CA, USA, May 19-23. 985–999.

[12] Chia che Tsai, Donald E. Porter, and Mona Vij. 2017. Graphene-SGX:
A Practical Library OS for Unmodied Applications on SGX. In 2017
USENIX Annual Technical Conference (USENIX ATC 17). USENIX Asso-
ciation, 645–658.

[13] Stephen Checkoway and Hovav Shacham. 2013. Iago Attacks: Why the
System Call API is a Bad Untrusted RPC Interface. SIGARCH Comput.
Archit. News 41, 1 (March 2013), 253–264.

[14] Yaohui Chen, Sebassujeen Reymondjohnson, Zhichuang Sun, and Long
Lu. 2016. Shreds: Fine-Grained Execution Units with Private Memory.
In 2016 IEEE Symposium on Security and Privacy (SP). IEEE, 56–71.

[15] Abraham A Clements, Naif Saleh Almakhdhub, Saurabh Bagchi, and
Mathias Payer. 2018. ACES: Automatic Compartments for Embedded
Systems. In 27th USENIX Security Symposium (USENIX Security 18).
USENIX Association, 65–82.

[16] Intel Corp. 2014. Software Guard Extensions Programming Refer-
ence, Ref. 329298-002US. hps://soware.intel.com/sites/default/files/
managed/48/88/329298-002.pdf.

[17] Andrew Ferraiuolo, Andrew Baumann, Chris Hawblitzel, and Bryan
Parno. 2017. Komodo: Using Verication to Disentangle Secure-
Enclave Hardware from Software. In Proceedings of the 26th Symposium
on Operating Systems Principles (SOSP ’17). ACM, 287–305.

[18] Tommaso Frassetto, Patrick Jauernig, Christopher Liebchen, and
Ahmad-Reza Sadeghi. 2018. IMIX: In-Process Memory Isolation EX-
tension. In 27th USENIX Security Symposium (USENIX Security 18).
USENIX Association, 83–97.

[19] Adrien Ghosn, James R. Larus, and Edouard Bugnion. 2019. Secured
Routines: Language-based Construction of Trusted Execution Envi-
ronments. In 2019 USENIX Annual Technical Conference (USENIX ATC
19). USENIX Association, 571–586.

[20] David Goltzsche, Manuel Nieke, Thomas Knauth, and Rüdiger Kapitza.
2019. AccTEE: A WebAssembly-based Two-way Sandbox for Trusted
Resource Accounting. In Proceedings of the 20th International Middle-
ware Conference (Middleware ’19). ACM.

[21] Graphene-SGX Source Code 2021. Graphene Library OS with Intel
SGX Support. hps://github.com/oscarlab/graphene. Last accessed:
March 8, 2021.

[22] Khilan Gudka, Robert NMWatson, Jonathan Anderson, David Chis-
nall, Brooks Davis, Ben Laurie, Ilias Marinos, Peter G Neumann, and
Alex Richardson. 2015. Clean Application Compartmentalization with
SOAPP. In Proceedings of the 22nd ACM SIGSAC Conference on Com-
puter and Communications Security. ACM, 1016–1031.

[23] J. Alex Halderman, Seth D. Schoen, Nadia Heninger, William Clarkson,
William Paul, JosephA. Calandrino, Ariel J. Feldman, JacobAppelbaum,
and Edward W. Felten. 2009. Lest We Remember: Cold-Boot Attacks
on Encryption Keys. Commun. ACM 52, 5 (May 2009), 91–98.

[24] Mohammad Hedayati, Spyridoula Gravani, Ethan Johnson, John
Criswell, Michael Scott, Kai Shen, and Mike Marty. 2018. Janus: Intra-
process isolation for high-throughput data plane libraries. Technical
Report. Technical Report UR CSD/1004.

[25] Mohammad Hedayati, Spyridoula Gravani, Ethan Johnson, John
Criswell, Michael L. Scott, Kai Shen, and Mike Marty. 2019. Hodor:
Intra-Process Isolation for High-Throughput Data Plane Libraries. In
USENIX ATC. USENIX Association, Renton, WA, 489–504.

