
Hardware-Efficient Data Imputation through DBMS Extensibility

Hubert Mohr-Daurat
Imperial College London

h.mohr-daurat19@imperial.ac.uk

Georgios Theodorakis∗

Neo4j
george.theodorakis@neo4j.com

Holger Pirk
Imperial College London

hlgr@ic.ac.uk

ABSTRACT

The separation of data and code/queries has served Data Manage-
ment Systems (DBMSs) well for decades. However, while the re-
sulting soundness and rigidity are the basis for many performance-
oriented optimizations, it lacks the flexibility to efficiently sup-
port modern data science applications: data cleansing, data inges-
tion/augmentation or generative models. To support such applica-
tions without sacrificing performance, we propose a new logical
data model called Homoiconic Collection Processing (HCP). HCP
is based on a well-known Meta-Programming concept called Ho-

moiconicity (a unified representation for code and data).
In a DBMS, HCP supports the storage of “classic” relational data

but also allows the storage and evaluation of code fragments we
refer to as “Homoiconic Expressions”. Homoiconic Expressions en-
able applications such as data imputation directly in the database

kernel. Implemented naïvely, such flexibility would come at a pro-
hibitive cost in terms of performance. To make HCP performance-
competitive with highly-tuned in-memory DBMSs, we develop
a novel storage and processing model called Shape-Wise Micro-

batching (SWM) and implement it in a system called BOSS. BOSS
is performance-competitive with high-performance DBMSs while
offering unprecedented extensibility. To demonstrate the extensibil-
ity, we implement an extension for impute-and-query workloads:
BOSS outperforms state-of-the-art homoiconic runtimes and data
imputation systems by two to five orders of magnitude.

PVLDB Reference Format:

Hubert Mohr-Daurat, Georgios Theodorakis, and Holger Pirk. BOSS - An
Extensible DBMS Architecture. PVLDB, 17(11): 3497 - 3510, 2024.

doi:10.14778/3681954.3682016

PVLDB Artifact Availability:

The source code, data, and/or other artifacts have been made available at

https://github.com/lsds/ImputationBOSS.

1 INTRODUCTION

More than five decades of research and development have honed
Database Management Systems (DBMSs) into highly efficient, easy-
to-use pieces of software with a well-defined logical model. The
soundness of the relational model served these systems well when
the primary challenges were correctness and performance. Modern
data processing requirements, however, have outgrown such rigid
models: data science pipelines are increasingly complex, involving

∗Work done while at Imperial College London
This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 17, No. 11 ISSN 2150-8097.
doi:10.14778/3681954.3682016

Figure 1: Executing TPC-H Q6 with 10% imputed values

data ingestion from heterogeneous sources, cleaning, integration,
transformation, loading, querying, use for model training/infer-
ence, and visualization for end users. In typical data processing
pipelines, a sequence of dedicated and specialized systems imple-
ment each of these processing steps. This approach leads to two
fundamental problems. First, data must be migrated from system
to system along the pipeline, which incurs significant overhead for
conversion, transfer and integration. Second, it requires the costly
implementation, deployment, and operation of specialized systems.

To illustrate the challenges of modern data processing, consider
a common first step in a data science pipeline: value imputation, i.e.,
the derivation of missing values from present ones. Most DBMSs
offer no native support for such “data cleansing” operations. While
SQL prescribes the concept of NULL to represent missing values,
it defines no coherent way to interpret them beyond coarse rules
like "NULL values must not contribute to aggregates" [25]. Users,
therefore, face the choice of four approaches to data imputation:
(a) extend the DBMS’s functionality using User-defined Functions
(UDFs); (b) extend the kernel; (c) use a dedicated cleansing sys-
tem [18, 45]; or (d) process data in a data-science-oriented program-
ming language such as Julia [6] or Wolfram Mathematica [54].

Each of these approaches faces unique performance challenges.
To illustrate these, we implemented a combined imputation & query-
ing pipeline for typical representatives of each approach. We ran
Query 6 of the TPC-H dataset with a scale factor of 0.1 and 10% ran-
domly “NULLed-out” L_DISCOUNT values and imputed them during
query processing as the mean of the column. The results in Figure 1
demonstrate that each approach is at least two orders of magni-
tude slower than the performance target in plain C++: (a) a UDF,
even using a commercial database that is known for good UDF
support, prevent effective optimization and execution; (b) Imput-
eDB [9] demonstrates the overhead of a DBMS architecture that
supports kernel-level extensions; (c) data imputation using SckiKit-
learn [37, 48] connected to PostgreSQL [40] spends virtually all
of the time loading dirty data from Postgres and copying cleaned
data back; (d) Wolfram Mathematica1 suffers from the well-known
interpretation overhead of dynamic language runtimes [27, 52].

However, the problem is harder than just replacing NULLs with
generated values. High-quality data cleaning requires capturing not
just that a value is missing but why it is missing. The conventional

1Wolfram advertises data imputation as a key feature of Mathematica [53]

3497

https://www.acm.org/publications/policies/artifact-review-and-badging-current

(Table (Schema 'KEY 'SHIPDATE 'DISCOUNT 'TAX)

(Tuple 1 "96-03-13" (Mean) .10)

(Tuple 2 "96-04-12" .04 .08)

(Tuple 3 "96-01-29" (Mean) .06)

(Tuple (GenID) 'OnHold .09 (If (> 'SHIPDATE

"96-06-01") .04 .06))

(Tuple (GenID) 'OnHold .10 (If (> 'SHIPDATE

"96-06-01") .02 .03)))

Figure 2: A Relation as Homoiconic Expression

way to capture the why is to represent missing values as NULLs
with a “tag” value (e.g., an enum) in a separate column (we will
call this "tagged nulls"). Imputation logic is encoded into queries
through rewriting. This approach suffers from several problems:
first, it requires extra columns to hold the tags for every column that
might have missing values (i.e., virtually every column). Second,
tag interpretation through query rewriting is non-trivial, costly and
incurs runtime overhead (even if no values are missing). Third, to
ensure that imputed results are consistent even if the imputation
process changes, versions of the imputation logic must be encoded
into the tags, further complicating rewriting. Fourth, tagged nulls
cannot encode payloads such as numeric parameters for the impu-
tation process. Finally, they do not support composition to encode
complex processes (such as conditional branches). These problems
lead to significant limitations in real use cases: exception handling
for edge device data logging cannot capture complex reasons for
failure with mere tagged-nulls; Model-generated data can only be
stored as values and not as a generation "process", preventing, e.g.,
consistent re-generation when the model evolves; Personal data
deletion for legal compliance (e.g., GDPR or CCPA) cannot keep
any record that data ever existed or why it was deleted without a
mechanism to embed a "process" into the data model.

While we plan to study these applications in the future, in this
paper, we focus on laying the groundwork for the representation of
processes in a database. We argue that the rigidity of the relational
data & processing model prevents the effective capture of processes,
while the flexibility of dynamic languages comes with execution
overhead unsuitable for high-performance data processing.

We define a “process” as any series of operations that generate,
retrieve or transform data. Arguably, programmable computers and,
by extension, DBMSs have a way of representing processes: binary
code. However, code is effectively a black box: it can be evaluated
but not (reasonably) manipulated. It is, thus, the diametrical oppo-
site of (managed) data, which can be manipulated but not evaluated.
We propose to embed processes as first-class citizens into Database
Management Systems (DBMSs), allowing it to be manipulated like
data (queried and modified) and executed on-demand.

Some programming languages (notably LISP [33] family lan-
guages like Clojure, Racket and Julia) support process as a first-
class citizen through a paradigm called homoiconicity: data and
code represented in a unified form that can be manipulated.

To illustrate homoiconicity in the context of our work, con-
sider Figure 2: an expression in LISP syntax representing a ta-
ble with schema (i.e., metadata) and tuples (i.e., data). The tu-
ple attributes, however, are either data values (integers, floats,
strings) or expressions (i.e., code, indicated by the parentheses).

While we discuss the details in the next section, the example il-
lustrates the embedding of process in the data in a form that
can be manipulated as well as executed: (GenID), e.g., generates
keys on access and (Mean) indicates that the values shall be im-
puted as the mean of the column’s known values.

We will demonstrate the utility of homoiconicity in DBMSs,
using data imputation as a motivating case (leaving generative
models, provenance, data integration and others for future work).
Focusing on efficiency, our objective is what we call Pay-As-You-Go
(PAYG) homoiconicity: processing non-homoiconic data as fast as
modern in-memory DBMSs while suffering only minimal overhead
and only proportional to the number of homoiconic expressions in
the database. To this end, we make the following contributions:
• We introduce "Homoiconic Collection Processing", a novel logical

data and processing model breaking the strict separation of data
and code. The key idea is a collection-oriented data model that
allows expressions as attribute values. We show that it strikes
an appropriate balance between flexibility and performance.

• To efficiently process homoiconic collections, we develop a novel
storage & processing model called Shape-wise Microbatching

(SWM). SWMenablesmemory-efficient storage andCPU-efficient
(micro-batched/vectorized) processing.

• To show the practicality of the approach, we develop a ho-
moiconic DBMS called BOSS. Its performance rivals modern in-
memoryDBMSswhile also processing homoiconic expressions. It
significantly outperforms state-of-the-art homoiconic runtimes.

• To demonstrate the advantages of homoiconicity for data process-
ing, we developed a data imputation module for BOSS. It allows
user-defined data imputation at modern DBMS performance –
orders of magnitude faster than competing systems.

