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ABSTRACT
In online social networking, network monitoring and finan-
cial applications, there is a need to query high rate streams
of XML data, but methods for executing individual XPath
queries on streaming XML data have not kept pace with
multicore CPUs. For data-parallel processing, a single XML
stream is typically split into well-formed fragments, which
are then processed independently. Such an approach, how-
ever, introduces a sequential bottleneck and suffers from low
cache locality, limiting its scalability across CPU cores.
We describe a data-parallel approach for the processing

of streaming XPath queries based on pushdown transducers.
Our approach permits XML data to be split into arbitrarily-
sized chunks, with each chunk processed by a parallel au-
tomaton instance. Since chunks may be malformed, our
automata consider all possible starting states for XML ele-
ments and build mappings from starting to finishing states.
These mappings can be constructed independently for each
chunk by different CPU cores. For streaming queries from
the XPathMark benchmark, we show a processing through-
put of 2.5 GB/s, with near linear scaling up to 64 CPU
cores.

1. INTRODUCTION
The ability to process continuous streams of XML data

at a high rate is an important requirement in many applica-
tion domains. For example, the full “Firehose” stream from
Twitter produces XML data at a rate of tens of megabytes
per second [18] and is likely to grow significantly in the fu-
ture. In other domains, such as web analytics, financial data
processing, cellular network operations or real-time telemat-
ics, stream data rates of 10s or 100s of millions of items per
second are not uncommon [1]. Even with static XML data-
sets, the advent of “big data” means that a single-pass stream
processing model becomes the only viable choice when faced
with processing 10s of terabytes or petabytes of data gen-
erated, for example, by community-driven websites such as
Twitter or Wikipedia [32].
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Users that want to query the structure of XML stream
data must therefore rely on the efficient execution of XPath
queries [31]. Modern CPUs place an emphasis on multi-
threaded performance requiring XPath query processing be
parallelised across many CPU cores to achieve high through-
put for streams of XML data. While prior work investigated
the execution of many concurrent XPath queries through
task parallelism [37, 24, 6], it remains an open issue how to
execute a small number of queries using data parallelism.
For example, in the case of real-time Twitter analytics, a
single, XPath query may be executed against the full Twit-
ter Firehose stream to detect all retweets originating from a
different geographical area to the original tweet.
A challenge when parallelising the execution of a single

streaming XPath query is that it requires XML parsing,
which is fundamentally a sequential process—the current
state of a parser depends on all previous characters. To
parse and query XML data in parallel, it must be split in
a way that puts the parser in a well-defined state at the
start of each data block in the stream. Proposed solutions
include a sequential pre-processing step, which splits the
XML data into well-formed fragments [23], and speculative
execution based on heuristics to guess the starting state of
the parser [36]. These approaches, however, either require
enough state to store the entire XML parse tree before run-
ning queries, or limit scalability across CPU cores due to the
costly sequential processing.
Our goal is to combine the parsing and querying of stream-

ing XML data and parallelise it across many CPU cores,
without needing to make any assumptions as to the struc-
ture of the data or perform any pre-processing. Our key
idea is that it is possible to achieve high data parallelism in
XPath query processing by permitting the out-of-order pro-
cessing of potentially malformed parts of XML data. This
can be done by executing an XPath query in parallel against
individual parts of the data, considering all possible query
results for a given part.
Based on this idea, we describe a new approach for exe-

cuting XPath queries against XML data streams, which can
scale to a large number of CPU cores with a constant mem-
ory footprint. It uses Parallel Pushdown Transducers (PP-
Transducers), which take an XML byte stream as input,
and output a stream of matched XML elements according to
a set of XPath queries. Multiple PP-Transducers can be
executed in parallel by splitting the XML data at arbitrary
byte boundaries into XML chunks. Chunks do not need
to be well-formed XML fragments and can be processed by
separate transducers in parallel on different CPU cores.



Since the surrounding context of an XML chunk in the
stream is initially unknown, a PP-Transducer maintains
a mapping from all possible starting states to corresponding
finishing states. As processing progresses, these mappings
converge and are joined in a final, inexpensive sequential op-
eration. We describe algorithms for the efficient construc-
tion of these mappings and a tree-based data structure to
avoid redundant computation when maintaining mappings.
The subset of XPath supported natively by PP-Trans-

ducers is limited to child and descendant queries with no
support for predicates. To increase expressiveness, complex
queries are rewritten into multiple basic queries whose par-
tial results are combined in an inexpensive sequential oper-
ation. We also demonstrate the use of query rewriting to
support the parent and ancestor axes.
We evaluate the processing throughput and scalability

of PP-Transducers against other streaming query tech-
niques. For the standard XPathMark benchmark [29], PP-
Transducers achieve a processing throughput of more than
2.5 GB/s, with near linear scaling up to 64 CPU cores. To
the best of our knowledge, this constitutes the highest re-
ported throughput for streaming XPath processing on com-
modity hardware. We show that this result is due to the bet-
ter cache usage of PP-Transducers compared to existing
parallel parser-based techniques, which require well-formed
XML fragments.
In summary, the research contributions of the paper are:

(1) the design of parallel pushdown transducers for XML
stream processing, which enable out-of-order processing of
malformed chunks of XML data by maintaining a mapping
from possible starting to finishing states (see §3 and §4);
(2) the description of an efficient tree-based data structure
for maintaining state mappings in parallel pushdown trans-
ducers, which avoids redundant computation (see §4.2); and
(3) the results from an experimental evaluation of a C++
prototype implementation of parallel pushdown transducers,
showing near linear scaling up to 64 CPU cores for an ex-
pressive set of XPath queries over XML stream data (see §5).

2. BACKGROUND
Next we give an overview of parallel XML processing ap-

proaches (§2.1), and give background on the standard XPath
automata (§2.2), which provide the underlying theory for
our new parallel pushdown transducers.

2.1 Parallel XPath Query Processing
Existing approaches for XPath query processing have been

used in three domains: (1) XML stream processing; (2) XML
parsing and querying; and (3) XML-capable database man-
agement systems (DBMS).