[26] ARM Holdings. 2009. ARM Security Technology: Building a Secure
System using TrustZone Technology. hp://infocenter.arm.com/help/
index.jsp?topic=/com.arm.doc.prd29-genc-009492c/.

[27] Terry Ching-Hsiang Hsu, Kevin Homan, Patrick Eugster, and Math-
ias Payer. 2016. Enforcing Least Privilege Memory Views for Multi-
threaded Applications. In Proceedings of the 2016 ACM SIGSAC Con-
ference on Computer and Communications Security (CCS ’16). ACM,
393–405.

[28] IBM Cloud. 2020. IBM Cloud Data Shield. hps://www.ibm.com/cloud/
data-shield. Last accessed: March 8, 2021.

[29] Intel. 2018. Intel® 64 and IA-32 Architectures Software Developer’s
Manual. (2018).

[30] Intel. 2020. White paper: Intel Trust Domain Extensions.
hps://soware.intel.com/content/dam/develop/external/us/
en/documents/tdx-whitepaper-v4.pdf.

[31] Simon P. Johnson. 2019. Scaling Towards Condential Comput-
ing. hps://systex.ibr.cs.tu-bs.de/systex19/slides/systex19-keynote-
simon.pdf.

[32] David Kaplan, Jeremy Powell, and Tom Woller. 2016. AMD memory
encryption. White paper (2016).

[33] ChungHwan Kim, Taegyu Kim, Hongjun Choi, Zhongshu Gu, Xiangyu
Zhang, and Dongyan Xu. 2018. Securing Real-Time Microcontroller
Systems through Customized Memory View Switching. In NDSS.

[34] Avi Kivity, Dor Laor, Glauber Costa, Pekka Enberg, Nadav Har’El, Don
Marti, and Vlad Zolotarov. 2014. OSv—Optimizing the Operating Sys-
tem for Virtual Machines. In 2014 USENIX Annual Technical Conference
(USENIX ATC 14). USENIX Association, 61–72.

[35] P. Kocher, J. Horn, A. Fogh, D. Genkin, D. Gruss, W. Haas, M. Ham-
burg, M. Lipp, S. Mangard, T. Prescher, M. Schwarz, and Y. Yarom.
2019. Spectre Attacks: Exploiting Speculative Execution. In 2019 IEEE
Symposium on Security and Privacy (SP). 1–19.

[36] Koen Koning, Xi Chen, Herbert Bos, Cristiano Giurida, and Elias
Athanasopoulos. 2017. No Need to Hide: Protecting Safe Regions on

198

https://www.alibabacloud.com/product/ebm
https://www.alibabacloud.com/product/ebm
https://software.intel.com/sites/default/files/managed/48/88/329298-002.pdf
https://software.intel.com/sites/default/files/managed/48/88/329298-002.pdf
https://github.com/oscarlab/graphene
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.prd29-genc-009492c/
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.prd29-genc-009492c/
https://www.ibm.com/cloud/data-shield
https://www.ibm.com/cloud/data-shield
https://software.intel.com/content/dam/develop/external/us/en/documents/tdx-whitepaper-v4.pdf
https://software.intel.com/content/dam/develop/external/us/en/documents/tdx-whitepaper-v4.pdf
https://systex.ibr.cs.tu-bs.de/systex19/slides/systex19-keynote-simon.pdf
https://systex.ibr.cs.tu-bs.de/systex19/slides/systex19-keynote-simon.pdf

VEE ’21, April 16, 2021, Virtual, USA Vasily A. Sartakov, Daniel O’Keee, David Eyers, Lluís Vilanova, and Peter Pietzuch

Commodity Hardware. In Proceedings of the Twelfth European Confer-
ence on Computer Systems (EuroSys ’17). ACM, 437–452.

[37] S. Kuenzer, S. Santhanam, Y. Volchkov, F. Schmidt, F. Huici, Joel Nider,
Mike Rapoport, and Costin Lupu. 2019. Unleashing the Power of
Unikernels with Unikraft. In Proceedings of the 12th ACM International
Conference on Systems and Storage (SYSTOR ’19). ACM, 195.