2 BACKGROUND

In this section, we introduce the data management and program-
ming language concepts we expand on in the rest of this paper.

2.1 Homoiconic Programming

While classic programming languages distinguish compile-time
(code) and runtime (data) aspects of a program, Homoiconicity blurs
these boundaries; Homoiconic languages allow pieces of code to be
manipulated at runtime, i.e., treated as data, but also to be (compiled
and) executed at runtime, i.e., treated as code.

In such languages, the fundamental building blocks of expres-
sions are atoms. There are either simple atoms, i.e., the basic datatypes
found in virtually any programming language (such as the ints,
floats and strings shown in Figure 2) or symbols (marked with
a single quote prefix, such as 'OnHold in Figure 2). Symbols are
identified by their name (a string) and generalize the concept of
variables in imperative programs. However, while variables in im-
perative programs must be backed up by memory and hold a value
at runtime, symbols may be undefined.

On top of symbols, homoiconic languages allow the construction
of complex expressions (a.k.a. symbolic expressions or s-expressions).
(Plus 1 2 3), e.g., represents 1 + 2 + 3 while (list 1 2 3)

represents the list containing 1, 2 and 3. While conceptually, the
first represents code, the second data, the difference is merely their

3498

first element (a.k.a. the head). S-expressions can be evaluated as
code or "held" in their unevaluated form to be manipulated as data.

Interestingly, most users are already familiar with homoiconic
data processing without noticing: virtually all spreadsheet sys-
tems [2, 3, 24, 34] allow storing formulae in cells that are eagerly
evaluated when entered. While the scalability issues of traditional
spreadsheets are well known [5], logically, homoiconic collections
are a scalable extension of relations with spreadsheet-like concepts.

Homoiconic languages such asWolframMathematica, Clojure or
Racket can store and evaluate s-expressions representing a database
like the one in Figure 2. However, their implementation does not
scale: they cannot efficiently process the tuples due to the interpre-
tation overhead to evaluate each expression one by one.

2.2 Decomposed Storage and Bulk Processing

To store and evaluate homoiconic data without the overhead of typ-
ical homoiconic execution, we build on state-of-the-art in-memory
data storage and analytical query processing: the storage model of
choice is the Decomposed Storage Model (DSM) [15], popularized
by MonetDB [7]. Storing tuples’ attributes in columns provides
high bandwidth efficiency through data locality. Combined with
(function-call-free) bulk operators, the model also yields high CPU
efficiency. Building on bulk processing, (X100-style) micro-batching
avoids the cost of materializing intermediate results to main mem-
ory [57] by processing columns as cache-resident micro-partitions.

2.3 Data Imputation in Databases

As this work focuses on data imputation, let us examine existing
data imputation solutions in the context of DBMSs. The most com-
mon approach is to use external data cleansing systems [12, 14,
45, 46]. The user must specify when data cleansing is performed
and manually transfer data between systems, which causes data
movement overhead. The alternative solutions are to implement
data imputation as a database kernel feature [9] including deferred
imputation techniques to optimize query performance [32], or as
User-Define Functions (UDFs), taking advantage of advanced op-
timization strategies [21, 43, 47]. Similar to UDFs, standard SQL
stored procedures can be used for imputation but only on the base
table rather than on the fly during query evaluation. All these in-
DBMS solutions suffer from the execution overhead demonstrated
in Section 1 and do not have the flexibility of dynamic language
runtimes: to mark missing values, these imputation strategies store
labels: either as “reserved” values in the missing attributes’ column
or separate columns. The “reserved-values” approach requires a
mechanism to ensure that the reserved values are excluded from
the domain of valid values and, even worse, does not support the
representation parameters required for many imputation methods.
Examples of such parameters are prompts for generative models,
parameters for source-specific statistical distributions (e.g., device-
specific mean and variance for normal distributions when acquiring
sensor data) or references to other columns. Such parameters can
be stored in separate columns when that strategy is adopted. How-
ever, that requires major schema changes: additional columns, not
only per missing attribute but per imputation strategy applicable
to that attribute. Ideally, data imputation would cover these cases

without changes to the schema and without requiring application
developers to change their code.

2.4 Running Example

To provide an intuition of how query processing, homoiconicity
and data imputation interact, let us revisit the example database
in Figure 2, which will serve as a running example throughout the
paper: inspired by the TPC-H LINEITEM table, it stores orders of
products with their shipping date and price adjustments (discounts
and tax). However, some values in the DISCOUNT column are missing.
The user has marked these for imputation by entering a (Mean)

expression (the mean of the known values). In addition, the last two
tuples’ SHIPDATE have not been finalized yet, and to reflect it, the
database stores these values as missing: they are substituted by the
symbol 'OnHold. In addition, because of new legislation that year,
the tax rate changes based on the shipping date. To indicate this,
the database stores the TAX values as expressions dependent on the
missing SHIPDATE values: that is expressed as (If (> 'SHIPDATE

"96-06-01") $x $y). They are imputed at query time when the
SHIPDATE value is known. If the symbol is not known at query time,
the expression stays unevaluated as described in Section 3.5.

As shown in these examples, imputation expressions can be
composed of operators and arguments which define the precise
tree of operations to be executed by the kernel to calculate the
missing values. When it is desired to change the imputation logic
after tuples have been inserted, a declarative form is used, such
as the expression (Mean), which executes a custom operator or a
function specified only at query time. The exact semantics for the
expressions will be clarified later in the paper.

3 HOMOICONIC COLLECTIONS

As illustrated in Section 1, the complexity of modern data science
pipelines calls for the flexibility of homoiconic runtimes. However,
state-of-the-art homoiconic programming approaches have such an
interpretation overhead that they scale too poorly for big data pro-
cessing. To strike a balance between the flexibility of homoiconic
programming and the performance of bulk in-memory processing,
we propose a novel paradigm called Homoiconic Collection Process-

ing (HCP) and define three objectives that drive its design:
• Expressivity enables a data scientist to store all aspects of their

workflow (data and code) in a representation that supports the
needs of their complex pipelines. The example in Figure 2 illus-
trates the need to store data representing unknown values as well
as data representing any processes to be executed when a tuple
is processed. Unknown values include values that will be known
later (e.g., 'OnHold evaluating to a shipping date only when, in
the future, the user substitutes ’OnHold with the known date)
and values that, by nature, are known only at query time (e.g., (>
'SHIPDATE "96-06-01") which operates on the tuple attribute
SHIPDATE). Processes include lazy-loaded or lazy-generated data
(e.g., (GenID)) and the imputation of missing data (e.g., (Mean)).

• Extensibility allows users to define the “semantics” of expres-
sions by implementing new operators. In Figure 2, the expression
(Mean) is a declarative form representing a specific imputation
method to apply to missing data: the user must be able to imple-
ment such an operator as a kernel extension easily.

3499

(Group (Select 'LINEITEM (Where (> 'TAX .07))) 'Count)

Figure 3: A Relational Query as Homoiconic Expression

HRExpr E ::= A | S | C

Atoms A ::= �>>; | �=C | �;>0C | (CA8=6

Symbols S ::= 〈BCA 〉, BCA ∈ (CA8=6

ComplexHRExpr C ::= 〈ℎ403, 0A61, ..., 0A6= 〉, ℎ403 ∈ S; ∀8, 0A68 ∈ E

Figure 4: Formal Representation of an H-R Expression

• Performance allows users to scale data science pipelines to large
datasets. It also enables interactive data exploration, which is
crucial to modern data science. Consequently, performance must
not be sacrificed for homoiconicity: a homoiconic DBMS must be
carefully engineered to ensure efficient runtime in the presence of
homoiconic expressions. As overhead for expression evaluation
cannot be avoided entirely, we define our performance objective
as Pay-As-You-Go (PAYG): the system shall process conventional
data as fast as modern in-memory DBMSs and suffer (minimal)
overhead only proportional to the number of stored expressions.

Let us, in the following, break down these objectives into technical
challenges and propose ideas to address each of them.

3.1 Head-Restricted Expressions

The first challenge is the complexity of expression representa-

tion. The Expressivity objective can naïvely be achieved by repre-
senting complex expressions as trees with atoms as leaves. However,
representing a fully generic expression tree like that is memory-
inefficient and incurs significant interpretation overhead. To satisfy
the Performance objective, the expression must be represented as a
concise in-memory data structure that can be efficiently processed.

To that end, we propose an expression model slightly more re-
stricted than classic “LISP-style” expressions. Specifically, LISP ex-
pressions allow (nested) expressions not only as arguments but also
as heads of expressions. This is used, e.g., to represent functional
constructs like lambdas. For the kind of systems we aim to imple-
ment, this use is rare: the primary use of the expressions in data
science systems is to execute operators from a pre-defined set of
kernel operators, e.g., evaluate imputed expressions like (Mean) or
relational operators, such as Select and Group (Figure 3 shows a
typical select and aggregate query encoded in s-expression syntax).

To exploit this focus on data science, we restrict the expressivity
of complex expressions in a concept called Head-Restricted Expres-

sions (H-R expressions). The formal definition of H-R expression
is given in Figure 4: like classic expressions, H-R expressions are
either atoms, symbols or complex H-R expressions. While the argu-
ments of the complex H-R expressions can be any H-R expressions,
the critical restriction pertains to the head: Complex H-R expressions

allow only Symbols as the head. This restriction enables the efficient
storage and evaluation of expressions without impacting expres-
sivity: while it prevents lambdas as expression heads, functional
constructs are still possible by implementing an Apply operator,
which dynamically replaces the head of an expression.