XML stream processing systems [17, 9, 3] query XML
data incrementally with a constant memory requirement.
Instead of considering data parallelism, research on XML
stream processing [33] has concentrated on increasing ei-
ther the expressiveness of each query [16], or the number of
queries that can be executed in a single run [37].
For example, YFilter [9] and XMLTK [3] evaluate an XML

stream against a large number of concurrent XPath queries.
Such systems typically use automata, where large numbers
of rules are checked against streaming XML data with small
individual data items. Push-down automata have been used

to find XML elements and, through a subset construction,
to execute multiple XPath queries simultaneously [17].
Although push-down automata implementations require

less state to be maintained compared to complete parse tree
construction, they are fundamentally sequential algorithms.
While current automata-based approaches can process many
rules at the same time, only a single thread processes any
given XPath query. In contrast, our work explores how
to leverage data parallelism to execute a small number of
XPath queries against high rate input data.
XML parsing and querying. XML data can be parsed
to create a parse tree. While off-the-shelf XML parsers are
single-threaded [28, 11], techniques have been proposed to
parallelise some of their execution. One option is to run
a sequential pre-processor, which splits the data into well-
formed fragments that can be processed in parallel [23].
For a large number of CPU cores, however, this sequential

pre-processing step becomes a bottleneck. Pan et al. [27]
reduce the performance impact of this step by considering
multiple possible starting states in the parser, but this only
achieves a benefit with low parallelism: beyond 8 CPU cores,
the complexity of the pre-processor limits scalability.
While the execution of XPath queries against an XML

parse tree can be parallelised [35], this assumes that the
tree can be represented in memory, which is infeasible for
streaming XML data. Instead Fegaras et al. [12] parallelise
query processing using the map-reduce model. Each query
operation is realised as part of the reduce phase. The map
phase, however, relies on well-formed XML fragments, intro-
ducing a sequential bottleneck. Their reported processing
throughput on a shared-nothing cluster is several orders of
magnitude lower than ours on a single machine.
XML-capable DBMS. Database engines such as Micro-
soft SQL Server [26] and MonetDB [4] support task-parallel
execution of queries over XML data. They construct a rela-
tional index over the raw XML data to allow for fast query
processing [19], exploiting optimised relational constructs.
Dedicated XML DBMS such as Sedna [14] store and index
XML data natively without an underlying relational engine.
Using a pre-computed index, DBMSs can execute queries

faster than approaches that read the XML data on-the-
fly. However, index construction becomes unsuitable in a
single-pass stream processing model with potentially un-
bounded streams, or with bounded streams in the terabyte
or petabyte ranges that are larger than the processing limit
of a given DBMS.

2.2 XPath Automata
Our approach allows for parallel processing of XML data

using automata by carefully orchestrating the simultaneous
execution of multiple automata. We assume a deterministic
pushdown automaton (dPDA) for the execution of XPath
queries. We base our approach on a simple automaton con-
struction algorithm [17], which turns a set of node selection
XPath queries into a deterministic finite automaton (DFA).
It first creates a non-deterministic finite automaton and then
performs a subset construction to obtain the DFA, support-
ing the following subset of XPath expressions:

P ::= /N | //N | P P
N ::= E | A | text(S) | ∗

where E, A and S are element names, attributes and strings,
respectively.



1 <a>
2 <b>
3 <d></d>
4 </b>
5 <b>
6 <c></c>
7 </b>
8 </a>

(a) XML

1start 2 3 4

0

a b c

b,c,d
a,c,d

a,b,d
a,b,c,d

a,b,c,d

(b) DFA

Figure 1: Sample automaton for XPath query /a/b/c

Each start element event, a symbol is pushed onto the
stack, and each end element event causes a symbol to be
popped from the stack. Pop transitions depend on the sym-
bol on top of the stack. For the automaton described here,
the symbols on the stack represent states. Push transitions
place the current state on the stack and pop transitions re-
turn the execution to the state being popped.
More formally, a dPDA is defined as a 6-tuple of (Q, q0, Σ,

Γ, δ, F ) where Q is the set of states, q0 is the initial state
and F is the set of accepting states. The input alphabet Σ
is the set of opening and closing XML tags. The pushdown
alphabet Γ is the same as Q, and the transition function δ
has a push transition for each transition in the automaton
and a pop transition for the inverse of each transition.
The constructed dPDA operates on the output of a lexer,

which produces events for each opening and closing tag in
the XML document. An opening tag event causes the cur-
rent state of the automaton to be pushed onto the stack and
a transition to occur. A closing tag event pops a state off
the stack and sets the current state to the popped state.
The dPDAs created by this construction have a particular

form: the set of input symbols that cause push transitions
and the symbols that cause pop transitions are disjoint. This
form of automaton is termed a nested word automaton [2].
We enhance the expressiveness of such automata by ex-

ploiting their ability to perform multiple queries simultane-
ously. As described in §3.2, this allows for complex XPath
queries to be decomposed into several sub-queries of a sup-
ported form. We also employ rewrite rules to support queries
that use parent and ancestor relationships [25], and not just
child and descendent relationships. Both techniques are
used to support the queries from the XPathMark bench-
mark (see §5).
Example. We use a running example to illustrate our au-
tomata construction and operation. We consider the XPath
query /a/b/c on the XML document shown in Fig. 1a. For
this query, we construct the DFA in Fig. 1b. Its states 1–4
represent parts of the query, whereas state 0 encodes XML
elements that are not mentioned in the query.

3. PROCESSING XML OUT OF ORDER
We present the translation from the dPDA, described in

the previous section, to a transducer (§3.1). After that, we
explain the intuition behind executing multiple such trans-
ducers in parallel to achieve out-of-order processing (§3.2).
Automata are a naturally sequential method of computa-

tion because the current state is dependent on all of the data
that has been processed. To process XML data in parallel,
we split the data into XML chunks. Chunks are contigu-
ous, non-overlapping sections of the input XML data. The
boundaries of the chunks do not need to fall on XML ele-
ment boundaries but, for simplicity of explanation, we only
show cases in which this occurs. Boundaries that fall within

<a><b>……<c></c> <d><a>……</b><d> </d><c>……</c></a>
1) Split data into arbitrary chunks

For the 
first chunk 
run the 
automata 
normally

For other 
chunks 
construct 
a mapping 
from start 
to finish 
states

2) Execution

3) Unification: Join the mappings together

Same 
result as 
if run 
sequen-
tially

starting states

finishing states

starting states

finishing states

starting states

finishing states

Figure 2: Processing XML data out-of-order by
maintaining state mappings in multiple transducers

elements can be handled by considering all possible states of
the lexer, analogously to the technique for pushdown trans-
ducers described below.
To process data out-of-order, our automaton considers all

possible starting states at the start of an XML chunk. For
each state, we model the execution of the automaton and de-
termine the resulting output state. Some possible execution
paths may result in an accepting state being reached. To
keep track of accepting states, we use a transducer model.
The transducer places symbols on an output tape instead of
reaching accepting states, which captures the idea of multi-
ple XPath rule matches in one XML stream.

3.1 Transducer Construction
The formal description of our transducer is based on the

dPDA described in §2.2. The transducer places a symbol on
the output tape when an accepting state in the automaton
would have been reached. More formally, the transducer is
a 6-tuple (Σ, Γ, ∆, Q, q0, δ) where Σ is the input alphabet,
Γ is the pushdown alphabet, ∆ is the output alphabet, Q
is the set of states, q0 ∈ Q is the initial state and δ is the
transition function. Each transducer instance maintains a
current state (q ∈ Q) and a finite stack of symbols (z ∈ Γ∗).
The transition function δ has three parts: δplain : Q ×

Σ → Q × ∆ for transitions that do not affect the stack;
δpush : Q×Σ→ Q×Γ×∆ for transitions that push a value
onto the stack; and δpop : Q×Σ×Γ→ Q×∆ for transitions
that pop a value from the stack.
The output symbol for a transition may be ε, in which

case no symbol is generated. To construct the transducer
from the dPDA, Σ, Q, q0 and Γ are reused from the dPDA,
the output alphabet contains a symbol for each accepting
state in the dPDA, and the transition function is modified
so that each transition into an accepting state in the dPDA
has an output symbol in the transducer.
A benefit of a transducer model is that it is possible to

pipeline the execution of multiple transducers, with one op-
erating on the output tape of another. Processing XML with
multiple transducers has two distinct operations. The role
of the first transducer is to parse the XML byte stream and
create a stream of opening and closing tags. The second
transducer takes the stream of these events and determines
XPath rule matches. By modelling both operations as trans-
ducers, they can be combined into a single transducer.



