
OLAP on Modern Chiplet-Based Processors

Alessandro Fogli
Imperial College London
a.fogli18@imperial.ac.uk

Bo Zhao
Aalto University
bo.zhao@aalto.�

Peter Pietzuch
Imperial College London

prp@imperial.ac.uk

Maximilian Bandle
TU Munich

bandle@in.tum.de

Jana Giceva
TU Munich

jana.giceva@in.tum.de

ABSTRACT

Chiplet-based CPUs, which combine multiple independent dies

on a single package, allow hardware to scale to higher CPU core

counts at the cost of more memory heterogeneity and performance

variability. This introduces challenges when existing query engines

are deployed on chiplet-based CPUs, as current designs make as-

sumptions about uniform memory access, cache locality and consis-

tent core performance, e.g., leading to ine�ective CPU utilization.

In this paper, we analyse the performance impact when query

engines ignore chiplet-speci�c properties. We demonstrate that a

naïve deployment can result in a signi�cant degradation of query

processing e�ciency, exhibiting non-linear scaling even within a

single CPU socket domain. Based on comprehensive experiments,

we explore approaches to deploy query engines on chiplet-based

CPUs with improved performance: we show that distributing pro-

cessing tasks according to a chiplet-aware strategy achieves higher

resource utilization and scalability, yielding an up to 7× speedup

compared to hardware-oblivious approaches.

PVLDB Reference Format:

Alessandro Fogli, Bo Zhao, Peter Pietzuch, Maximilian Bandle, and Jana

Giceva. OLAP on Modern Chiplet-Based Processors. PVLDB, 17(11): 3428 -

3441, 2024.

doi:10.14778/3681954.3682011

PVLDB Artifact Availability:

The source code, data, and/or other artifacts have been made available at

https://github.com/Alessandro727/OLAP-on-Modern-Chiplet-Based-CPUs.

1 INTRODUCTION

Chiplet-based CPUs are a new technology adopted by most

major processor manufacturers. They are made up of multiple

smaller chips, known as chiplets, which are interconnected with

a high-bandwidth fabric to operate seamlessly as a single multi-

core CPU [8, 49, 54, 56]. This modular approach allows for better

yields during manufacturing, o�ering a practical solution to scale

to higher CPU core counts. Chiplet-based designs also support

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 17, No. 11 ISSN 2150-8097.
doi:10.14778/3681954.3682011

(a) Core-to-core latency (AMD Ryzen 1950) (b) Speedup (TPC-H)

Figure 1: Deployment strategies on a chiplet-based CPU

individual chiplets to be tailored to speci�c functions, from com-

putation to memory access, thus enhancing the performance of

speci�c workloads [53, 65].

Chiplet-based CPUs, however, introduce new types of hetero-

geneity: (1) they exhibit diverse access times to partitioned L3

caches across chiplets; and they have a range of (2) inter-core laten-

cies and (3) bandwidths. For example, Fig. 1a shows the core-to-core

latency of a dual-socket CPU (each socket is enclosed in a blue box).

In this scenario, inter-core latencies can vary by up to 6×within the

same CPU socket domain. As shown experimentally in this paper,

this heterogeneity of chiplet-based CPUs impacts the performance

of multi-core query engines, going beyond the e�ects introduced

by non-uniform memory accesses (NUMA) [18, 40, 44, 58].

So far, little attention has been paid to the question how to deploy

query engines e�ciently on chiplet-based CPUs. Existing commercial

designs of multi-core query engines employ di�erent strategies to

map worker instances (tasks) to CPU cores (see Fig. 1a): Redshift [7,

28] and Greenplum [2] (colored in yellow) partition resources into

slices, consisting of individual cores, and assign tasks to these slices;

SingleStore [34] (colored in blue) is NUMA-aware, and assigns

tasks based on NUMA domains; other systems, e.g., Presto [61]

and SparkSQL [27] (colored in red), use all CPU cores, permitting

the allocation of any task to any CPU core. As such there is no

consensus on an allocation approach that uniformly works best,

and none of the above-mentioned approaches explicitly consider

the architectural features of chiplet-based CPUs.