3.2 Homoiconic Collection Representation

The second performance challenge is the overhead of evaluat-

ing a collection of homoiconic data. Logically representing
homoiconic relations as in Figure 2 (i.e., as expressions of the form
(Table (Tuple ...))) is convenient and extensible. Naïvely repre-
senting these as in-memory trees, however, is unsuited as physical
representation as the unpredictable and fragmented structure adds
substantial interpretation overhead (i.e., violates the Performance

objective). However, virtually all data science applications process
data in collections. As we focus on relational data, these collections
are homoiconic relations, i.e., relations of “homoiconic tuples” (tu-
ples of H-R expressions)2. To exploit this specialization, we define
a data model that imposes a common structure onto a collection
of H-R expressions. We call this data model Homoiconic Collec-

tions. The key idea behind homoiconic collections is to represent
tuples as arrays of H-R expressions. In practice, it is sensible to
expect that many tuples in a collection will have the same or similar
structure. We demonstrate in Section 4 how this insight enables
PAYG homoiconicity while providing the flexibility to handle the
cases illustrated in Section 2.3. It even enables the specialization
to specific data models: in relational data, e.g., the storage of the
Table- and Tuple- heads is elided, and only the arguments of Tuple
expressions are stored (in plain arrays).

3.3 Custom Operators and Data Types

The third challenge is the complexity to extend the kernel with

new operators as required by the Extensibility objective: the de-
sign must be flexible enough to implement new operators used in
expressions (e.g., imputation operators) and extend the type system
with new data types needed for these operators (e.g., to integrate
external data structures like tensors or pre-trained models).

To provide extensibility of the operator set, we define an operator
using a generic interface: the HCP-Operator. It is a function that
takes H-R expressions as arguments and returns an H-R expression.
However, HCP-Operators can restrict the set of acceptable types for
each argument to atom types, symbols or complex H-R expressions.
For example, the implementation of the operator Plus defines,
as the set of acceptable argument types, any pair of numerical
atoms. At runtime, an expression is evaluated opportunistically: the
expression (Plus 1 2), e.g., matches the signature and is evaluated
while the expression (Plus "a" 1) remains unevaluated.

3.4 Dynamic Typing

The fourth challenge is the uncertainty of the type resulting

from evaluating an expression. Only after an expression is eval-
uated is the result type determined. This leads to a challenge for
the HCP model: not only can attribute types vary within a column
but the types are only known at query evaluation time. Even in
the simplest case where a column type is fixed at the kernel level,
columns can hold values of two types: an atom or an expression
that yields an atom of the fixed type. For example, 5 is not the same
type as (+ 3 2) even though they yield the same value. The dis-
tinction is important for type-checking when storing homoiconic
and atomic values within the same column, as in the example in Fig-
ure 2. The processing model must be designed with a mechanism

2Note that the principle is just as applicable to graphs or key-value pairs

3500

to dispatch (efficiently) homoiconic and atomic values to operator
implementation at runtime. As a consequence, the kernel does not
require static-type information for the processing. However, we
also assume that all imputation methods are well-behaved, which
allows us to avoid performing static type checking. In practice, it
would be possible to use an imputation method that misbehaves,
i.e., not returning the expected type. This problem is outside the
scope of this paper. However, it would be possible to implement
an operator to perform a static-type check at the beginning of the
query evaluation (we will keep this for future work). Finally, op-
erators that take unevaluated expressions as arguments, e.g., an
operator that orchestrates data imputation, must handle dynamic
type dispatch within their implementation.

3.5 Partial Evaluation

The fifth challenge is the processing of unevaluated expressions

and symbols. Symbols and expressions can remain unevaluated
at runtime, e.g., when an operator is not implemented or when a
symbol (such as 'OnHold) has no defined value yet. However, this
should not prevent the query evaluation altogether.

Instead, a system implementing the HCP model must support
partial-evaluation: expressions shall be evaluated best-effort, recur-
sively and depth-first. If one of the arguments of an expression
cannot be evaluated (e.g., due to an undefined symbol), the other
arguments are still evaluated (if possible). The evaluated expression
is, in that case, constructed from the head of its unevaluated form
and the (evaluated or unevaluated) arguments.

3.6 Homoiconic Operator Semantics

The partially evaluating nature of HCP operators complicates
their semantics. Specifically, homoiconic expression processing de-
serves in-detail attention. Conceptually, we distinguish three cases:

The first case is when expressions exclusively contain symbols
and subexpressions that have a definition (e.g., constants, symbols
identifying relations or query parameters). In this case, the result
of expressions is defined as in relational algebra: operators are
stateless functions on the domain of "ordered multisets". While this
allows the implementation of all relational operators, we currently
restrict our work to Select, Project (including arithmetic), Group,
Sort, TopN and Inner Join operators.

The second case is an operator that is "unassuming", i.e., it con-
tains symbols that do not have a definition. In our implementation,
all relational operators are unassuming. Such an operator evaluates
its input into an equivalent query in a best-effort manner. If some
subexpressions of the input are undefined, the operator yields a
result that evaluates all fully defined subexpressions while leaving
those with undefined subexpressions unevaluated. The result of the
selection in Figure 3 on the table defined in Figure 2, e.g., would be
a union of a table containing tuples 1 & 2 (which pass the predicate)
and an unevaluated select on the table containing the tuples 4 & 5.
Tuple 3 was eliminated as it fails the predicate.

The third case is an operator that is "assuming", i.e., it provides
an "interpretation" of its input by substituting symbols or subex-
pressions for values based on "assumptions". An assuming operator
interpreting the table in Figure 2 could, e.g., substitute 'OnHold

and (GenID) for specific values. In the context of this paper, all

imputation operators are "assuming" but stateless. Upon evaluation,
they implicitly receive the table they operate on and an identifier
for the value they must produce (row and column) as input.

4 HCP STORAGE & PROCESSING MODELS

Established relational storage and processing models are insuffi-
cient to implement the HCP model efficiently. Expressions can be
stored in most data processing systems only as binary objects. Ma-
nipulating arrays of binary objects leads to the same interpretation
overhead that homoiconic languages face. To efficiently store and
evaluate arrays of H-R expressions, we propose a novel paradigm
we call Shape-Wise Microbatching (SWM). SWM provides highly ef-
ficient PAYG homoiconic data management through careful storage
& processing model co-design. We will cover them in this order.

4.1 Storage

The primary consideration when designing a storage model for
HCP is to enable efficient processing. Prior work [38] has shown
that N-ary storage is at odds with CPU-efficient bulk processing
in relational DBMSs. This insight also applies to homoiconic ex-
pression data: the storage model for expressions must be carefully
designed to support a CPU-efficient processing model.

In classic relational DBMSs, the Decomposed Storage Model
(DSM) [15] has been shown to be appropriate to support bulk- or
X100-style-processing engines [57]. However, no equivalent stan-
dard models store (potentially nested) expressions contiguously in
memory in decomposed format. While document databases sup-
port trees, they are optimized to retrieve efficiently subtrees, not
for expression evaluation. To efficiently support the storage and
evaluation of homoiconic collections, we developed a novel stor-
age scheme: Shape-wise Partitioning & Decomposition (SWPD). Il-
lustrated in Figure 5, SWPD comprises two conceptual steps we
present here individually after defining the concept of a shape.

4.1.1 Shape of an Expression. We define the shape of an expression

as the n-tuple of the expressions’ head and (recursively) the shape
of each expression argument if the expression is complex, i.e., not
an atom. If it is an atom, the shape is simply the type of the atom.
The shape of (Plus 5 1.5) is, e.g., 〈%;DB, �=C, �;>0C〉 and the
nested expression (If (> 'SHIPDATE "96-06-01") .04 .06) is
〈� 5 , 〈�A40C4A, (~<1>;, (CA8=6〉 , �;>0C, �;>0C〉.

4.1.2 Shape-wise Partitioning (illustrated in the le� half of Fig. 5).

Multiple expressions of the same shape can be stored in a contigu-
ous memory region without per-expression structural information.
This insight is the key to amortizing the overhead of evaluating ex-
pressions. However, as data can contain arbitrary expressions in the
tuple attributes, the optimal construction of shape-homogeneous
expressions requires (horizontally) partitioning collections of tuples
such that all tuple attributes in a partition have the same shape. We
call this process Shape-Wise Partitioning.

After applying SWP, the interpretation overhead is bounded
upwards by the number of expressions in the database. It, therefore,
satisfies our objective of PAYG homoiconicity. While the number of
partitions grows, in the worst case, exponentially with the number
of expression shapes, we follow established precedent [9, 56] by ex-
pecting the number of shapes/partitions to be significantly smaller
than the number of expressions, i.e., 3 to 4 imputation strategies. Let

3501

Figure 5: Shape-wise Partitioning & Decomposition Allows Efficient Storage of Homoiconic Expressions

us illustrate this rationale with an example: a table with ten columns,
each of which contains four different expression shapes which indi-
cate missing data, optionally encoding a mitigating strategy (such
as 'NULL, (Mean), (HotDeck) and (RegressionTree)3). The num-
ber of partitions in this example is bounded by 410, i.e., roughly 1
million. While this sounds high, most micro-batching query proces-
sors handle tens of millions of partitions in a single query without
causing that substantial overhead. With similar calculation on the
datasets found in previous work [9], the number of partitions is
134,664 on average, with a worst-case of 671,153 partitions.