3.2 Parallel Transducer Execution
To avoid the inherently sequential nature of basic trans-

ducers, our transducer operates on mappings from start-
ing to finishing states. We give the intuition behind this
approach first, followed by a formal definition in §4.1. As
shown in Fig. 2, our approach has four phases:
(i) a split phase divides the XML data into a series of XML

chunks (step 1). Chunks are not well-formed fragments;
(ii) in a parallel phase, the transducer executes multiple

times over each chunk, once for each possible start state, in
order to construct the state mapping (step 2). A mapping
is a set of map entries, which relate a starting state and
stack to a finishing state, finishing stack and output tape.
As these mappings do not depend on the previous state of
the transducer, they can be done in parallel for each chunk;
(iii) after all mappings have been constructed, there is a

join phase that combines them with the initial state of the
transducer. This results in the execution path that would
have been followed if the transducer had been executed se-
quentially (step 3); and
(iv) an additional filtering phase to increase the expres-

siveness of our transducers: XPath queries with predicates
are transformed into multiple non-predicate sub-queries. A
separate sub-query is created for each element referenced
in the predicate and the parent element. For example, the
query /a[b]/c is rewritten into three sub-queries: /a, /a/b
and /a/c. For rewritten queries, the filtering phase selects
only matches for which the predicates hold.
While the split, join and filter phases are sequential, they

are computationally less expensive than the parallel phase,
which is executed by as many threads as CPU cores.

3.3 Convergence
The effectiveness of this approach depends on the amount

of work needed to construct the mapping compared to se-
quential execution. A simple approach would be to run
the transducer in each starting state, recording the finishing
state and output tape for each. The number of possible exe-
cution paths, however, would be the same as the number of
states in the automaton, making this approach impractical.
For DFAs and transducers executed in this way, the num-

ber of states that need to be considered remains the same or
decreases after each input symbol is consumed in an XML
chunk [20]. As the number of possible states decreases, the
amount of processing for each input symbol also decreases,
making the transducer more efficient for larger chunks of
data. As long as mappings are processed by considering all
entries with the same finishing state simultaneously, it is
possible to construct the complete mapping efficiently. This
requires a sufficient amount of input data to allow the fin-
ishing states to converge to a small number of possibilities.
A stack is required to enhance expressiveness when pro-

cessing XML. This means that, in addition to the starting
state, any states on the stack must also be considered as part
of the mapping. Performing a pop transition may cause the
number of considered states to increase. Therefore, we can
no longer assume that the number of processed states for an
input symbol decreases with the length of the input data.
As we show in §5, for a set of XPath queries, the diver-

gence caused by transitions that pop values from the stack is
outweighed by the convergence of other transitions, leading
to a small number of distinct finishing states. For example,
for data chunks of 10 MB, the number of transitions during

out-of-order execution is 1.1×–3× compared to executing
the transducer directly. The exact overhead depends on the
structure of the XML data and the XPath queries (see §5).

4. PARALLEL PUSHDOWN TRANSDUCER
We now describe the execution of the parallel pushdown

transducer (PP-Transducer) (§4.1) and explain how it
can be implemented efficiently by taking advantage of state
convergence to reduce redundant computation (§4.2).

4.1 Formal Description
For the PP-Transducer, the mappings constructed for

each XML chunk are from a starting state and starting stack
to a finishing state, finishing stack and outputs (i.e. XPath
query matches). To define this new execution model, we
extend the definitions of the in-order transducer from §3.1.
Each entry in the mapping is defined as m ∈ M where

m = (qs, zs, qf , zf , o) and M = Q×Γ∗×Q×Γ∗×∆∗. We
define qS and qf to be the starting and finishing states of
the mapping, and zs and zf to be the starting and finishing
stacks, respectively. We define o to be the output tape when
running the transducer with qs and zs as the starting state
and stack. A complete mapping is thus defined as s ∈ S
where S = P(M). Each entry in a mapping s represents a
different possible starting state and stack.
The two processing functions of the transducer, F and

J , are defined as F : S × Σ → S, which is the func-
tion executed on each input symbol, and J : S × S → S,
which combines two mappings. When processing the be-
ginning of the data, the starting state of the PP-Trans-
ducer is {(q0, ε, q0, ε, ε)}; for an out-of-order chunk, it is
{(q, ε, q, ε, ε) | q ∈ Q}. In the former case, the PP-Trans-
ducer begins in a single starting state and, in the latter
case, all possible starting states must be considered.
The stacks and output tape are represented as strings. To

simplify the explanation, we overload the operator : to mean
both concatenation of two strings, and the appending of an
element to a string.
We realise the processing function F (s, c) through a func-

tion f : M ×Σ→ S that performs a transition on an entry
in the mapping. This is analogous to a transition function
in the original in-order transducer and emulates the action
of the transducer for one possible starting state.
The function f is in turn realised by the four functions

shown in Alg. 1. Three of the functions, fplain , fpush and
fpop , wrap the equivalent transition functions of the in-order
transducer and result in exactly one state being output. For
these three functions, the next state is deterministic, so only
a single state can result. The function funknown accounts for
the situation in which a pop transition occurs but there are
no symbols on the finishing stack to pop. In this case, all
possible symbols are considered, and a new entry in the
mapping is created for each symbol. The symbol chosen is
placed on the input stack, and the new finish state set as
the result of the transition.
The unification function J unifies two state mappings by

considering the cross product of all the entries in the two
mappings, and then adding the result of any successfully
unified pair to the new mapping. Pairs that cannot be uni-
fied are simply discarded. J is implemented in terms of a
map entry unification function j : M ×M → M ∪ ⊥ such
that J(ss, sf ) = {j(ms, mf ) | ∀ms ∈ ss, mf ∈ sf} \ ⊥.