In NUMA systems, an e�ective approach is to assign tasks to

the CPU cores that are closest to the main memory where the

accessed data resides [58]. Such an assignment respects data locality

and minimizes remote memory accesses. In contrast, chiplet-based

CPUs partition a more constrained L3 cache, even at a core level [22,

49, 54]. Therefore, assigning tasks to a subset of CPU cores, as

https://doi.org/10.14778/3681954.3682011
https://github.com/Alessandro727/OLAP-on-Modern-Chiplet-Based-CPUs
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3681954.3682011


(a) AMD EPYC Milan (b) Intel Sapphire Rapids (c) ARM Graviton 3

Figure 2: Chiplet-based architectures

done for NUMA, improves cache e�ciency but restricts available

memory bandwidth; assigning tasks to use only a single chiplet’s

cores limits bandwidth to other chiplets’ L3 caches. This reduces

the available cache size and leads to slower use of main memory for

data exceeding local cache capacity. This trade-o� becomes more

pronounced with multiple chiplets in a single NUMA node, i.e.,

with a reduced core count relative to a full NUMA domain.

We explore empirically the impact of chiplet-based architectures

on multi-core OLAP query engines, which perform parallel pro-

cessing and are memory intensive, and identify e�cient resource

allocation strategies. Although our focus is on OLAP systems, our

insights apply to systems with similar properties, e.g., NoSQL and

graph processing engines.

Our study provides recommendations on how to improve the

e�ciency of query processing on chiplet-based CPUs without mod-

i�cations to the query engines. In §4, we o�er insights and guide-

lines on how to design and con�gure future engines to exploit the

potential of chiplet-based CPUs:

(1) Task deployment at chiplet-level granularity.We recom-

mend deploying query engine workers at a chiplet-level granularity

(or �ner). Such a chiplet-aware deployment policy boosts perfor-

mance by up to 7× compared to a deployment with one worker

instance per CPU core and up to 2× compared to NUMA-aware

deployment (see Fig. 1b).

A chiplet-aware deployment policy has several advantages: (i) it

avoids uneven data distributions that lead to excessive inter-chiplet

communication and congestion; (ii) it allows complex queries to

exploit e�cient tablescan and repartition operations; and (iii) it

bene�ts from the adoption of parallelized and distributed Bloom

�lters and hash join operations instead of nested-loop joins across

worker instances, reducing data transfer volumes.

(2) Cache consciousness. We present guidelines for task deploy-

ment strategies at the chiplet-level granularity when considering

the sizes of local and combined L3 caches. When the amount of

accessed data is below the capacity of the local L3 cache within a

single chiplet, users should deploy tasks per chiplet, i.e., only use

cores within a single chiplet (and, therefore, local cache). When

the data amount is larger than the L3 cache size, but smaller than

the combined size of all chiplets’ L3 caches, users should assign

tasks to a selected group of cores, ensuring one core per chiplet. In

the case of large amounts of accessed data, i.e., cache misses occur

frequently, the performance of both strategies is similar.

(3) Data skew. We describe how a skewed data distribution im-

pacts the performance gains of a chiplet-aware deployment. In

particular, queries with extensive data scans and signi�cant data

shu�ing can bene�t from the enhanced core-to-core and L3 cache

locality of a chiplet-aware deployment. We observe such improve-

ments for complex benchmarks such as TPC-DS [23]. However,

data skew increases cross-chiplet communication and congests the

interconnect, reducing performance gains. Users must redistribute

the communication tra�c to mitigate this.

The rest of the paper and its contributions are structured as follows:

• We give background on chiplet architectures, analyze their inter-

core latencies and bandwidth, and provide insights into their

performance traits (§2).

• We present a detailed exploration of the design space for multi-

core query engines, considering designs that deploy a single

worker instance (task) per CPU core to assigning tasks to the

whole machine (§3).

• We empirically evaluate di�erent deployments of query process-

ing engines (§4.2), their scalability (§4.3), and e�ciency across

di�erent worker counts, workloads, and data distributions (§4.5).