[38] Dmitrii Kuvaiskii, Oleksii Oleksenko, Sergei Arnautov, Bohdan
Trach, Pramod Bhatotia, Pascal Felber, and Christof Fetzer. 2017.
SGXBOUNDS: Memory Safety for Shielded Execution. In Proceed-
ings of the Twelfth European Conference on Computer Systems (EuroSys
’17). ACM, 205–221.

[39] Chris Lattner and Vikram Adve. 2004. LLVM: A compilation frame-
work for lifelong program analysis & transformation. In Proceedings
of the international symposium on Code generation and optimization:
feedback-directed and runtime optimization. IEEE Computer Society,
75–86.

[40] Joshua Lind, Christian Priebe, Divya Muthukumaran, Dan O’Keee,
Pierre-Louis Aublin, Florian Kelbert, Tobias Reiher, David Goltzsche,
David Eyers, Rüdiger Kapitza, et al. 2017. Glamdring: Automatic Ap-
plication Partitioning for Intel SGX. In 2017 USENIX Annual Technical
Conference (USENIX ATC 17). 285–298.

[41] Moritz Lipp, Michael Schwarz, Daniel Gruss, Thomas Prescher, Werner
Haas, Anders Fogh, Jann Horn, Stefan Mangard, Paul Kocher, Daniel
Genkin, Yuval Yarom, and Mike Hamburg. 2018. Meltdown: Reading
Kernel Memory from User Space. In 27th USENIX Security Symposium
(USENIX Security 18). USENIX Association, 973–990.

[42] James Litton, Anjo Vahldiek-Oberwagner, Eslam Elnikety, Deepak
Garg, Bobby Bhattacharjee, and Peter Druschel. 2016. Light-Weight
Contexts: An OS Abstraction for Safety and Performance. In 12th
USENIX Symposium on Operating Systems Design and Implementation
(OSDI 16). USENIX Association, 49–64.

[43] Yutao Liu, Tianyu Zhou, Kexin Chen, Haibo Chen, and Yubin Xia. 2015.
Thwarting Memory Disclosure with Ecient Hypervisor-Enforced
Intra-Domain Isolation. In Proceedings of the 22nd ACM SIGSAC Con-
ference on Computer and Communications Security (CCS ’15). ACM,
1607–1619.

[44] LLVM. Last accessed: March 8, 2021. Control Flow Integrity. hps:
//clang.llvm.org/docs/ControlFlowIntegrity.html.

[45] Anil Madhavapeddy, Richard Mortier, Charalampos Rotsos, David
Scott, Balraj Singh, Thomas Gazagnaire, Steven Smith, Steven Hand,
and Jon Crowcroft. 2013. Unikernels: Library Operating Systems for
the Cloud. SIGARCHComput. Archit. News 41, 1 (March 2013), 461–472.

[46] Frank McKeen, Ilya Alexandrovich, Ittai Anati, Dror Caspi, Simon
Johnson, Rebekah Leslie-Hurd, and Carlos Rozas. 2016. Intel® Soft-
ware Guard Extensions (Intel® SGX) Support for Dynamic Memory
Management Inside an Enclave. In Proceedings of the Hardware and
Architectural Support for Security and Privacy 2016. 1–9.

[47] Frank McKeen, Ilya Alexandrovich, Alex Berenzon, Carlos V Rozas,
Hisham Sha, Vedvyas Shanbhogue, and Uday R Savagaonkar. 2013.
Innovative Instructions and Software Model for Isolated Execution.
HASP@ ISCA 10 (2013).

[48] Microsoft Azure. 2021. Azure condential computing. hps://azure.
microso.com/en-us/solutions/confidential-compute. Last accessed:
March 8, 2021.

[49] Paul Muntean, Mathias Neumayer, Zhiqiang Lin, Gang Tan, Jens
Grossklags, and Claudia Eckert. 2020. ρFEM: Ecient Backward-
Edge Protection Using Reversed Forward-Edge Mappings. In Annual
Computer Security Applications Conference (Austin, USA) (ACSAC ’20).
ACM, 466âĂŞ479.