Algorithm 1 Functions for manipulating the mappings during computation

F (s, c) =
⋃
m∈s

f(m, c)

f(m, c) =


{fplain} if (m[qf ], c) ∈ dom(δplain)
{fpush} if (m[qf ], c) ∈ dom(δpush)
{fpop} if (m[qf ], c, m[zf ]0) ∈ dom(δpop)
funknown if m[zf ] = ε and ∃z′.(m[qf ], c, z′) ∈ dom(δpop)
∅ otherwise

fplain(m, c) = (m[qs], zs, q, m[zf ], (o : m[o])) | (q, o) = δplain(m[qf ], c)

fpush(m, c) = (m[qs], zs, q, (z : m[zf ]), (o : m[o])) | (q, z, o) = δpush(m[qf ], c)

fpop(m, c) = (m[qs], zs, q, zs, (o : m[o])) | (z : zs) = m[zf ] and (q, o) = δpop(m[qf ], c, z)

funknown(m, c) = {∀z. (m[qs], zs : [z], q, ε, (o : m[o]) | (q, o) = δpop(m[qf ], c, z)}

Algorithm 2 Unification rules for merging two map entries. Mapping elements used for unification are shown in boldface.
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(4)
j (_, _) :- ⊥ (5)

1start 2 3 4

0

a b c → 1

b,c,d
a,c,d

a,b,d
a,b,c,d

a,b,c,d

/a /b /c

→ : push transition
99K : pop transition (unlabelled from state 0)

Figure 3: Example of PP-Transducer from Fig. 1b

For two entries to be unified, the transducer must finish
one chunk in the starting state of the next chunk, and the
two stacks must consist of the same stack. This requires that
two conditions are met: (i) the finishing state of the first
entry must be the starting state of the second; and (ii) one
of the starting stacks of the first entry and the finishing stack
of the second must be a prefix of the other. When the stacks
match, the combined entry has the starting state and stack
of the first, and the finishing state and stack of the second.
If one of the two stacks used for unification is longer than
the other, the symbols common to both are removed, and
the excess is added to the resulting state.
The unification function j for map entries is defined in

Alg. 2 using Prolog-style unification rules. Rule 1 is the
simple case in which no stack is considered. In this case, the
finishing state of the entry in the mapping for the first chunk
and the start state of the entry for the second entry must
be the same. The resulting mapping contains the starting
state and stack from the first entry and the finishing stack
and state from the second. Rules 2 and 3 handle the cases
in which only one of the entries has a stack, meaning the
stack is carried through to the unified mapping. Rule 4
eliminates a common symbol off both the finishing stack
of the first entry and the starting stack of the second. It is
applied recursively until one or both of the stacks are empty.
Finally, Rule 5 matches any entries that cannot be unified
and returns a failed symbol.

Example. Continuing the running example, we want to
process the XML from Fig. 1a using the automaton from
Fig. 1b with two parallel threads. Map entries are pre-
sented in the form (qs, zs) → (qf , zf , o) to make the map-
ping property explicit. The transducer operates on complete
tags rather than characters.
The first step is to turn the DFA into a transducer in

preparation for out-of-order execution, as shown in Fig. 3.
Push transitions are represented as solid arrows and result
in the current state being pushed; pop transitions are rep-
resented by dashed arrows. Pop transitions from state 0 are
the inverse of the push transitions but are unlabelled in the
diagram for clarity.
The input XML data from Fig. 1a is split into XML

chunks with lines 1–4 in the first chunk and lines 5–8 in
the second. The starting state at the beginning of the first
chunk is a map with one entry corresponding to the starting
state of the automaton {(1, ε)→ (1, ε, ε)}. The first symbol
consumed causes fpush to be executed on the entry, pushing
1 onto the stack, and the state is changed to 2. The map-
ping is therefore {(1, ε) → (2, 1, ε)}. The execution of the
transducer proceeds analogously for the rest of the chunk.
As shown in Fig. 4, the final mapping becomes (M1).
A mapping (M2) for the second chunk is constructed in

parallel. The initial mapping for this chunk considers all
possible starting states in the deterministic pushdown trans-
ducer. First, the opening tags of the b and c elements are
consumed. Each opening tag causes a symbol to be pushed
on the stack for each entry in the mapping. The entry start-
ing in State 2 also has an output symbol due to the transition
into State 4, which results in the mapping (M3).
The closing tags for the b and c elements trigger pop tran-

sitions for each entry in the mapping. Each entry has two
symbols on the stack, leading to two calls to fpop . The re-
sulting mapping (M4) is similar to the initial mapping (M2),
but with the difference that a rule has been matched. This is
expected because the same point in the XML tree has been
reached as at the beginning of the chunk.




(1, ε) → (2, 1, ε)


(M1)


(0, ε) → (0, ε, ε)
(1, ε) → (1, ε, ε)
(2, ε) → (2, ε, ε)
(3, ε) → (3, ε, ε)
(4, ε) → (4, ε, ε)


(M2)


(0, ε) → (0, 0 : 0, ε)
(1, ε) → (0, 0 : 1, ε)
(2, ε) → (4, 3 : 2, 1)
(3, ε) → (0, 0 : 3, ε)
(4, ε) → (0, 0 : 4, ε)


(M3)


(0, ε) → (0, ε, ε)
(1, ε) → (1, ε, ε)
(2, ε) → (2, ε, 1)
(3, ε) → (3, ε, ε)
(4, ε) → (4, ε, ε)


(M4)


(0, 0) → (0, ε, ε)
(0, 2) → (2, ε, ε)
(0, 3) → (3, ε, ε)
(0, 4) → (4, ε, ε)
(2, 1) → (1, ε, 1)


(M5)

Figure 4: Example of state mappings for the PP-Transducer from Fig. 3
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Figure 5: Double tree data structure to compress the state
mapping and reduce redundant computation

The final closing tag requires symbols that are unknown
to be popped from the stack, calling funknown for each entry.
All possible states that could be popped into are considered.
The only states with pop transitions under the </a> closing
tag are States 0 and 2; entries with all other finishing states
are discarded. State 2 can only move into State 1 under a
pop transition whereas State 0 can move into States 0, 2, 3
and 4. The result of performing this transition leads to the
completed mapping (M5) for the chunk.
To get the complete result of processing the XML data,

the final mappings from the two chunks must be unified. As
described in §4.1, unification requires that (i) the finishing
state of the first entry is the starting state of the second; and
that (ii) one of the starting stacks of the first entry and the
finishing state of the second must be a prefix of the other.
The only two entries that meet these two conditions are the
entry in the mapping (M1) (of the first chunk) and the last
entry in the mapping M5 (of the second chunk). The result-
ing mapping, {(1, ε) → (1, ε, 1)}, indicates that the XML
data matches the XPath query of the original automaton.