2 BACKGROUND AND MOTIVATION

Chiplet-based CPUs introduce signi�cant advancements in in-

tegrated circuit (IC) packaging and system integration, o�ering

enhanced �exibility and con�guration potential. They depart from

monolithic ICs by employing a modular approach. These processors

integrate multiple smaller semiconductor dies, called chiplets, onto

a single package or substrate to create a functional unit.

This architecture has become increasingly popular among semi-

conductor manufacturers, including AMD, Intel and ARM, each

using its own design. In this section, we investigate three di�er-

ent chiplet-based architectures (§2.1–§2.2) and show their impact

on core-to-core latency (§2.3), bandwidth (§2.4), and aggregated

memory bandwidth (§2.5).

2.1 Chiplet-based architectures

We examine the architectural features of chiplet-based CPUs

from each major vendor (i.e., AMD EPYC Milan, Intel Sapphire

Rapids, and ARM Graviton 3) and analyze their di�erences. Tab. 1

lists detailed speci�cations, and Fig. 2 shows the distinct architec-

ture designs.

AMD EPYC Milan uses a chiplet-based architecture that features

eight 7 nm compute chiplets, linked to a 14 nm central I/O die for

both memory and I/O. In this design, chiplets (smaller silicon pieces

containing CPU cores) di�er from the broader term “die”, which

can refer to any silicon part, including the I/O die. Such a processor

supports up to 64 cores, 128 threads, and o�ers up to 256 MB of L3

cache across the socket, with up to 32 MB per chiplet [49].



0 8 16 24 32 40 48 56

Core ID

0

8

16

24

32

40

48

56

C
o
re

ID

0

25

50

75

100

125

(a) Single-socket AMD EPYC Milan

0 8 16 24 32 40

Core ID

0

8

16

24

32

40

C
o
re

ID

0

25

50

75

100

125

(b) Single-socket Intel Sapphire Rapids

0 8 16 24 32 40 48 56

Core ID

0

8

16

24

32

40

48

56

C
o
re

ID

0

25

50

75

100

125

(c) Single-socket ARM Graviton 3

Figure 3: Core-to-core latency (ns)

Table 1: Architectural features of AMD Milan, Intel Sapphire Rapids

and ARM Graviton 3 CPUs

EPYC Milan Sapphire
Rapids

Graviton 3

Vendor AMD Intel ARM

#Cores Up to 64 Up to 56 64

#Chiplets Up to 8 Up to 4 7

L3 Cache Size Up to 256 MB Up to 112.5 MB 64MB

L3 Size Per Core Up to 4 MB/core Up to 2 MB/core 1MB

Memory Support DDR4 DDR5 DDR5

Max Memory Bandwidth 204.8 GB/s 307.2 GB/s 307.2 GB/s

Single Core Bandwidth 20-32 GB/s 17-23 GB/s 21.5 GB/s

Oversubscribed
Bandwidth Per Core1 3.2 GB/s 5.49 GB/s 4.8 GB/s

Interconnect In�nity Fabric EMIB LIPINCON

AMD’s In�nity Fabric technique [49] enables cores to access

L3 caches across chiplets at the expense of increased latency. The

processor supports PCIe 4.0, allowing up to 32 GT/s per lane, and

integrates eight DDR4 memory channels, providing shared access

from the I/O die to the memory pool without dedicated DRAM

banks per chiplet. The newest AMD EPYCMilan processor supports

DDR5 memory. The latency varies based on the physical distance

and routing through the In�nity Fabric.

Intel Sapphire Rapids (as used in this paper) introduces a new

4-tile design, known as the XCC-tile architecture, featuring up to

60 cores. Intel’s “tile” refers to a modular unit similar to AMD’s

“chiplet”, but with a broader range of computing functions. Each tile

includes up to 14 cores that are connected to two DDR5 memory

channels, resulting in a total bandwidth of more than 307 GB/s

at DDR5-4800 speed. The architecture supports 2 MB L2 cache

per core, and a shared 28.125 MB L3 cache per tile, amounting to

112.5 MB of combined non-inclusive L3 cache. Similar to AMD

Milan, it allows cache access across tiles [56].