4.1.3 Shape-wise Decomposition (illustrated in the right of Fig. 5).

After partitioning data into shape-homogeneous partitions, the
second step of SWD is their decomposition into columns: expres-
sions are decomposed recursively up to their leaves (i.e., atoms).
These atoms are stored in plain arrays of homogeneous data types.
In Figure 5, two of the DISCOUNT values (.09 and .10) are stored in a
〈�;>0C〉 column. The (If (Greater ...)) expressions in the TAX

column are decomposed further to create 〈(~<1>;〉 and 〈(CA8=6〉

columns holding the Greater operands and two 〈�;>0C〉 columns
holding the If operands. In order to avoid redundant information,
expression heads are stored as per-partition metadata.

With this model, atoms are stored in a decomposed format for
maximum CPU-efficiency. Let us now discuss the processing.

4.2 Processing

To minimize function call overhead while reducing materialization
costs, we implement a processing model using cache-sized micro-
partitions based on the MonetDB/X100 model [57]. We call this
processing model Shape-wise Microbatching (SWM). Unlike typical
relational processing models, the expressions embedded in data
require evaluation. In this section, we discuss the design and eval-
uation of operators, allowing consistent and efficient handling of
queries and embedded expressions.

4.2.1 Operator Design. The Operator API we propose for SWM is
primarily designed to handle data-intensive queries, such as the ex-
pression in Figure 3. The design must allow implementing relational
operators (i.e., SELECT, PROJECT, JOIN, GROUP BY, ORDER BY), functional
expressions used for aggregates, grouping/sorting functions, projec-
tors and predicates, such as (Where (> 'TAX .07)) including the
operators to calculate comparisons and arithmetic, and any other
non-relational operator, such as the operator (Mean). To reduce

3strategies proposed in ImputeDB [9]

class Operator {

// Implemented by each operator

void consume(HRExpression arg0, ..., HRExpression argN);

void close();

// Common to all operators

void pushUp(HRExpression output) final;

};

Figure 6: Operator API

the overhead of evaluating these functional expressions, we design
operators to accept not just expressions but also arrays of expres-
sions inspired by operator design in vectorized engines. This means
that when evaluating an expression such as (> 'TAX .07), 'TAX is
evaluated to an array and the greater operator > is bulk-evaluated.

Traditionally, vectorized engines implement operators using a
Volcano-style, i.e., pull-based interface. This interface is appropri-
ate for statically typed data since every operator’s implementation
remains the same throughout the runtime of a query. In a dynami-
cally typed engine like ours, however, the type of incoming data
may change while an operator is executed, which requires a cor-
responding change of the operator. While Volcano-style operators
can change their implementation dynamically, this requires a sub-
stantial amount of boilerplate code for dynamic type interpreta-
tion/dispatching, making the system harder to extend. To eliminate
the need for dynamic-type-dispatching boilerplate code inside each
operator, we propose to perform type dispatching outside the oper-
ators: the execution engine interprets dynamic types and invokes
type-specific instances of operators. This requires a push-driven
operator interface like the one illustrated in Figure 6.

Other than the push-driven interface, SWM operators follow the
Volcano model: a type-specific consume() is called for each input
batch and the constructed result is returned to the next operator.

4.2.2 Evaluation of Embedded Homoiconic Data. During query
evaluation, the expressions embedded in data are not implicitly eval-
uated: a missing attribute value such as (Mean), e.g., would only be
evaluated by placing a designated Evaluate operator in the query
plan. While explicitly placing such operators may seem cumber-
some, the flexibility to push Evaluate up or down the query plans
provides optimization opportunities [9] as detailed in Section 5.2.4.

In many cases, e.g., projections or selections, these arrays of
expressions are only passed along the relational operators without
evaluation if, e.g., a predicate does not require the stored expres-
sions’ values. We will see how this design enables the effective
processing of homoiconic data in Section 5.2.

3502

When an array of expressions is evaluated, there is no assump-
tion regarding the output type. The operator API defines a generic
expression type for the output, and each operator’s implementa-
tion may return any atomic or complex expression type. Conse-
quently, when evaluating an array of expressions, the output is
not necessarily a type-homogeneous array. SWM naturally handles
this case by dynamically dispatching each input partition to the
correct, statically typed operator (which may, in turn, produce a
non-homogenous, shape-wise-partitioned output). Implementing
operators as type-generic (C++) templates requires no additional
implementation effort to handle different atomic types. It does,
however, require operators to implement logic to support complex
(i.e., partially evaluated) expressions. To handle the output of which
parts are evaluated while parts are not, the approach used in other
homoiconic languages is to output a union of two partitions: one
containing evaluated and one unevaluated expression. We currently
do not support this case but plan to do so in the future.

4.2.3 Symbol Substitution. As the reader may recall, the example
in Figure 2 contained the symbol 'OnHold. The symbol may be
used to control the behaviour of an operator or defined to hold a
value independent of any operator (query-wide or even system-
wide). To resolve symbols to values, we implement two distinct
operators: the symbolic substitution operator resolves symbol names
to expressions using a global hashmap. The symbolic evaluation

operator traverses an expression and probes the hashmap to find a
value for each symbol found in the expression. If the symbol is not
found in the hashmap, the symbol itself is returned unevaluated.

5 BOSS - AN IMPLEMENTATION OF HCP

We implement HCP in a system we call BOSS, short for Bulk-
Oriented Symbol-Store. BOSS is a DBMS based on the SWM storage
and processing models. In this section, we present the implementa-
tion principles of BOSS’ storage and processing layers.

5.1 Implementing the Storage Layer

Implementing the HCP storage model for a DBMS engine such as
BOSS requires two extra features compared to conventional DBMS
storage layers: one to store homoiconic data and one to recover the
tuple order after applying SWPD.

5.1.1 Storage Backend. When expressions are stored under the
SWPD scheme, the expressions’ structure must be preserved. To
limit the implementation effort, we have implemented it on top of
an existing storage backend by integrating Apache Arrow [4]. We
extended Apache Arrow’s storage layouts with a metadata layer to
support homoiconic data. The expressions’ arguments are stored
as a list of argument arrays and nested expressions (after SWD is
applied) as nested arrays. The expression’s head is stored as string
metadata rather than in a column to avoid redundant information.

5.1.2 Preserving Order. Unlikemost RDBMS implementations, which
require an ordered relation only for operators such as TOP, OVER
(window aggregations) and ORDER BY, BOSS must support the im-
putation & querying of missing data, which requires an ordered
relation for some imputation techniques [31]. This order is usually
defined by an attribute, e.g., a timestamp. Unfortunately, the SWP
model is inherently unable to guarantee order preservation: the

Figure 7: Benchmarking Row Order-Preservation Indexes

partitioning scheme is designed to re-order the tuples according
to the shape of the expressions. To address this problem, we im-
plement an order-preservation indexing mechanism to record the
tuple order regardless of the number of shape-wise partitions. To
determine the most efficient method to iterate over the ordered
shape-wise partitions, we evaluated two approaches: (i) a global
index; (ii) multiple partitioned indexes.

In the global index approach, a single index stores a reference
to each tuple’s partition and its offset from the beginning of that
partition. Tuples are retrieved by performing a lookup in the global
index followed by a lookup in the respective partition. The second
approach requires one index per partition, explicitly storing every
tuple’s position in the global order. Both approaches are amenable
to Run-Length-Encoding (RLE).

To assess the performance of each indexing method, we conduct
a performance analysis with an experiment where we unwrap four
million 32-bit integer values, wrapped in four different expression
shapes, and sum them up. We implemented both approaches with
and without additional optimizations: (1) GlobalIndex without RLE;
(2) CompressedGlobalIndex using RLE; (3) PartitionIndex without
optimization; (4) PartitionIndexUnrolled (optimized by assuming
that the next tuple is located in the same partition as the current);
and (5) PartitionIndexUnrolled using RLE. This method simulates
data in which some values are homoiconic while most are not (a
higher skew value indicates fewer expression values).

As shown in Figure 7, the GlobalIndex outperforms the PartialIn-
dexes variations by at least 8×. RLE-compressionIndex yields at
least 3× lower memory footprint (depending on the data distri-
bution between the partitions), but the runtime is 2× worse. In
addition to the results in Figure 7, we studied a wide range of con-
figurations (e.g., more partitions and wider types) and found similar
results. We found that merging partitions into a global order in
the PartialIndexes approach incurred many stall cycles due to the
microarchitectural complexity of the code (specifically, branch mis-
predictions). The GlobalIndex, while requiring more bandwidth,
allows merging tuples using a simple gather (i.e., a native CPU
instruction). Considering the superior performance of the GlobalIn-
dex approach, we use this approach in the system implementation.
Due to the memory footprint 4 and the execution cost 5 of initializ-
ing one index per row, only the cases listed above require ordering.
This is implemented in BOSS as an opt-in: the user explicitly turns
the option on before executing a query.

5.2 Implementing the Processing Layer

The HCP processing model requires a trade-off between the effi-
ciency of a typical DBMS and the flexibility and expressivity to

4the cost of adding three int32 attributes: global index, partition index, local index
55x to 50x on typical analytic queries (i.e., TPC-H SF1)

3503

template <typename Func> class BinaryOp : public Operator {

template <typename T1, typename T2>

void consume(T1 lhs, T2 rhs) {pushUp(Func(lhs, rhs));}

};

Register("Plus", BinaryOp<plus>());

Figure 8: Example Implementation of Binary Operators

support the evaluation of homoiconic data. Let us first discuss how
the operator API is designed to allow straightforward support for
new operators before we describe how homoiconic data is efficiently
evaluated during query evaluation.