4.2 Reducing Redundant Computation
A naive implementation of the PP-Transducer would

operate on each entry of the mapping independently, result-
ing in a running time proportional to the number of entries.
As this is also proportional to the number of states in the
PP-Transducer, it would not increase throughput. Since
the per-symbol processing function f depends only on the
finishing state and the topmost symbol of the finishing stack,
a more efficient solution is to exploit the fact that many map-
pings have entries that share the same finishing state. All
such entries can be processed in parallel.
To achieve this, we propose a data structure based on

two trees, as shown in Fig. 5. The start tree (on the left)
represents all of the starting states and stacks in the map-
ping, and the finish tree (on the right) represents all of the
finishing states and stacks.
Each path from one root node to the other is an entry

in the mapping. In the start tree, the immediate children
of the root are the starting states, qs, with each subsequent
layer of nodes representing symbols in the starting stack, zs,

Algorithm 3 add_node(node, root): merges nodes that
have the same output state and parts of the output stack
n← root.children[node.state]
if n 6= null then

for all ch ∈ node.children do
add_node(ch, n)

n.start_nodes += node.start_nodes
else
root.children[node.state] ← node

Algorithm 4 fplain(node, c, root): changes the state of the
current node based on character c
node.state ← δplain(node.state,c)
add_node(node, root)

from right to left. The finish tree has the finishing states,
qf , as the first level, with the finishing stacks, zf , growing
from right to left, beginning from the second level. Multiple
leaf nodes in the start tree may be connected to a single
leaf node in the finish tree, but only one finish leaf may be
connected to a start node.
The mappings are manipulated by operating on the first

two levels of the finish tree. Nodes are added and removed
from the root, and the rest of the tree grows from these
operations. The start tree is only modified during a pop
transition when there are no states on the finishing stack.
To process a symbol from the input tape, each node repre-

senting a finishing state (i.e. the first level of the finish tree)
is considered in turn. For each node, the appropriate func-
tion f is invoked. The domains of the δ functions determine
which function f is called. The function fplain changes the
state of a node but does not modify the structure of the tree;
fpush creates a new node in the finish tree to represent the
pushed state; and fpop implements both popping an existing
state from the stack and creating new entries if the popped
state is not yet known. If there is a symbol on the stack
for the popped state, the corresponding node is removed. If
no such node exists, a new node is created in the start tree,
thus pushing a state on the starting stack.
Each tree node has at most one child per symbol. If a

transition causes two child nodes to have the same symbol,
the nodes are merged using the function add_node defined in
Alg. 3. Children of the combined node with the same symbol
are merged recursively. The transition function F creates a
new finish tree with only a root node. For each node in the
first level of the old finish tree, F calls the corresponding
function f . The new root node represents the mapping.
The f functions on the tree data structure are defined

in Algs. 4–6. The functions fplain and fpush only perform
one operation: fplain changes the state of a node, and fpush
adds another node to the tree. The collapsing of nodes with
the same state is delegated to the function add_node. The
function fpop has to support the cases when there are no
states on the stack or when the popped state exists. The
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Figure 6: Example of trees representing mappings from Fig. 4

Algorithm 5 fpush(node, c, root): creates a new node for
the pushed stack state
(next, pushed) ← δpush(node.state, c)
node.state ← next
n← new finish_node
n.state ← pushed, n.parent ← node
n.children ← node.children, node.children ← [n]
add_node(node, root)

Algorithm 6 fpop(node, c, root): implements fpop and
funknown depending on whether the state being popped exists

for all p where (node.state, c, p) ∈ dom(δpop) do
next ← δpop(node.state, c, p)
n← node.children[p]
if n 6= null then // implements fpop
n.state ← next
node.children.remove(n)
add_node(n, root)

else // implements funknown

for all s in node.start_nodes do
nf← new finish_node, ns← new start_node
ns.parent ← s, ns.state ← p
s.finish_node ← null, s.children[p] ← ns
nf.start_nodes ← [ns], nf.state ← next
add_node(nf, root)

first conditional branch assumes that the state exists and
the corresponding node can be removed from the tree. The
second branch handles pop transitions if the symbol on the
stack is not yet known. This considers all possible symbols,
adding a symbol to the input stack for each.

Example. We give an example of using this tree repre-
sentation. Fig. 6a shows the starting state and consists of
two trees of depth one. It connects each state to itself and
corresponds to mapping (M2) from Fig. 4.
As symbols are pushed onto the finishing stacks, the finish

tree grows to the right. For each push operation, a new set
of nodes is placed between the parent and the rest of the
tree. The updated tree, corresponding to mapping (M3), is
shown in Fig. 6b. An asterisk (*) indicates a state that has
matched an XPath query. These matches are stored in the
leaves of the start tree.
States are popped by removing a node from the finish tree.

The next two pop operations undo the push operations and
return the data structure to the original state in Fig. 4. The
final pop operation cannot pop an existing state. Instead
nodes are created at the leaves of the start tree, resulting in
the tree representing mapping (M5) shown in Fig. 6c.

5. EVALUATION
Our experimental evaluation has three aims: (1) to in-

vestigate processing throughput and execution times of our

PP-Transducer approach for various types of benchmark-
ing queries; (2) to demonstrate its scalability on many-core
architectures; and (3) to explore the changes in processing
throughput across a wider parameter set.
Prototype implementation. We implemented a C++ pro-
totype version of the PP-Transducer approach. It uses
standard optimisations to reduce the cost of data structure
operations, such as a thread-local memory allocator. No
platform-specific optimisations, such as custom scheduling
or CPU-specific cache tuning, are used.
The PP-Transducer implementation operates by fol-

lowing the phases described in §3.2. The split phase splits
XML data into chunks by skipping forward in the stream
by a target chunk size (by default 10 MB) and searching se-
quentially for the next open angle bracket. Since only a few
bytes are searched per chunk, the split phase only becomes
a sequential bottleneck for small chunk sizes, or if the XML
stream has a low tag density.
Once split, the chunks are assigned to parallel processors,

each of which applies two transducers: the first transducer
converts the chunk to a sequence of tag open and close
events; the second realises the technique from §4, converting
each chunk into a mapping of states.
After all parallel chunks have been processed, the map-

pings are joined to produce a list of all matches in the data.
If a complex query was rewritten into multiple sub-queries,
the filtering phase removes all matches for which the pred-
icate conditions are not met. The matched XPath queries,
along with the matched data, are stored in a vector and are
output after all data has been processed.
A limitation of our implementation is that it assumes that

an open angle bracket at the start of a chunk indicates the
start of a tag. Although this means that it does not sup-
port XML data with comments or CDATA sections, this is
not an intrinsic limitation of our approach. A PP-Trans-
ducer could be constructed on top of a simultaneous match-
ing transducer [27], rather than a simple matching automa-
ton [17], which supports comments and CDATA sections.
Comparison to other approaches. We compare PP-
Transducers to three alternative XML processing tech-
niques: parallelised versions of two popular XML stream
processors (XMLTK and MxQuery); two XML parsers
(PugiXML and Expat) to compare to only parsing the
XML stream; and two XML-capable DBMSs (MonetDB
and Sedna) to compare to highly-optimised DBMS engines.
We chose PugiXML and XMLTK because they achieve the
highest throughput for parsing and streaming, respectively.
XML stream processors. Both the XMLTK [3] and Mx-
Query [13] stream processors are single threaded. To ex-
ploit data parallelism for a fair comparison, we modify them
to split the data into well-formed fragments, which are pro-
cessed in parallel. Using the Boost.regex regular expression
library [5], the processor searches the XML stream for clos-



Dataset # XML tags Max Avg. Avg.
depth depth branch

XMark 334,095,625 13 5.55 3.67
Treebank 487,533,001 37 7.87 2.33
Twitter 275,931,225,001 9 3.95 15.94
Synthd,b variable d variable b