In addition, the MAX version of Sapphire Rapids incorporates

up to 16 GB of High-Bandwidth Memory (HBM) per tile—64 GB in

total [52]. This proximity of memory to the core greatly bene�ts

tasks that handle large data sets, e�ectively acting like a large “L4”

cache, but introduces variable access latency similar to NUMA

1Oversubscribed bandwidth per core refers to the reduced bandwidth available to
each core when multiple cores simultaneously compete for access to the memory
controller[12, 13].

systems. The processor supports PCIe 5.0, with up to 32 GT/s per

lane.

Intel uses the Embedded Multi-die Interconnect Bridge (EMIB)

technique to connect semiconductor components side-by-sidewithin

one package [48], and the Foveros technique for vertical stacking

that enables di�erent tiles atop one another. Foveros reduces the

data travel distance and thus transmission latency. Other variations

of Sapphire Rapids, such as the MCC, feature a monolithic architec-

ture with uniform interconnect among the cores. We exclude such

a design, because it does not have multiple chiplets.

ARM Graviton 3 has a design with seven heterogeneous silicon

components [8]. It places all 64 cores in a single chiplet. Each core

has a separate 1 MB L3 cache, resulting in a combined 64 MB L3

cache. The DDR5 memory controllers and the PCI-Express 5.0 pe-

ripheral controllers are located separately from these central cores.

Such a design di�ers from AMD and Intel, where a central I/O and

memory die is surrounded by multiple computing chiplets. ARM’s

design emphasizes the separation of the core area from the memory

and peripheral control sections. Core-to-core communication takes

place via Low-latency Inter-chiplet Passive Interconnect (LIPINCON),

which provides coherent data exchange across the processor.

Di�erences among chiplet-based processors. Despite having

a similar core count, the existing chiplet architectures di�er in

modular design and numbers of chiplets:

• Cache size. AMD Milan o�ers up to 256 MB of combined L3

cache—signi�cantly more than its Intel and ARM counterparts.

This impacts data retrieval e�ciency and latency.

• Cache layout. Intel and ARM processors bind L3 cache exclu-

sively to cores. In contrast, AMD assigns L3 cache per chiplet,

which is accessible to all cores within the same chiplet. This af-

fects inter-core communication—only AMD support core-to-core

communication via a shared cache between the two cores.

• Memory support. Sapphire Rapids and Graviton 3 support

newer DDR5 memory, while AMD Milan only supports DDR4.

• Inter-chiplet communication. Processors optimize data trans-

fer and integration in di�erent ways. AMD’s In�nity Fabric en-

ables scalable multi-core integration with shared L3 cache across

chiplets at the cost of heterogeneous inter-chiplet latency. Intel

combines EMIB and Foveros to reduce data travel distances and

latency. ARM focuses on low latency by keeping all cores on the

same chiplet and uses LIPINCON to connect other components.



0 8 16 24 32 40 48 56

Core ID

0

8

16

24

32

40

48

56

C
o
re

ID

4

6

8

10

12

(a) Single-socket AMD EPYC Milan

0 8 16 24 32 40

Core ID

0

8

16

24

32

40

C
o
re

ID

4

6

8

10

12

(b) Single-socket Intel Sapphire Rapids

0 8 16 24 32 40 48 56

Core ID

0

8

16

24

32

40

48

56

C
o
re

ID

4

6

8

10

12

(c) Single-socket ARM Graviton 3

Figure 4: Core-to-core bandwidth (GB/s).

• Memory controller and bandwidth. AMD and ARM separate

memory controllers from the core dies. Cores across chiplets

share the memory controller that may result in a reduced band-

width given an unbalanced workload. Intel, on the other hand,

integrates the memory controllers into the core dies. This en-

ables a more equal workload distribution. Tab. 1 shows the max-

imum bandwidth of each processor that is achieved by a single

core [12, 13]. When multiple cores share a memory controller,

the memory bandwidth is limited by the controller’s capacity.

With oversubscription, the bandwidth to each core is reduced.