5.2.1 Operator Implementation and Execution. To allow easy ex-
tension with new operators, BOSS builds on statically compiled
operators that are implemented using (compile-time-instantiated)
C++ templates. When the system starts, pointers to these (type-
specific) functions are inserted into anOperator Registry: a hashtable
whose keys are the shape of the operators’ expressions. This allows
efficient dispatching of statically typed inputs to operators with-
out the need for advanced techniques such as JIT-compilation. For
example, the code in Figure 8 is compiled for each of the sixteen
combinations of argument types (e.g., single integer, floating-point
value or arrays of those). These statically-compiled implementa-
tions are inserted into the hashtable at runtime during the engine’s
initialization. During the evaluation of the expression (Plus 1 2),
BOSS calculates the hash for the shape 〈%;DB, �=C, �=C〉, probes the
operator registry, retrieves the matching operator implementation
and calls consume with the two integer elements as arguments.

5.2.2 Relational Operators. Other than being type-generic, BOSS’s
operators are in line with state-of-the-art vectorized engines: a Se-
lect operator that generates a bitset; a Project operator that evaluates
s-expressions over tuples; a Sort By operator that sorts and merges
partitions; hash-based Group By and hash-based Join operators.

5.2.3 �ery Evaluation. Unlike persistent expressions, query ex-
pressions are not decomposed using SWPD: they are single expres-
sions (i.e., not part of a homoiconic collection) and are depth-first
processed through the evaluation pipeline. By convention, the first
argument of operators constitutes their input and is eagerly eval-
uated: table symbols are substituted with the matching partitions
and sub-expressions are recursively evaluated. The other argu-
ments (e.g., the predicate of a selection) are passed unevaluated
to the operator. To illustrate, consider the evaluation of the query
in Figure 3. First, the Group operator is evaluated. Its arguments
are a Select sub-expression and a 'Count symbol. Starting with
the first argument, BOSS recurses into the Select. The Select

operator’s arguments are a 'LINEITEM table symbol and a Where
sub-expression (the predicate). Because no Select operator takes
a symbol as the first argument, the first argument is evaluated:
the symbol is searched in the table registry and substituted with
the matching partitions. The second argument, however, is passed
unevaluated to the Select operator since an implementation tak-
ing such arguments exists: the operator is called for each input
partition and iteratively passes the result (a partition) as the first
argument to the Group operator. Similarly, BOSS finds a Group

operator that takes a partition as first argument and an uneval-
uated 'Count as second argument, calls the implementation for

(Group (Table (Schema 'KEY 'SHIPDATE 'DISCOUNT 'TAX)

(Tuple 1 "96-03-13" (Mean) .10)

(Tuple 2 "96-04-12" .04 .08)) 'Count)

Figure 9: Partially-Evaluated Expression as a Query’s Result

Figure 10: Data Flow of the Evaluate Operator

evaluation and returns the output partitions. If a Group with the
matching argument types was still not found in the registry, BOSS
would have returned instead a partially evaluated expression as
the query’s output, shown in Figure 9. This case illustrates one
of the advantages of homoiconicity: even the query’s result can
contain unevaluated expressions that could, e.g., encode instruc-
tions for visualization or even signal different kinds of errors to
the user. Most homoiconic languages (e.g., Mathematica, Racket or
Julia) signal errors by returning the unevaluated input expression
wrapped in an error expression. In future work, the usefulness of
that technique in signalling erroneous queries could be studied.

5.2.4 Evaluate Operator. Thanks to SWPD, all operators discussed
so far are evaluatedwith insignificant overhead because expressions
are evaluated without referencing other tuples. We call this type
of evaluation Independent Evaluation. However, many scenarios,
including advanced imputation methods such as (Mean), data from
other tuples: these must be buffered before being used (the mean,
e.g., requires buffering all known values in the column). We call
this evaluation Dependent Evaluation, and we implement it using a
dedicated Evaluate operator.

Figure 10 illustrates how “independent” expressions like (GenID)
and “dependent” expressions like (Mean) are evaluated in Evaluate:
during the first phase, called Eval-Status Dispatch, input partitions
are dispatched depending on their evaluation status (evaluated,
dependent or independent). Evaluated partitions, i.e., the green
ones containing no expressions, are directly pushed to the output
(and buffered as input for the next phase). The partition contain-
ing (Mean), in red, and the one containing (GenID), in blue, are
passed to Independent Evaluation. During this phase, the operator at-
tempts to evaluate expressions without cross-tuple information: an
expression such as (GenID) is returned evaluated (effectively gener-
ating unique integers for all values in the column) whereas (Mean),
which expects arguments for its evaluation, stays unevaluated. In-
dependent partitions, such as the blue one containing (GenID), once
evaluated, are pushed to the output and buffered. Dependent parti-
tions, i.e., containing at least one dependent expression, such as the

3504

(Group (Select (Evaluate 'LINEITEM)

(Where (> 'TAX .07))) 'Count)

Figure 11: Example of the Evaluate Operator Placement.

red one containing (Mean), stay unevaluated in this phase as they
lack their arguments. In the last step, the remaining unevaluated
partitions are passed forDependent Evaluation. This phase evaluates
and emits the expressions in all remaining partitions.

To specify at which specific step of the pipeline the partitions are
evaluated, the Evaluate operator is explicitly placed in the query
expression as shown in Figure 11. To decide where to place it, a
simple heuristics is applied: the Evaluate operator is initially just
next to the table scan and pushed up the pipeline as far as there is no
downstream selection predicate, projected expression, aggregations,
grouping, join or sort on columns that contain missing values.

This approach to implementing Evaluate allows the efficient
evaluation of dependent expressions, which will be used to imple-
ment advanced data imputation operators as detailed next.

5.3 Pay-As-You-Go Imputation in BOSS

Imputation is a natural fit for the "Homoiconic Collection Process-
ing" model. Where conventional imputation systems require the
extension of the systemwith new imputationmethods (from scratch
and usually at column-granularity), HCP allows users to express
such methods at value-granularity, when they enter the data. The
system manages the efficient evaluation of the imputation code.

In Figure 2, e.g., the missing values in the TAX column are substi-
tuted by the expression (If (> 'SHIPDATE "96-06-01") $x $y).
Since the values for $x and $y are stored in dedicated partitions
and bulk-evaluated, their evaluation incurs no measurable runtime
overhead. In addition, users can store compositions of imputation
methods by nesting operators. By composing existing imputation
operators, a user effectively defines a new imputation method with-
out requiring any extension of the system or evaluation overhead.

To showcase the expressiveness of the HCPmodel, we implement
four established approaches to data imputation in BOSS.

Approximate Mean [9]. This replaces missing values by the mean
of the column’s known values. The mean value is computed and
memoized by the Evaluate operator and has a near-constant cost.

Hot Deck [9]. This replaces the missing values of a column with
random known values from the same column. Where existing im-
plementations [9] require multiple accesses to find a known value,
SWD allows to select one in a single access.

Gradient Boosted Trees [11, 28, 41]. As a representative of a learned
imputation strategy, this is implementedwith a tree ensemblemodel
for regression. This algorithm creates new submodels (i.e., learners)
from constituent models’ residuals/errors and combines their pre-
diction to improve accuracy and reduce variance. In BOSS, we use
the tree-based models provided by XGBoost [11] and accelerate the
training runtime with an approximate greedy algorithm using his-
tograms. SWD allows BOSS to access evaluated partitions without
additional overhead. The trained model is memoized and reused
for subsequent calls to the operator.

Interpolation. This replaces missing values by linearly interpolating
the previous and the next known values. These values are retrieved
using the GlobalIndex described in Section 5.1.2. SWD enables
highly efficient interpolation using batch-wise evaluation.

6 EVALUATION

BOSS supports novel features compared to typical DBMSs: ho-
moiconic storage and evaluation, dynamic typing (due to handling
homoiconicity) and imputation operators. In this section, we evalu-
ate BOSS’s execution performance when using or not these features.

We start in the evaluation by comparing BOSS with state-of-the-
art DBMSs for analytics of non-homoiconic data (6.2) and Wolfram
Mathematica and Racket as symbolic data science systems (6.3).
Then, we demonstrate the efficiency of BOSS for various imputa-
tion methods compared to state-of-the-art approaches (6.4). Finally,
we perform micro-benchmarks to investigate how the number of
partitions affects the performance (6.5), evaluate its pay-as-you-go
properties, i.e., the impact of the number of missing values (6.6)
and the benefits of the optimizations we implemented (6.7).

6.1 Experimental Setup

Systems. To assess the runtime performance, we compare BOSS to
MonetDB v11.31 [57]; DuckDB v0.5.1 [42]; a commercial RDBMS
engine configured as an in-memory column-store; ImputeDB [9];
Mimir Lenses [56]; Wolfram Mathematica v12.3.1 [54] and Racket
v6.11 [20]. For the last two, we implemented custom compilers from
SQL queries using a data-centric approach in line with the state of
the art [36]. Since multi-threaded execution is orthogonal to this
research and not yet implemented in BOSS, we configure DuckDB,
MonetDB and the commercial engine to run either single-threaded
(ST) or multi-threaded (MT) and provide both cases in the results.
To compare BOSS and ImputeDB with the exact same imputation
operators and configuration, we set ImputeDB’s query plan trade-
off parameter U to 0 to prioritize quality over performance, ensuring
that ImputeDB heuristics do not drop missing values, and, instead
consistently executes the imputation as BOSS does.