Table 1: Properties of used XML datasets

Name XPath query structure # sub- # sub- #
queries matches matches

(1000s) (1000s)
A1 /s/cs/c/a/d/t/k 1 812 812
A2 //c//k 1 2,502 2,502
A3 /s/cs/c//k 1 2,502 2,502
A4 /s/cs/c[a/d/t/k]/d 3 4,712 531
A5 /s/cs/c[descendant::k]/d 3 6,402 1,070
A6 /s/ps/p[pr/g and pr/age]/n 4 12,766 644
A7 /s/ps/p[ph or h]/n 4 15,309 3,827
A8 /s/ps/p[a and (ph or h) 7 22,967 1,440

and (cc or pr)]/n
B1 /s/r/*/item[parent::sa 2 220 220

parent::na]/name
B2 //k/ancestor::li/t/k 3 25,502 6,225

Table 2: XPathMark rules used for query workload

ing tags that only occur in a well-defined location in the
schema. To approximate fragments of a given target size,
it skips forward by 10 MB, resulting in many elements in
each fragment. We make the same assumption about no
comments and CDATA sections, as above.
XML parsers. The input XML stream is first split into
well-formed fragments, using the technique just described
for XML stream processors. Each well-formed fragment
is then queried in parallel, either by building a DOM tree
for a fragment, or using a streaming SAX parser. For the
DOM approach, we use the PugiXML parser and its built-
in XPath library because it is one of the fastest C++ DOM
parsers available [28]. We use the Expat SAX parser [11]
to generate SAX events, followed by a transducer based on
PP-Transducer (but without the out-of-order support) to
execute the query.
XML DBMS. We use the MonetDB [4] and the Sedna [14]
DBMSs to obtain a baseline comparison of how PP-Trans-
ducers compare to index-based XPath execution. Mon-
etDB is a relational DBMS, which uses the Pathfinder mod-
ule to map XML data to a relational data store. Sedna is a
native XML DBMS without an underlying relational engine.
Both assume that the XML dataset is finite and can be

loaded into the DBMS, which is not feasible for an infinite
stream, or a dataset larger than the DBMS capacity. For
example, we also tried to use Microsoft SQL Server as an
example of a general-purpose DBMS with XML support,
but it does not support XML data larger than 2 GB [26].

Datasets. Table 1 summarises the properties of the XML
datasets used in our experiments. We choose the Tree-
bank [30] and XMark [29] datasets to reflect two typical
XML schemas. The Treebank schema has a root element
with a large number of direct children, allowing well-formed
fragments to be identified using opening and closing tags. In
contrast, the XMark dataset has only six direct children off
the root, each containing different amounts of data, making
it hard to split them into well-formed fragments of equal
size. To produce large datasets, we use a scaling factor of
200 for XMark and replicate the Treebank dataset 200 times,
resulting in sizes of 22 GB and 17 GB, respectively.

As a typical streaming workload, we use a 44 GB data-
set created by capturing 14 million tweets from the Twitter
public streaming API, stored in the Twitter XML format.
The Twitter data is shallow compared to XMark and Tree-
bank but does contain recursive elements: a status element
can contain a retweeted status which is itself a complete sta-
tus. We replicate the Twitter dataset 250 times, resulting
in a total data volume of more than 11 TB.
Since none of the datasets allows control over average

node-depths or branching factors, we use an XML gener-
ator [34] to generate synthetic datasets by selecting random
nodes from the Treebank schema. The generator also per-
mits data items to be generated with sizes following a log-
normal distribution with an adjustable scale factor.

XPath queries. For the XMark dataset, we use XPath-
Mark [15] because it is designed to evaluate the performance
of XPath query processors using a realistic query set. As
listed in Table 2, we use the entire A query set and the
first two queries from the B query set. As described in
§3.2, PP-Transducers only support a subset of XPath di-
rectly. The first three A set queries are run unchanged,
and the others are translated to sub-queries, which exe-
cute simultaneously. The results of the sub-queries are then
processed to create the final result. Parent and ancestor
queries are performed through query rewriting, as described
by Olteanu [25]. When a query is split, the table shows the
number of sub-queries and the number of occurred matches.
For the Treebank and synthetic datasets, random queries

of the form //a/b/c/d are generated, in which each tag is
one of the elements in the descriptive part of the tree. This
emulates the search for data with a specific phrase structure.
By default, 20 such Treebank rules are executed as a single
query set, except when indicated otherwise.
For the Twitter dataset, we use queries to filter tweets

that contain some user-specified metadata and report the
location of the metadata in the XML Twitter stream. As an
example, we use the query //status/coordinates/coord-
inates to select all tweets with embedded coordinates.

Experimental set-up. All experiments are performed on
a 2.1 GHz AMD quad-socket machine, with 16 CPU cores
per socket, for a total of 64 cores, running Linux Fedora 16.
The machine has 128 GB of RAM, which allows all input
XML data to be pre-loaded into memory. This removes the
effects of disk IO and caches DBMS indices completely. For
the timed experiments, the XPath query results are collected
in memory and discarded, again to avoid IO operations.

5.1 Throughput
We first compare the throughput of PP-Transducer to

other XML stream processors and parsers. Fig. 11 shows
the throughput of different XML processing approaches ex-
ecuting a single query on the Twitter dataset. The single-
threaded performance of PP-Transducer is comparable
to all other approaches and more than twice that of Expat
and MxQuery. MxQuery does not operate in a streaming
mode when multiple independent queries are run simultane-
ously so these results are not included.
The parallelised versions of PugiXML and XMLTK are

faster than PP-Transducer with a single thread of execu-
tion, but at 64 CPU cores PP-Transducer has 1.8 times
the throughput of PugiXML and 10 times the through-
put of XMLTK. The scaling behaviour of PugiXML is
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Figure 11: Throughput of querying the Twitter dataset

explored in the next section; XMLTK is limited by the se-
quential overhead of splitting the data.
For a single query on the 11 TB Twitter dataset, PP-

Transducer achieves an average throughput of 2.5 GB/s.
To the best of our knowledge, this result is nearly an order of
magnitude greater than the highest recorded throughput for
streaming XPath processing reported in the literature [24].
To understand the query efficiency of PP-Transducer,

we compare its execution time to the MonetDB and Sedna
XML DBMSs. Both MonetDB and Sedna have a lengthy
loading phase, during which the XML dataset is parsed and
indexed, and they are unable to load the full 11 TB dataset.
Fig. 12 shows that, while the XML DBMSs can perform

the queries more quickly, the time taken to load the data is
several orders of magnitude greater than using PP-Trans-
ducer. MonetDB has a query execution time that is
20 times faster than PP-Transducer, but only after com-
pleting a load phase of around half an hour.
The execution time depends on the structure of the query.