We observe that even subtle di�erences in the architectural design

can lead to notable variations in performance. We next describe a

detailed performance evaluation of the above three processors. We

use a micro-benchmark, STREAM [50], to explore how the di�erent

chiplet architectures in�uence core-to-core latency, bandwidth, and

overall system throughput.

2.2 Testbed con�guration

We conduct our experiments on a diverse set of machines:

(1) Single-socket AMD EPYCMilan features an AMD EPYC 7713

processor with 64 CPU cores, 256 MB of L3 cache across 8 chiplets,

and 512 GB of RAM. It has a 64 MB L2 cache and runs Ubuntu 23.04.

We use this processor in §2.3 and §2.4, to highlight chiplet properties,

as the e�ects of NUMA on inter-socket communication are well-

known [18, 33, 40, 46].

(2) Single-socket Intel Sapphire Rapids has an Intel Xeon Plat-

inum 8488C processor with 48 cores, 192 GB of RAM, 2.1875 MB of

L3 cache and 2 MB of L2 cache per core, running Ubuntu 22.04.

(3) Single-socket ARM Graviton 3 has a processor with 64 cores,

128 GB of RAM, 32 MB of L3 cache and 1 MB of L2 cache per core,

running Ubuntu 22.04.

In addition, we use the following two machines in §2.5:

(4) Dual-socket AMD EPYCMilan features two AMD EPYC 7713

processor, with a total of 128 CPU cores and 1024 GB of RAM. We

use this machine instead of the single-socket AMD processor.

(5) Single-socket Intel Xeon Gold features a 3rd Generation Intel

processor with 24 cores, 128 GB of RAM, 36 MB of L3 cache and

30 MB of L2 cache, running Ubuntu 22.04.

We use the dual-socket AMD processor to measure aggregate

bandwidth variations across the NUMA domains, and the 3rd Gen.

Intel machine to compare the results with a monolithic architecture.

2.3 Core-to-core latency

We measure the latency of sending a message from one core

to another, by pinning two threads to separate cores. We perform

multiple compare-and-swap (CAS) operations and measure the

latency. Fig. 3 illustrates the heatmap of core-to-core latency for

each processor.

AMD EPYC Milan shows a wide latency range, di�ering up to

10× (see Fig. 3a). On average, latency within the same socket is

106 ns. Within a single chiplet, the latency drops to just 24 ns.

In contrast, the Intel Sapphire Rapids processor shows more con-

sistent latency across its cores, averaging 59 ns (see Fig. 3b). Such

uniformity suggests that Intel’s design favors consistent data trans-

fer speeds, which is bene�cial for stable performance of parallel

tasks and multi-threaded applications.

The average latency of ARM Graviton 3 is 48 ns, and this latency

remains consistently below 59 ns throughout the entire chip. The

heatmap in Fig. 3c shows a mixed pattern of red and blue squares,

with 4 blocks of thread pairs with lower latency than the others.

This is due to the chip’s internal architecture, i.e., the arrangement

of cores within the chiplet, the layout of interconnects, and the

proximity to shared resources. Our evaluation results align with

those reported in [11].

Insights. AMD processors exhibit varying latencies due to their

chiplet design, a�ecting core-to-core communication and cache ac-

cess times. This variability requires careful resource management for

applications sensitive to latency. In contrast, Intel Sapphire Rapids

and ARM Graviton processors achieve consistent latency by avoiding

shared caches between cores. The ARM CPU minimizes latency by

using a single computing chiplet, eliminating cross-chiplet commu-

nication. Intel reduces latency in its designs with Foveros technology,

which employs vertical stacking to shorten distances between chiplets.

2.4 Core-to-core bandwidth

Next, we examine the bandwidth sustained between core-to-core

communication. We use two threads, one sender and one receiver,

each pinned to a speci�c CPU core. To avoid cache con�icts, we

align memory access to the hardware cache line size. After warming



up the cache by writing random data into an 8192 byte-sized bu�er,

the sender populates the bu�er with random data, and the receiver

times the accesses. E�ective bandwidth is measured as the average

latency of 10 trials. Fig. 4 shows the results.