[50] musl libc. 2021. hps://www.musl-libc.org. Last accessed: March 8,
2021.

[51] nginx, an HTTP server. 2021. hps://www.nginx.org. Last accessed:
March 8, 2021.

[52] Oleksii Oleksenko, Dmitrii Kuvaiskii, Pramod Bhatotia, Pascal Felber,
and Christof Fetzer. 2018. IntelMPXExplained: ACross-Layer Analysis

of the Intel MPX System Stack. Proceedings of the ACM onMeasurement
and Analysis of Computing Systems 2, 2 (2018), 28.

[53] Meni Orenbach, Pavel Lifshits, Marina Minkin, and Mark Silberstein.
2017. Eleos: ExitLess OS Services for SGX Enclaves. In Proceedings of
the Twelfth European Conference on Computer Systems (EuroSys). ACM,
238–253.

[54] Panoply 2021. A self-contained cryptographic library for Python.
hps://github.com/Legrandin/pycryptodome. Last accessed: March 8,
2021.

[55] Soyeon Park, Sangho Lee, Wen Xu, Hyungon Moon, and Taesoo Kim.
2019. libmpk: Software Abstraction for Intel Memory Protection Keys
(Intel MPK). In 2019 USENIX Annual Technical Conference (USENIX
ATC 19). 241–254.

[56] PostgreSQL. 2021. A Simple Benchmark Program for Post-
greSQL. hps://github.com/postgres/postgres/tree/master/src/bin/
pgbench. Last accessed: March 8, 2021.

[57] PostgreSQL. 2021. PostgreSQL 12.3 Documentation. hps://www.
postgresql.org/docs/12/index.html. Last accessed: March 8, 2021.

[58] Christian Priebe, Divya Muthukumaran, Joshua Lind, Huanzhou Zhu,
Shujie Cui, Vasily A. Sartakov, and Peter Pietzuch. 2019. SGX-LKL:
Securing the Host OS Interface for Trusted Execution. arXiv preprint
arXiv:1908.11143 (2019).

[59] Niels Provos, Markus Friedl, and Peter Honeyman. 2003. Preventing
Privilege Escalation. In 12th USENIX Security Symposium (USENIX
Security 03). USENIX Association.

[60] Octavian Purdila, Lucian Adrian Grijincu, and Nicolae Tapus. 2010.
LKL: The Linux Kernel Library. In 9th RoEduNet IEEE International
Conference. IEEE, 328–333.

[61] Ramu Ramakesavan, Dan Zimmerman, and Pavithra Singaravelu. 2015.
Intel Memory Protection Extensions (Intel MPX) Enabling Guide.

[62] Charlie Reis. 2018. Mitigating Spectre with Site Isolation in Chrome.
[63] Charles Reis, Alexander Moshchuk, and Nasko Oskov. 2019. Site Iso-

lation: Process Separation for Web Sites within the Browser. In 28th
USENIX Security Symposium (USENIX Security 19). USENIX Associa-
tion, 1661–1678.

[64] Lars Richter, Johannes Götzfried, and Tilo Müller. 2016. Isolating
Operating System Components with Intel SGX. In Proceedings of the
1st Workshop on System Software for Trusted Execution. 1–6.

[65] Ryan Roemer, Erik Buchanan, Hovav Shacham, and Stefan Savage.
2012. Return-Oriented Programming: Systems, Languages, and Appli-
cations. ACM Transactions on Information and System Security 15, 1,
Article 2 (March 2012), 34 pages.

[66] RuSoft. 2021. PHP benchmark script. hps://github.com/ruso/php-
simple-benchmark-script. Last accessed: March 8, 2021.

[67] Vasily Sartakov, Lluís Vilanova, and Peter Pietzuch. 2021. CubicleOS:
A Library OS with Software Componentisation for Practical Isolation.
In Proceedings of the Twenty-Sixth International Conference on Archi-
tectural Support for Programming Languages and Operating Systems
(ASPLOS ’21). ACM, 575–587.