Queries that use the descendent axis (i.e. //) are less effi-
cient when executed with PP-Transducer and Sedna, but
more efficient with MonetDB. In the case of PP-Trans-
ducer, these rules add more transitions to the transducer,
reducing the convergence of states. A DBMS is able to
pre-compute all of these relationships while building the in-
dex, and MonetDB uses such an optimisation—queries A2
and A3 execute faster because they are shorter and need
fewer comparisons of node relationships.
When used in a streaming fashion, the total throughput of

an XML database is limited to the speed at which the index-
ing can be performed. For MonetDB, this is 13 MB/s—two
orders of magnitude slower than PP-Transducer.
All three approaches require more time to process queries

with predicates. In the case of PP-Transducer, the break-
down of execution times in Fig. 13 shows that this is mostly
caused by the sequential post-processing step. Its running
time is proportional to the number of matches for each sub-
query and is independent of the operations in the predicate.
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5.2 Scalability
We compare the scalability of PP-Transducers in terms

of CPU cores to the parallel versions of the PugiXML and
Expat parsers, because they exhibit the best scaling, and
any XML stream processor must at least parse the stream.
Fig. 7 shows the change in throughput for the Treebank

dataset as the number of parallel threads on CPU cores is
increased from 1 to 64. We use a set of 5 concurrent queries,
as described in the previous section, and achieve a processing
throughput of 2.5 GB/s. PP-Transducer exhibits strictly
linear scaling up to 16 cores, then close to linear scaling
from 16 to 64 cores—the interaction of the threads with
the machine’s memory hierarchy prevents perfect scaling.
This scaling behaviour is similar on all datasets evaluated,
as shown in Fig. 8, however the Twitter dataset give lower
total performance due to the shallow tree structure.
The comparatively low throughout of the Expat parser

in Fig. 7 is due to its memory allocator, which is shared
among all threads. An increased number of utilised CPU
cores leads to significant lock contention.
Up to 25 cores, PugiXML outperforms PP-Transducer

because the overhead of managing state mappings is greater
than that of constructing DOM trees. The increased mem-
ory bandwidth and greater cache utilisation needed for par-
allel DOM tree construction, however, cause the through-
put of PugiXML to plateau for more than 30 cores. Fig. 9
shows how the instructions per clock cycle (IPC) decrease
with larger CPU core counts for PugiXML; PP-Trans-
ducer does not suffer the same loss in IPC because its
largest data structures are the transition tables, which are
shared between threads. The thread-local tree data struc-
tures are small enough to fit into the L2 cache shared be-
tween pairs of CPU cores.
When investigating the performance of PP-Transducer

under different parameters in §5.3, we concentrate on the re-
gion in which its scaling behaviour is linear. This is indicated
in Fig. 10 as the shaded area up to 16 CPU cores—up to
this point the line of regression closely matches the observed
data. Beyond 16 cores, the scaling is sub-linear due to the
machine’s memory system.
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Figure 18: Decreased throughput as data skew increases

 0

 20

 40

 60

 80

 100

 0  0.5  1  1.5  2  2.5  3

T
im

e
 i
d
le

 (
%

)

Scale Factor (tags)

PugiXML
PP-Transducer

(a) Changing number of tags

 0

 20

 40

 60

 80

 100

 0  0.5  1  1.5  2  2.5  3

T
im

e
 i
d
le

 (
%

)

Scale Factor (text)

PugiXML
PP-Transducer

(b) Changing size of text

Figure 20: Increased idle time as data skew increases

5.3 Parameter Exploration
In our approach, faster state convergence leads to greater

throughput. The rate at which a large number of possible
states converge to a smaller number depends on the prop-
erties of the processed data and the executed queries. Next
we explore various parameters affecting performance.
XML tree shape. We consider the effect of the shape of
the XML tree on the throughput of PP-Transducer. We
use the Synthd,b dataset with different tree depths d and
branching factors b, and 20 queries of the form //a/b/c/d.
We present the results in Fig. 15. As the XML tree depth

and branching factor increases, the overhead also decreases,
with a corresponding increase in throughput. The increased
throughput is caused by the rate of state convergence, which
depends on the shape of the XML data. The intuition is
that a deeper tree has more potential for convergence than a
shallow one—for convergence to occur, there must be a series
of push operations, which is more common in deep trees. A
larger branching factor also increases efficiency because it
leads to an increase in the average depth of the tree.
Beyond a tree depth of 7 and a branching factor of 4, the

throughput stops increasing, as the mappings for each chunk
have reached the maximum level of convergence. The Tree-
bank datasets therefore exhibits greater throughput than
XMark, despite a larger number of concurrent queries.
XPath query set. We examine how throughput per CPU
core is affected by the number of simultaneous XPath queries
and their lengths. In Fig. 14, we show that the through-
put of PP-Transducer quickly decreases as the number
and length of queries increases. This is caused by two ef-
fects: (1) more states from a larger query set also increase
the number of potential states, thus reducing the conver-
gence rate; and (2) the throughput decreases further due to
the large transition lookup tables, which incur more cache
misses. Our approach trades the query parallelism in other
automata-based stream processing systems for data paral-
lelism on a smaller number of queries.
XML chunk size. Next, we explore how the XML chunk
size affects the throughput of PP-Transducer using the
same set-up as in the previous scaling experiments in §5.2.

Fig. 16 shows that the execution time increases quickly as
smaller chunk sizes are used, with the lowest time achieved
for chunks larger than 1 MB. Smaller chunk sizes cause the
parallel and sequential phases of PP-Transducer to take
more time. In the parallel phase, the smaller number of
bytes per chunk reduces convergence, thus increasing the
number of CPU cycles per byte. More chunks also increase
the time required to join the mappings together sequentially
in order to produce the final result. The parallel phase has
the lowest execution time for 100 kB chunks, and the sequen-
tial phase becomes negligible at chunk sizes above 1 MB.
Distribution of data sizes. The Treebank dataset has a
large number of data items under the root element. Parsing
XML data in parallel using an off-the-shelf parser requires
splitting it into well-formed XML fragments, and our cur-
rent PP-Transducer implementation requires finding an
open angle bracket to split the data. Both may become a
sequential bottleneck as larger items appear in the XML
data.
To explore this effect, we generate synthetic XML datasets

based on the Treebank set of tags, with the size of each item
generated according to a log-normal distribution. Adjusting
the scale factor of the distribution allows us to introduce
skew that creates more large items. To assess the impact of
the splitting operation, we measure the proportion of time
that threads spend idle waiting for work, in addition to the
processing throughput.
We scale the sizes of each data item in different ways. In

Fig. 17a, we increase the size of each item by making the
XML tree broader and deeper. The larger items cause the
splitting operation to take longer for PugiXML, which re-
quires well-formed fragments. Beyond a scale factor of 2,
the throughput starts to decrease as threads spend a signif-
icant amount of time in an idle state, waiting for a suitable
split point to be found. PP-Transducer does not require
well-formed fragments and thus exhibits negligible idle time,
even for large scale factors.
In Fig. 17b, we maintain the same tree depth but vary

the size of the text between tags. The results show that, for
both PP-Transducer and PugiXML, the cost of splitting
becomes significant as the scale factor increases. However,



PP-Transducer always performs better than PugiXML
because the average distance to the next tag is shorter than
to the end of a complete data item.
Fig. 20 confirms our hypothesis that the percentage of

time threads spend idle directly correlates with the observed
reduction in throughput. The Treebank dataset has a scale
factor of less than one, which means that the throughput
plateau of PugiXML in Fig. 7 cannot be attributed to lock
contention.