AMD Milan exhibits a distinct and consistent bandwidth pattern

in core-to-core communication (see Fig. 4a), mirroring the results

of the core-to-core latency analysis. Within the same chiplet, cores

communicate at 12 GB/s. However, this speed decreases to 6 GB/s

between cores from di�erent chiplets, indicating signi�cant varia-

tion based on the core location.

Sapphire Rapids, in contrast, exhibits a more homogeneous band-

width distribution. In Fig. 4b we notice distinct groups of cores

where bandwidth peaks at 12.5 GB/s. Otherwise, it averages at

11 GB/s and occasionally falls to 10.5 GB/s. Despite the overall uni-

formity in bandwidth, the delineation of the four chiplets is visible,

even if negligible.

An interesting observation is that cores in the chiplets farthest

apart have a slightly higher bandwidth, forming an inverted diago-

nal pattern on the heatmap. The architecture of the Intel Sapphire

Rapids includes high bandwidth cross-die connections [22, 51].

These high bandwidth connections are likely the reason for the im-

proved performance when cores communicate across chiplets [48].

The ARM Graviton 3 processor demonstrates a notably consis-

tent communication bandwidth pro�le between cores (see Fig. 4c),

in a range between 7.2 GB/s and 8.6 GB/s. The regions closer to the

diagonal display a red coloration, signifying enhanced bandwidth.

This suggests that the bandwidth is higher when cores communi-

cate with their neighbours.

Insights. The core-to-core bandwidth analysis aligns with the trends

of the previous latency analysis for AMD Milan, Intel Sapphire Rapids

and ARM Graviton 3, highlighting the impact of architectural designs.

2.5 Aggregate memory bandwidth

We also investigate the aggregate memory bandwidth of chiplet-

based processors. We use the STREAM benchmark [50] to measure

sustainable memory bandwidth by performing simple operations

on stored arrays of data. We focus on the COPY function, which

copies the contents of one array to another, with a direct memory-to-

memory data transfer implemented via a loop-based copy operation.

We vary the number of processes, ranging from a single process that

uses all available resources tomultiple processes bounded to speci�c

chiplets or subsets of chiplet’s cores. Each process runs the STREAM

benchmark and spawns multiple threads, which are restricted to

the resources allocated to that process. For each con�guration, all

processes are initiated simultaneously, ensuring the total data array

size is consistently and evenly distributed.

The goal is to examine which setup can take a better advantage

of chiplet architectures. We expect to see better e�ciency within

the chiplet boundaries. Fig. 5 shows the measured aggregate mem-

ory bandwidth for all the processors in §2.2. We observe that, as

the array size increases, the three chiplet-based processors exhibit

higher aggregate bandwidths when utilizing multiple processes.

Speci�cally, the AMD Milan and Intel Sapphire Rapids display

the highest aggregate bandwidths using one process per chiplet,

achieving 7 GB/s and 2.7 GB/s, respectively. Moreover, the AMD

Milan processor, the only one tested with 2 NUMA domains, shows

10
3

10
4

10
5

10
6

10
7

10
8

10
9

Data Size (bytes)

0
1000
2000
3000
4000
5000
6000
7000

A
gg
.
B
an
dw

id
th

(G
B
/s
)

1 Prcs / Machine

1 Prcs / NUMA

1 Prcs / Chiplet

L2 cache size

L3 cache size

(a) AMD EPYC Milan

10
3

10
4

10
5

10
6

10
7

10
8

10
9

Data Size (bytes)

0

500

1000

1500

2000

2500

A
gg
.
B
an
dw

id
th

(G
B
/s
)

1 Prcs / Machine

1 Prcs / Chiplet

L2 cache size

L3 cache size

(b) Intel Sapphire Rapids

10
3

10
4

10
5

10
6

10
7

10
8

10
9

Data Size (bytes)

0

1000

2000

3000

4000

5000

6000

A
gg
.
B
an
dw

id
th

(G
B
/s
)