Workloads. We use the TPC-H benchmark [16] with the scale factor
(SF) ranging from 0.001 to 100 (i.e., 1 MB to 100 GB).We followed the
established practice [30] to select the five queries that capture com-
plex SQL operations and cover the benchmark’s choke points [8]:
Q1 for arithmetic and aggregation, Q6 for selective filters, Q3 andQ9
for join processing and Q18 for high-cardinality aggregation (the re-
maining 17 queries behave similarly with Q3, Q9 or Q18). To bench-
mark imputation in Section 6.4, we use datasets from CDC [10],
FCC [22] and ACS [9]. Following previous work [9], we pre-process
the datasets with missing values in most columns, ranging from 0 to
97.89% depending on the attributes, and evaluate the same queries.

Hardware. All experiments are performed on a server with two
Intel Xeon Silver 4114 2.20 GHz CPUs, each with 10 physical cores,
a 14 MB LLC cache, and 196 GB of memory. We use Ubuntu 18.04
with Linux kernel 4.15.0-167 and compile all code with Clang 11
using the compiler flags -03 -mavx2.

�ery Plans. BOSS has no query optimizer yet. To factor out the
effects of query optimization, we apply the same plans in DuckDB,

3505

Figure 12: Runtime for TPC-H without Imputation (SF: scale factor)

BOSS and MonetDB (to the extent possible). Since only DuckDB
implements join-order-optimization, we use these plans. While this
does not assess the best possible performance of each system, it
allows us to compare processing performance with other factors
equal. For MonetDB, we also run the experiments and report the
results for the authors’ provided join orders [35] for reference.

6.2 Core DBMS Performance

This experiment assesses the processing overhead compared to
state-of-the-art DBMS implementations for introducing homoiconic
collections into the system. There are two potential causes of
overhead: first, the support for dynamically typed tuples requires
column-type dispatch logic per partition in the relational opera-
tors’ implementation; second, the cost of evaluating the expression
per partition. We compare the performance of BOSS with Mon-
etDB and DuckDB, two highly-tuned in-memory DBMSs, not in an
attempt to outperform them but as references to measure the over-
head in BOSS. We evaluate the selected TPC-H queries discussed
in Section 6.1, without missing values.

The results in Figure 12 show that BOSS has competitive perfor-
mance, placed overall just between single-threaded MonetDB and
DuckDB. BOSS outperforms MonetDB and DuckDB for the queries
Q3 (with SF 100) and Q6 (except SF 100), but is outperformed by
DuckDB for Q1 and Q18, MonetDB for Q6 SF 100 and by Mon-
etDB and DuckDB for Q9. However, BOSS is never more than 2x
slower than the other systems. This slowdown can be explained by
BOSS not yet implementing some of the optimizations of the other
systems (e.g. vectorized aggregation, vectorized hashing and, in gen-
eral, cache-conscious hash implementation for joins and grouping
aggregations). We, therefore, conclude that the proposed approach
in BOSS causes no significant overhead that implementation efforts,
in line with other DBMSs, could not reduce.

To study the reasons behind the different performance of the
systems, we measure the execution time per operator for the five
TPC-H queries with SF 10. For BOSS, we instrumented the code
and profiled the execution with Intel VTune v2023 [26] to isolate
the function calls and measure each operator execution relative
to the total query execution time. For MonetDB and DuckDB, we
prefixed the query with TRACE and EXPLAIN ANALYZE, respectively.

Figure 13 show that, in general, BOSS spends more time (rela-
tively) on grouping than other systems (except MonetDB on Q18,

Figure 13: Breakdown of the Relative Runtime per Operator

which exploits the existing group hash to reduce significantly the
join execution time). The queries for which BOSS is outperformed
by the baselines are dominated by grouping (Q1) and large joins
(Q9 and Q18). For Q3, which has smaller tables on the build side
of the joins, BOSS spent relatively less time on the join execution:
it is less impacted by the cost of building. Q6 is dominated by the
selection operator for all systems, which explains why BOSS outper-
forms the baselines: the comparison operators are more efficiently
implemented in BOSS due to better use of SIMD instructions.

6.3 Symbolic Data Science System Performance

To assess the performance advantage of BOSS compared with
other homoiconic runtimes, we evaluate BOSS’s execution runtime
against state-of-the-art symbolic execution engines: Wolfram Math-
ematica and Racket. Mathematica combines a specialized symbolic
execution kernel optimized over decades and an extensive library of
data science operators. Racket is a LISP-expression interpreter with
efficient runtime. To allow the competitors to optimize queries, we
load the dataset into their process memory, cross-compile queries
into their respective languages using hyper-style translation [33]
and evaluate them using their respective APIs.

Figure 12 illustrates the performance advantage of BOSS over
Mathematica and Racket for the TPC-H queries. BOSS outperforms
Mathematica by three to five orders of magnitude and Racket by
two to three orders of magnitude for small datasets (a maximum SF
of 0.1 for Mathematica and 1.0 for Racket since the queries for larger
datasets do not finish in time). These results illustrate that, through
Shape-Wise Microbatching, BOSS can effectively enable scalable
symbolic data science in modern data management systems.

3506

(a) Hot-Deck Method

(b) Approximate Mean Method

(c) Regression Tree Method

(d) Interpolation Method

Figure 14: Runtime forQuerieswithMissingData Imputation

6.4 Data Imputation System Performance

To evaluate the efficiency of BOSS for missing value imputation,
we compare its runtime against three systems: ImputeDB, an ex-
perimental system implementing imputation operators in-kernel,
Mimir Lenses [56], implemented on top of Apache Spark and thus
expected to handle analytics workloads reasonably well, and a
classic RDBMS approach, i.e., with the imputation operators imple-
mented as UDFs in a commercial RDBMS engine (one that is known
for good UDF support). In this engine, UDFs implementation is very
similar to stored procedures. The experiment evaluates all queries
for the CDC, FCC and ACS datasets following previous work [9].
To assess scalability, we further evaluate simplified versions of
TPC-H Q1 & Q6: as ImputeDB does not support all operations
in the original TPC-H queries and handles only integer values,
we remove the multi-attribute aggregations and ORDER BY clauses
and transform all values in the LINEITEM table (i.e., strings, floating
points, dates) to integers. To generate TPC-H datasets with vary-
ing missing values, we replace with NULL 10% randomly selected
values from the DISCOUNT column. We evaluate four imputation
methods presented in Section 5.3: Hot-Deck, Approximate Mean,
Regression Tree and Interpolation. Regression Tree is implemented
using XGBoost [11] in BOSS, and other third-party libraries in
ImputeDB [9] and Mimir [56]. Mimir provides only an implemen-
tation for the Regression Tree, whereas we omitted this method
for the UDF approach as this cannot reasonably be implemented

Figure 15: Overhead while Increasing Partition Count

Figure 16: Pay-As-You-Go while Increasing Missing Values

with UDFs, and there is no reason to expect the implementation
to be more efficient than other imputation methods. Nor Mimir
or ImputedDB implements an Interpolation method.

As illustrated in Figure 14, for the first two methods, BOSS out-
performs ImputeDB by one or two order of magnitude on all queries
except for ACS (due to many imputed columns for a small dataset).
BOSS’s performance advantage is due to shape-wise partitioning:
it allows BOSS to access clean data without per-value branching
(e.g., for computing statistics and for the imputation itself). For the
regression trees method, BOSS achieves at least one order of mag-
nitude better performance than Mimir Lenses and several orders of
magnitude compared to ImputeDB due to shape-wise partitioning
(enabling compiler optimization such as the bulk evaluation of pre-
dictions). BOSS outperforms the two UDF implementations by up
to several orders of magnitude: the competitor DBMS fails to opti-
mize the query plan effectively due to the increased complexity of
a query plan containing such a UDF. The missing bars for the UDF
approach, ImputedDB and Mimir Lenses in Figure 14 indicate that
the queries could not be executed in time or without running out
of memory. The two last columns showing the result for TPC-H at
SF 1 demonstrate that only BOSS and the UDF approach can scale to
a dataset larger than SF 0.1. However, using the UDF approach, it is
not straightforward to implement complex imputations such as the
regression tree. Only BOSS achieves both scalability and flexibility.

6.5 Shape-Wise Partitioning Overhead

Since the expression evaluation overhead in BOSS scales with the
number of partitions, we assess if there is a noticeable performance
degradation when increasing the number of partitions. We evalu-
ate a maximum of eight distinct partitions (since each indicates a
different imputation method, this scale is appropriate). We evaluate
the execution time using the total time of running the subset of
five queries from the TPC-H benchmark with SF 1.0. We replace
0% to 90% of randomly selected values from the DISCOUNT column
with one to 64 distinct, randomly selected, no-op expressions (so
the cost of imputation does not bias the evaluation).

In Figure 15, we observe that BOSS exhibits robust performance
independent of the number of partitions and no noticeable overhead
when increasing the number of expressions.

3507

Figure 17: Runtime with Disabled BOSS Optimizations

6.6 Expression Evaluation Overhead

To assess the degree to which BOSS achieves the PAYG objective for
imputation, we replace 0% to 90% of randomly selected values from
the DISCOUNT column from TPC-H at SF 0.1 and impute the values
using each of the four imputation methods. To maximize the impact
of the imputation on overall performance, we perform imputation
on the base table (i.e., before selection). As the execution time of
the rest of the query is, therefore, negligible, we execute only Q1.