[68] Vasily A. Sartakov, Stefan Brenner, Sonia Ben Mokhtar, Sara
Bouchenak, Gaël Thomas, and Rüdiger Kapitza. 2018. EActors: Fast
and Flexible Trusted Computing Using SGX. In Proceedings of the 19th
International Middleware Conference (Rennes, France) (Middleware ’18).
ACM, New York, NY, USA, 187–200.

[69] David Sehr, Robert Muth, Cli Bie, Victor Khimenko, Egor Pasko,
Karl Schimpf, Bennet Yee, and Brad Chen. 2010. Adapting Software
Fault Isolation to Contemporary CPU Architectures. In 19th USENIX
Security Symposium (USENIX Security 10). USENIX Association.

[70] Hovav Shacham. 2007. The Geometry of Innocent Flesh on the Bone:
Return-into-Libc without Function Calls (on the X86). In Proceedings
of the 14th ACM Conference on Computer and Communications Security
(CCS ’07). ACM, 552–561.

[71] Vedvyas Shanbhogue, Deepak Gupta, and Ravi Sahita. 2019. Secu-
rity Analysis of Processor Instruction Set Architecture for Enforcing

199

https://clang.llvm.org/docs/ControlFlowIntegrity.html
https://clang.llvm.org/docs/ControlFlowIntegrity.html
https://azure.microsoft.com/en-us/solutions/confidential-compute
https://azure.microsoft.com/en-us/solutions/confidential-compute
https://www.musl-libc.org
https://www.nginx.org
https://github.com/Legrandin/pycryptodome
https://github.com/postgres/postgres/tree/master/src/bin/pgbench
https://github.com/postgres/postgres/tree/master/src/bin/pgbench
https://www.postgresql.org/docs/12/index.html
https://www.postgresql.org/docs/12/index.html
https://github.com/rusoft/php-simple-benchmark-script
https://github.com/rusoft/php-simple-benchmark-script

Spons & Shields: Practical Isolation for Trusted Execution VEE ’21, April 16, 2021, Virtual, USA

Control-Flow Integrity. In Proceedings of the 8th International Work-
shop on Hardware and Architectural Support for Security and Privacy
(HASP ’19). ACM, Article 8, 11 pages.

[72] Youren Shen, Hongliang Tian, Yu Chen, Kang Chen, Runji Wang, Yi
Xu, Yubin Xia, and Shoumeng Yan. 2020. Occlum: Secure and Ecient
Multitasking Inside a Single Enclave of Intel SGX. In ASPLOS ’20.

[73] Shweta Shinde, DL Tien, Shruti Tople, and Prateek Saxena. 2017.
Panoply: Low-TCB Linux Applications With SGX Enclaves. In Proceed-
ings of the Annual Network and Distributed System Security Symposium
(NDSS). 12.

[74] Rohit Sinha, Manuel Costa, Akash Lal, Nuno P. Lopes, Sriram Rajamani,
Sanjit A. Seshia, and Kapil Vaswani. 2016. A Design and Verication
Methodology for Secure Isolated Regions. In PLDI ’16. ACM, 17 pages.

[75] Rohit Sinha, Sriram Rajamani, Sanjit Seshia, and Kapil Vaswani. 2015.
Moat: Verifying Condentiality of Enclave Programs. In Proceedings of
the 22nd ACM SIGSAC Conference on Computer and Communications
Security (CCS ’15). ACM, 1169–1184.

[76] The Apache Software Foundation. The Apache HTTP server. 2021.
hps://www.apache.org. Last accessed: March 8, 2021.

[77] Caroline Tice, Tom Roeder, Peter Collingbourne, Stephen Checkoway,
Úlfar Erlingsson, Luis Lozano, andGeo Pike. 2014. Enforcing Forward-
edge Control-ow Integrity in GCC & LLVM. In USENIX Security
Symposium. USENIX Sec.

[78] Anjo Vahldiek-Oberwagner, Eslam Elnikety, Nuno O. Duarte, Michael
Sammler, Peter Druschel, and Deepak Garg. 2019. ERIM: Secure, E-
cient In-process Isolation with Protection Keys (MPK). In 28th USENIX
Security Symposium (USENIX Security 19). USENIX Association, 1221–
1238.