6. RELATED WORK
We will now discuss previous work on parallel XML pro-

cessing, with a particular focus on parallel parse tree con-
struction and query execution using data-parallel methods.

XML stream processing. Instead of data parallel execu-
tion, previous research on XML stream processing focused
on improving the expressiveness of XPath querying and ex-
ecuting large numbers of concurrent queries efficiently [16].
There are three general approaches for evaluating queries

on streaming XML data: (i) automata-based techniques
compile a set of rules into an automaton, which executes
the query [9, 37]; (2) in contrast, array-based techniques,
as used in TurboXPath [21], do not require the construc-
tion of an automaton but store pointers to elements in the
XML tree and execution state; and (3) finally, stack-based
algorithms, such as Twig2Stack [8], compactly represent a
large number of partial matches that occur when queries
with many predicates are executed.
Techniques that are not automata-based can provide bet-

ter performance when queries contain many predicates, be-
cause they transform the XML byte stream into a specialised
internal form. When this expressiveness is not required, au-
tomata have been shown to scale to 10,000s of queries [9].
Automata-based approaches also map more naturally to the
speculative execution model that we use to achieve data-
parallelism and do not require any sequential transforma-
tion of the input data. We leave an exploration of the appli-
cability of our out-of-order techniques to Twig2Stack-style
processing to future work.
A common assumption in prior work is that a large num-

ber of XPath queries are executed over an XML stream. Y-
Filter [9] and XMLTK [3] execute thousands of small queries
in parallel. They handle the state explosion of the subset
construction by creating the DFA lazily. Zhang et al. [37]
propose to execute multiple states in a non-deterministic
finite automaton in parallel. The stream is still parsed se-
quentially but each starting state of the automaton is han-
dled by a different thread. In contrast, PP-Transducer
is designed to exploit data parallelism with a small set of
queries, utilising a large number of CPU cores to process
incoming XML streams at a high rate.
Commercial stream processing engines such as Microsoft

StreamInsight and IBM InfoSphere Streams can operate on
XML through the use of an XML adapter. Once the XML
stream has been converted to an internal representation, it
is possible to perform expressive and time-varying queries.
However, the XML adapter introduces a throughput bottle-
neck because it only processes the stream sequentially.
XML stream processing systems that exploit FGPAs such

as the one proposed by Moussalli [24] have focussed on us-
ing the parallelism in the FPGA fabric to execute a large
number of queries simultaneously. These approaches process

the stream sequentially, which limits the system throughput
to around 300 MB/s—an order of magnitude less than our
performance for a small number of queries. SCBXP [10] de-
scribe an approach to consuming multiple bytes of the XML
stream in a single clock cycle but it is limited to an average
of two bytes per cycle due to limited width of the content
addressable memories used.

Parallel XML tree parsing. Early techniques for paral-
lel parse tree construction relied on a sequential pre-parse
phase, which splits XML data into well-formed fragments
that can be processed in parallel [23]. While such an ap-
proach can scale to a small number of CPU cores, the se-
quential bottleneck of the pre-parse phase becomes an issue
for larger numbers of cores.
To scale beyond this limit, techniques have been proposed

that parallelise the pre-parse phase using concurrent match-
ing transducers. Pan et al. [27] demonstrate that this can
scale well, but it has not yet been shown how to integrate
the output of an out-of-order pre-parser efficiently with a
full parser in order to produce a complete tree. We avoid
this problem by not requiring a separate parser.
An alternative approach is to infer the current state of

the parser based on heuristics in the XML data, such as
the beginning and end of comments [35]. This avoids the
pre-parse phase at the expense of having to re-parse XML
fragments if the initial guess is incorrect. All of the above
techniques assume that the entire XML parse tree can be
represented into memory and are therefore not applicable
to large streaming XML datasets.

Parallel XML querying. There are several techniques for
executing XPath queries that can exploit data parallelism
after constructing an in-memory parse tree. The simplest
is to rewrite an individual XPath query into multiple sub-
queries. These sub-queries are executed in parallel and their
results are joined in a sequential step [6]. This achieves a
good speed-up because the sub-queries are typically simpler,
resulting in reduced execution times even before parallelism
is introduced. In order to achieve a large degree of paral-
lelism, it is necessary to partition the tree in addition to the
queries. This requires building the tree before partitioning,
which is necessarily a sequential step.
An alternative method by Lui et al. [22] uses a parallel

structured join algorithm. It partitions the XML elements
and joins the results of inspecting each element in parallel.
While the query and join operations are parallelisable, con-
structing the required data structures is a sequential step.
All of the above approaches rely on having well-formed

fragments of the XML parse tree, which can be processed
independently and joined together. In contrast, PP-Trans-
ducers operate on arbitrarily framed XML chunks, thus re-
ducing the cost of splitting the data into work units in order
to achieve increased scalability, at the cost of supporting a
lower number of concurrent queries.

Out-of-order automata. The out-of-order execution of
automata has been explored by the networking community
in the context of intrusion detection across traffic streams.
Johnson et al. [20] propose to reduce memory consumption
when executing regular expressions by avoiding the buffering
of packets that arrived out-of-order. In their automaton,
they construct mappings of starting to finishing states for
each packet, which are typically substantially smaller than
the processed data and do not grow with the size of the data.



However, they only consider DFAs and do not provide an
efficient algorithm for the construction of mappings.
Chandramouli et al. [7] consider the problem of process-

ing disordered streams, e.g. when data items are missing
from a stream. They focus on the loss of a few data items
by reasoning about the possible effects of missing items on
the final result. For each missing item, a potential execu-
tion path is constructed. Their automata model, however,
is less expressive than a pushdown transducers. In addi-
tion, it does not scale as the number of missing data items
increases—this prevents the use of their approach in our sce-
nario because out-of-order XML processing quickly creates
hundreds of thousands of missing events for each processor.

7. CONCLUSION
We have described PP-Transducers, a new automata-

based execution model to query XML data streams using
pushdown transducers in a data parallel fashion. We have
given a formal description of the transducer’s operation and
described how it can be implemented efficiently. Our exper-
imental results demonstrate the scalability of this approach:
it manages to achieve near linear scaling up to 64 CPU cores
and an overall processing throughput of more than 2.5 GB/s.
As part of future work, we plan to improve the ability

of our approach to handle a larger number of concurrent
XPath queries and enhance their expressiveness. One pos-
sible way of improving both is to design a hybrid approach
that combines a parallel transducer with an index-based
query engine. The index generation can be done in paral-
lel by the transducer, with more sophisticated queries being
answered by the query engine. In addition, we want to ex-
plore whether techniques based on subset construction on
the transducer [27] are applicable. The goal is to make the
amount of processing performed per character independent
of the size of the processed XML chunks.
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