The results are shown in Figure 16. For Approximate Mean, the
time spent to compute the known values is constant because only
one calculated value replaces all the missing values. The other three
approaches are more expensive due to random memory access for
Hot-Deck and Interpolation and mainly the cost for inference for
Regression Tree. However, all methods show that the cost increases
gradually with the fraction ofmissing values to evaluate, confirming
the PAYG property of the approach.

6.7 Ablation Study

To assess the performance benefits of the proposed optimizations,
we modified BOSS to disable them selectively: without SWP (i.e., all
column values are expressions if the column hasmissing values) and
without micro-batching (i.e., one unique partition per expression
type). We replace 0% to 90% of randomly selected values from the
DISCOUNT columnwith no-op expressions (randomly selected among
eight unique expressions to simulate using various imputation
strategies) in addition to each of the four imputation operators. We
evaluate the execution time as the total time running the five TPC-H
queries at SF 0.1. Larger SFs do not finish without the optimizations.

The results in Figure 17 show that SWP significantly improves
the performance of BOSS. Without this optimization, the execution
is 400x slower and the PAYG property is no longer verified: the run-
time is constant from 10% to 90% of missing values. Every column
value (including non-missing values) suffers the interpretation cost
of expression evaluation as soon as one missing value is present
in the column. The Micro-batching optimization affects the perfor-
mance but only to a lesser extent: without this optimization, the exe-
cution is 6x to 100x slower due to not ensuring CPU cache efficiency.

7 RELATED WORK

Data Analytics This domain has been extensively researched [19,
30, 38, 39]. Our processing model is based on MonetDB/X100 [57]
but requires significant changes to store and evaluate expressions.
Database Extension Systems Most DBMS engines implement UDFs
to support custom operators. Unfortunately, UDFs come with sig-
nificant execution overhead [44]. JIT-compilation can improve UDF
execution performance [17, 47, 49] within limits. Extending these

to support homoiconic imputation (using custom datatypes to rep-
resent missing values and UDFs to interpret them) is conceivable.
However, as the custom datatypes would not only have to be dy-
namic themselves but also force all other values in the column to be
dynamically typed, such a solution would suffer from interpretation
overhead similar to that of Racket and Mathematica. They could
adopt the proposed SWM model to address that.
Storing and Executing Expressions Oracle DBMS allows storing filter
expressions [23, 55] in the database (for indexing). In probabilis-
tic databases, expressions are stored for confidence and lineage
information [1, 29]. Similar to BOSS, Mimir Lenses [56] allows
storing missing values in views rather than stored in the database.
M-tables [51] introduces a generalized representation system for
missing data but ignores its performance aspects. “Fields of type
procedure” have been proposed for Postgres [50] to embed code
into column data. We could not find an implementation of the con-
cept in Postgres or any other DBMS (the commercial DBMS we use
explicitly prevents the interpretation of code stored in tuples). In
addition to the focus on efficiency, our work generalizes all these.
Document Databases Trees/documents [13] could be used to rep-
resent expressions. However, document databases differ from ho-
moiconic databases in that documents cannot be evaluated. Further,
their storage model is optimized for insert and lookup performance
and is highly inefficient for analytics. A homoiconic database is a
strict generalization of a document store, allowing a more flexible
interpretation of the data for the user.

8 CONCLUSION AND FUTUREWORK

To maintain their usefulness in the face of increasingly varied work-
loads, DBMSs need to overcome the rigidity of their data and pro-
cessing models without abandoning their performance advantages.
To achieve this, we proposed a new logical data model: Homoiconic

Collection Processing (HCP). Implemented in a novel system called
BOSS, HCP provides unprecedented extensibility and competitive
performance through a novel processing model called Shape-Wise

Microbatching (SWM). We demonstrated that SWM delivers the
performance of a modern in-memory DBMS and the extensibility
of a homoiconic programming language. To demonstrate the exten-
sibility, we implemented data imputation that executes at least an
order of magnitude faster than existing imputation-capable DBMSs.

In the future, we see applications for HCP in areas as diverse
as generative AI, data visualization, data integration, distributed
processing, and even distributed consensus. We also envision appli-
cations that require symbolic reasoning, including DBMS-internal
applications like query optimization. In addition, we see opportuni-
ties to leverage the partial evaluation of the queries to simplify and
extend existing DBMS designs. Finally, there are challenges in the
implementation of HCP that do not fit the scope of this paper. Imple-
menting query result memoization could benefit performance but
is out of scope. The same goes for high-performance transactions:
for now, data is bulk-loaded/updated in a "stop-the-world"-manner.

ACKNOWLEDGMENTS

This work was supported by the Engineering and Physical Sciences
Research Council [grant number EP/W001012/1].

3508

REFERENCES
[1] Parag Agrawal, Omar Benjelloun, Anish Das Sarma, Chris Hayworth, Shubha

Nabar, Tomoe Sugihara, and Jennifer Widom. 2006. Trio: A System for Data,
Uncertainty, and Lineage. Proceedings of the VLDB Endowment (2006), 1151–1154.
https://doi.org/10.5555/1182635.1164231

[2] Apache. 2023. Open Office Calc. Retrieved 2024-01-22 from https://www.
openoffice.org/product/calc.html

[3] Apple. 2023. Apple Numbers. Retrieved 2024-01-22 from https://www.apple.
com/numbers/

[4] Apache Arrow. 2023. Retrieved 2023-02-24 from https://arrow.apache.org
[5] Mangesh Bendre, Vipul Venkataraman, Xinyan Zhou, Kevin Chang, and Aditya

Parameswaran. 2018. Towards a Holistic Integration of Spreadsheets with
Databases: A Scalable Storage Engine for Presentational Data Management.
In 2018 IEEE 34th International Conference on Data Engineering (ICDE). IEEE,
113–124.

[6] Jeff Bezanson, Alan Edelman, Stefan Karpinski, and Viral B. Shah. 2015. Julia:
A Fresh Approach to Numerical Computing. arXiv:1411.1607 [cs] Retrieved
2024-05-31T17:23:06Z from http://arxiv.org/abs/1411.1607

[7] Peter Boncz and M. L Kersten. 2002. Monet: A next-Generation DBMS Kernel for
Query-Intensive Applications. Ph.D. Dissertation. Universiteit van Amsterdam.

[8] Peter Boncz, Thomas Neumann, and Orri Erling. 2013. TPC-H Analyzed: Hidden
Messages and Lessons Learned from an Influential Benchmark. In Technology
Conference on Performance Evaluation and Benchmarking. Springer, 61–76.

[9] José Cambronero, John K. Feser, Micah J. Smith, and Samuel Madden. 2017. Query
Optimization for Dynamic Imputation. Proceedings of the VLDB Endowment 10,
11 (Aug. 2017), 1310–1321. https://doi.org/10.14778/3137628.3137641

[10] Center for Disease Control. 2016. National Health and Nutrition Examination
Survey (2013-2014). Retrieved 2023-02-24 from https://wwwn.cdc.gov/nchs/
nhanes/ContinuousNhanes/Default.aspx?BeginYear=2013

[11] Tianqi Chen and Carlos Guestrin. 2016. Xgboost: A Scalable Tree Boosting Sys-
tem. In Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge
Discovery and Data Mining. 785–794.

[12] Xu Chu, John Morcos, Ihab F Ilyas, Mourad Ouzzani, Paolo Papotti, Nan Tang,
and Yin Ye. 2015. Katara: A Data Cleaning System Powered by Knowledge
Bases and Crowdsourcing. In Proceedings of the 2015 ACM SIGMOD International
Conference on Management of Data. 1247–1261.

[13] Chris Clifton, Hector Garcia-Molina, and Robert Hagmann. 1988. The Design
of a Document Database. In Proceedings of the ACM Conference on Document
Processing Systems.

[14] Gao Cong, Wenfei Fan, Floris Geerts, Xibei Jia, and Shuai Ma. 2007. Improving
Data Quality: Consistency and Accuracy. (Proc. VLDB Endow.), Vol. 7. 315–326.

[15] George P. Copeland and Setrag Khoshafian. 1985. A Decomposition Storage
Model. Proceedings of the 1985 ACM SIGMOD international conference on man-
agement of data (1985).

[16] The Transaction Processing Council. 2013. TPC-H Benchmark (Revision 2.16.0).
Retrieved 2023-02-24 from http://www.tpc.org/tpch/

[17] Andrew Crotty, Alex Galakatos, Kayhan Dursun, Tim Kraska, Ugur Cetintemel,
and Stan Zdonik. 2014. Tupleware: RedefiningModern Analytics. arXiv:1406.6667
[cs] (July 2014). arXiv:1406.6667 [cs]

[18] Dong Deng, Raul Castro Fernandez, Ziawasch Abedjan, Sibo Wang, Michael
Stonebraker, Ahmed K Elmagarmid, Ihab F Ilyas, Samuel Madden, Mourad Ouz-
zani, and Nan Tang. 2017. The Data Civilizer System. In CIDR.

[19] Frans Faerber, Alfons Kemper, Per-Åke Larson, Justin Levandoski, Tjomas Neu-
mann, and Andrew Pavlo. 2017. Main Memory Database Systems. Foundations
and Trends® in Databases 8, 1-2 (2017), 1–130. https://doi.org/10.1561/1900000058

[20] Matthias Felleisen, Robert Bruce Findler, Matthew Flatt, Shriram Krishnamurthi,
Eli Barzilay, Jay McCarthy, and Sam Tobin-Hochstadt. 2015. The Racket Man-
ifesto. In 1st Summit on Advances in Programming Languages (SNAPL 2015).
Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik.