[79] Jo Van Bulck, Nico Weichbrodt, Rüdiger Kapitza, Frank Piessens, and
Raoul Strackx. 2017. Telling Your Secrets without Page Faults: Stealthy
Page Table-Based Attacks on Enclaved Execution. In 26th USENIX
Security Symposium (USENIX Security 17). USENIX Association, 1041–
1056.

[80] Lluís Vilanova, Muli Ben-Yehuda, Nacho Navarro, Yoav Etsion, and
Mateo Valero. 2014. CODOMs: Protecting Software with Code-centric
Memory Domains. In Intl. Symp. on Computer Architecture (ISCA).
469–480.

[81] Robert Wahbe, Steven Lucco, Thomas E. Anderson, and Susan L. Gra-
ham. 1993. Ecient Software-Based Fault Isolation. SIGOPS Oper. Syst.
Rev. 27, 5 (Dec. 1993), 203–216.

[82] Z. Wang, C. Wu, M. Xie, Y. Zhang, K. Lu, X. Zhang, Y. Lai, Y. Kang,
and M. Yang. 2020. SEIMI: Ecient and Secure SMAP-Enabled Intra-
process Memory Isolation. In 2020 IEEE Symposium on Security and
Privacy (SP). 592–607.

[83] Robert NM Watson, Jonathan Woodru, Peter G Neumann, Simon W
Moore, Jonathan Anderson, David Chisnall, Nirav Dave, Brooks Davis,
Khilan Gudka, Ben Laurie, et al. 2015. CHERI: A Hybrid Capability-
System Architecture for Scalable Software Compartmentalization. In
2015 IEEE Symposium on Security and Privacy. IEEE, 20–37.

[84] Nico Weichbrodt, Anil Kurmus, Peter Pietzuch, and Rüdiger Kapitza.
2016. AsyncShock: Exploiting synchronisation bugs in Intel SGX
enclaves. In European Symposium on Research in Computer Security.
Springer, 440–457.

[85] Samuel Weiser, Mario Werner, Ferdinand Brasser, Maja Malenko, Ste-
fanMangard, and Ahmad-Reza Sadeghi. 2019. TIMBER-V: Tag-Isolated
Memory Bringing Fine-grained Enclaves to RISC-V. In NDSS.

[86] Yuanzhong Xu, Weidong Cui, and Marcus Peinado. 2015. Controlled-
Channel Attacks: Deterministic Side Channels for Untrusted Operating
Systems. In Proceedings of the 2015 IEEE Symposium on Security and
Privacy (SP ’15). IEEE, 640–656.

[87] Bin Zeng, Gang Tan, and Greg Morrisett. 2011. Combining Control-
Flow Integrity and Static Analysis for Ecient and Validated Data
Sandboxing. In Proceedings of the 18th ACM Conference on Computer
and Communications Security (CCS ’11). ACM, 29–40.

[88] Wenjia Zhao, Kangjie Lu, Yong Qi, and Saiyu Qi. 2020. MPTEE: Bring-
ing Flexible and Ecient Memory Protection to Intel SGX. In Proceed-
ings of the Fifteenth European Conference on Computer Systems (EuroSys
’20). ACM, Article 18, 15 pages.

200

https://www.apache.org

	Abstract
	1 Introduction
	2 Isolation Support for Trusted Execution
	2.1 Hardware TEEs
	2.2 OS Support Within TEEs
	2.3 Threat Model and System Requirements
	2.4 Existing Isolation Approaches

	3 terms and pds
	3.1 Overview
	3.2 Use Cases for term and pd Separation
	3.3 term API

	4 SSF Implementation
	4.1 Memory Layout
	4.2 Execution and Memory Access Isolation
	4.3 Protecting the TEE OS Interface
	4.4 Multi-Threading Support
	4.5 Building and Deploying Programs With SSF

	5 Discussion
	6 Evaluation
	6.1 Application Use Cases
	6.2 Multi-Process Web Service
	6.3 Python Cryptographic Library
	6.4 Instrumentation Overhead
	6.5 Instantiation Time

	7 Related Work
	8 Conclusions
	References