[21] Tim Fischer, Denis Hirn, and Torsten Grust. 2022. Snakes on a Plan: Compiling
Python Functions into Plain SQL Queries. In Proceedings of the 2022 International
Conference on Management of Data. ACM, Philadelphia PA USA, 2389–2392.
https://doi.org/10.1145/3514221.3520175

[22] FreeCodeCamp. 2016. New Coder Survey. Retrieved 2023-02-24 from
https://www.kaggle.com/freecodecamp/2016-new-coder-survey-

[23] D. Gawlick, D. Lenkov, A. Yalamanchi, and L. Chernobrod. 2004. Applications
for Expression Data in Relational Database Systems. In Proceedings. 20th Inter-
national Conference on Data Engineering. IEEE Comput. Soc, Boston, MA, USA,
609–620. https://doi.org/10.1109/ICDE.2004.1320031

[24] Google. 2023. Google Sheets. Retrieved 2024-01-22 from https://www.google.
com/sheets/about/

[25] Georg Gottlob and Roberto V Zicari. 1988. Closed World Databases Opened
through Null Values.. In VLDB, Vol. 88. 50–61.

[26] Intel. 2023. VTune Profiler. Retrieved 2023-02-24 from https://www.intel.com/
content/www/us/en/developer/tools/oneapi/vtune-profiler.html

[27] Mohamed Ismail and G. Edward Suh. 2018. Quantitative Overhead Analysis
for Python. In 2018 IEEE International Symposium on Workload Characterization

(IISWC). IEEE, Raleigh, NC, 36–47. https://doi.org/10.1109/IISWC.2018.8573512
[28] Guolin Ke, Qi Meng, Thomas Finley, Taifeng Wang, Wei Chen, Weidong Ma,

Qiwei Ye, and Tie-Yan Liu. 2017. Lightgbm: A Highly Efficient Gradient Boosting
Decision Tree. Advances in neural information processing systems 30 (2017).

[29] Oliver Kennedy and Christoph Koch. 2010. PIP: A Database System for Great
and Small Expectations. In 2010 IEEE 26th International Conference on Data Engi-
neering (ICDE 2010). IEEE, Long Beach, CA, USA, 157–168. https://doi.org/10.
1109/ICDE.2010.5447879

[30] Timo Kersten, Viktor Leis, Alfons Kemper, Thomas Neumann, Andrew Pavlo, and
Peter Boncz. 2018. Everything You Always Wanted to Know about Compiled and
Vectorized Queries but Were Afraid to Ask. Proceedings of the VLDB Endowment
11, 13 (Sept. 2018), 2209–2222. https://doi.org/10.14778/3275366.3275370

[31] Mourad Khayati, Alberto Lerner, Zakhar Tymchenko, and Philippe Cudré-
Mauroux. 2020. Mind the Gap: An Experimental Evaluation of Imputation of
Missing Values Techniques in Time Series. Proceedings of the VLDB Endowment
13, 5 (Jan. 2020), 768–782. https://doi.org/10.14778/3377369.3377383

[32] Yiming Lin and Sharad Mehrotra. 2023. ZIP: Lazy Imputation during Query
Processing. Proceedings of the VLDB Endowment 17, 1 (Sept. 2023), 28–40.
https://doi.org/10.14778/3617838.3617841

[33] John McCarthy. 1960. Recursive Functions of Symbolic Expressions and Their
Computation by Machine, Part I. Commun. ACM 3, 4 (April 1960), 184–195.
https://doi.org/10.1145/367177.367199

[34] Microsoft. 2024. Excel. Retrieved 2024-01-22 from https://www.microsoft.com/
microsoft-365/excel

[35] MonetDB. 2024. TPC-H Scripts for MonetDB. Retrieved 2024-07-13 from
https://github.com/MonetDBSolutions/tpch-scripts

[36] Thomas Neumann. 2011. Efficiently Compiling Efficient Query Plans for Modern
Hardware. Proceedings of the VLDB Endowment 4, 9 (2011), 539–550.

[37] Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Vincent Michel,
Bertrand Thirion, Olivier Grisel, Mathieu Blondel, Peter Prettenhofer, Ron Weiss,
Vincent Dubourg, et al. 2011. Scikit-Learn: Machine Learning in Python. the
Journal of machine Learning research 12 (2011), 2825–2830.

[38] H. Pirk, F. Funke, M. Grund, T. Neumann, U. Leser, S. Manegold, A. Kemper, and
M. Kersten. 2013. CPU and Cache Efficient Management of Memory-Resident
Databases. In 2013 IEEE 29th International Conference on Data Engineering (ICDE).
IEEE, Brisbane, QLD, 14–25. https://doi.org/10.1109/ICDE.2013.6544810

[39] Holger Pirk, Oscar Moll, Matei Zaharia, and SamMadden. 2016. Voodoo-a Vector
Algebra for Portable Database Performance on Modern Hardware. Proceedings
of the VLDB Endowment 9, 14 (2016), 1707–1718.

[40] PostgreSQL. 2023. What Is PostgreSQL? Retrieved 2023-02-24 from https:
//www.postgresql.org/about/

[41] Liudmila Prokhorenkova, Gleb Gusev, Aleksandr Vorobev, Anna Veronika Doro-
gush, and Andrey Gulin. 2018. CatBoost: Unbiased Boosting with Categorical
Features. Advances in neural information processing systems 31 (2018).

[42] Mark Raasveldt and Hannes Mühleisen. 2020. Data Management for Data Science
Towards Embedded Analytics. (2020).

[43] Karthik Ramachandra and Kwanghyun Park. 2019. BlackMagic: Automatic Inlin-
ing of Scalar UDFs into SQL Queries with Froid. Proceedings of the VLDB Endow-
ment 12, 12 (Aug. 2019), 1810–1813. https://doi.org/10.14778/3352063.3352072

[44] Karthik Ramachandra, Kwanghyun Park, K. Venkatesh Emani, Alan Halverson,
César Galindo-Legaria, and Conor Cunningham. 2017. Froid: Optimization of Im-
perative Programs in a Relational Database. Proceedings of the VLDB Endowment
11, 4 (Dec. 2017), 432–444. https://doi.org/10.1145/3186728.3164140

[45] Theodoros Rekatsinas, Xu Chu, Ihab F. Ilyas, and Christopher Ré. 2017. Holo-
Clean: Holistic Data Repairs with Probabilistic Inference. Proceedings of the VLDB
Endowment 10, 11 (Aug. 2017), 1190–1201. https://doi.org/10.14778/3137628.
3137631

[46] El Kindi Rezig, Mourad Ouzzani, Walid G Aref, Ahmed K Elmagarmid, Ahmed R
Mahmood, andMichael Stonebraker. 2021. Horizon: Scalable Dependency-Driven
Data Cleaning. Proc. VLDB Endow. 14, 11 (2021), 2546–2554.

[47] Maximilian E. Schüle, Jakob Huber, Alfons Kemper, and Thomas Neumann. 2020.
Freedom for the SQL-Lambda: Just-in-Time-Compiling User-Injected Functions
in PostgreSQL. In 32nd International Conference on Scientific and Statistical Data-
base Management. ACM, Vienna Austria, 1–12. https://doi.org/10.1145/3400903.
3400915

[48] Scikit-learn. 2022. Scikit-Learn: Imputation of Missing Values. Retrieved
2023-02-24 from https://scikit-learn.org/stable/modules/impute.html

[49] Moritz Sichert and Thomas Neumann. 2022. User-Defined Operators: Efficiently
Integrating Custom Algorithms into Modern Databases. (2022).

[50] Michael Stonebraker and Lawrence A Rowe. 1986. The Design of POSTGRES.
Proceedings of the 1986 ACM SIGMOD international conference on management of
data (1986), 340–355.

[51] Bruhathi Sundarmurthy, Paraschos Koutris, Willis Lang, Jeffrey Naughton, and
Val Tannen. 2017. M-Tables: Representing Missing Data. (2017). https:
//doi.org/10.4230/LIPICS.ICDT.2017.21

[52] Devesh Tiwari and Yan Solihin. 2012. Architectural Characterization and Similar-
ity Analysis of Sunspider and Google’s V8 Javascript Benchmarks. In 2012 IEEE
International Symposium on Performance Analysis of Systems & Software. IEEE,

3509

New Brunswick, NJ, USA, 221–232. https://doi.org/10.1109/ISPASS.2012.6189228
[53] Wolfram. 2022. How To Replace or Remove Invalid or Missing Data.

Retrieved 2023-02-24 from https://reference.wolfram.com/language/howto/
ReplaceOrRemoveInvalidOrMissingData.html

[54] Stephen Wolfram. 1991. Mathematica: A System for Doing Mathematics by Com-
puter. Addison Wesley Longman Publishing Co., Inc.

[55] Aravind Yalamanchi, Jagannathan Srinivasan, and Dieter Gawlick. 2003. Manag-
ing Expressions as Data in Relational Database Systems. (2003).

[56] Ying Yang, Niccolò Meneghetti, Ronny Fehling, Zhen Hua Liu, and Oliver
Kennedy. 2015. Lenses: An on-Demand Approach to ETL. Proceedings of the
VLDB Endowment 8, 12 (Aug. 2015), 1578–1589. https://doi.org/10.14778/2824032.
2824055

[57] Marcin Zukowski, Peter A Boncz, Niels Nes, and Sándor Héman. 2005.
MonetDB/X100-A DBMS in the CPU Cache. IEEE Data Eng. Bull. 28, 2 (2005),
17–22.

3510