1 Prcs / Machine

4 Prcs / Machine

16 Prcs / Machine

L3 cache size

(c) ARM Graviton 3

10
3

10
4

10
5

10
6

10
7

10
8

10
9

Data Size (bytes)

0

200

400

600

800

A
gg
.
B
an
dw

id
th

(G
B
/s
)

1 Prcs / Machine

4 Prcs / Machine

16 Prcs / Machine

L2 cache size

L3 cache size

(d) 3rd Gen. Intel Xeon Gold

Figure 5: STREAM Benchmark (The darker the colour, the higher the

number of parallel processes)

that this con�guration outperforms even the one that accounts for

the presence of NUMA architecture, reaching only 3.5 GB/s. The

ARM Graviton 3 processor, despite having a single computational

chiplet, achieves the highest bandwidth with 16 processes, peaking

at 5.8 GB/s. The aggregate bandwidth of ARM demonstrates that

using multiple processes can increase aggregate bandwidth, even

with a single chiplet, due to the partitioned L3 cache at the core

level. On the other hand, the Intel Xeon Gold, featuring a monolithic

processor design, stands out as the exception, displaying no varia-

tion in performance across di�erent con�gurations, underscoring a

distinct behavior from chiplet-based processors.

The di�erent values of aggregate bandwidth can be attributed to

the varying characteristics of the machines used, e.g., the number

of cores and NUMA domains.

Insights. Directing tasks to speci�c core subsets presents a trade-o�

in chiplet-based architectures: on one hand, it reduces the available L3

cache, which may be a concern for bandwidth-intensive workloads; on

the other hand, our �ndings indicate that this approach can increase

the aggregate bandwidth in chiplet-based architectures. The key factor

is more e�cient cache use and improved data locality.

3 DEPLOYMENTS OF QUERY ENGINES

In this section, we focus on distributed query engines and explore

how di�erent deployment policies impact their performance on

chiplet-based processors.

3.1 Architecture of distributed query engines

From a design perspective, distributed cloud-native query engines,

e.g., AWS Redshift [41], Athena [6], Google’s Big Query [38], Mi-

crosoft’s Polaris [25], on-premise data warehouses, e.g., Exadata [20]

and Teradata [4], and big data systems, e.g., Hadoop [1], Presto [61]

and Spark [27], all share similarities. Since they are all designed

for scalability, they feature a compute layer of database worker

instances, which execute incoming queries that operate on data

fragments. The worker instances are governed by a coordinator.

The coordinator is responsible for admitting, parsing, planning and

optimizing queries, in addition to orchestrating how a query’s tasks

are distributed among worker instances.



Figure 6: Design configurations for distributed query engines in a

dual-socket processor

The worker instances communicate with each other over the net-

work, either to exchange data when performing joins over multiple

tables or to send the results to the coordinator. Although network

technologies such as RDMA and In�niBand signi�cantly reduce net-

work bottlenecks [31], conventional systems often do not use them

and rather minimize network communication to avoid potential

bottlenecks. As a result, each database worker instance handles its

own task queue for its data partition (fragments) to achieve better

data locality and reduce network tra�c. The coordinator computes

a cost-based query plan, which accounts for data distribution and

tries to minimize the communication overhead [21, 34, 61].

Di�erent query engines adopt di�erent deployment policies for

worker instances, even within a single multi-processor machine.

3.2 Design space overview and trade-o�s

We explore several scenarios, from deploying a single worker

instance on a single CPU core to utilizing the entire machine for a

single worker. We want to investigate the full spectrum of deploy-

ment granularities and understand how each impacts performance

and e�ciency. We di�erentiate between three main options: Single-

Worker Instance per Machine (WIM), Single-Worker Instance per

NUMA (WIN), and Single-Worker Instance per CPU Core (WIC).

Based on our �ndings in §2, it is clear that adopting a new

category that has a Single-Worker Instance per Chiplet (WICP) is

a promising approach. The main di�erences between these ap-

proaches concern (i) the number of database worker instances

spawned on a single machine, (ii) the way computing resources are

allocated to each worker instance, and (iii) the data allocation poli-

cies. By data allocation policies, we refer speci�cally to the policy

for distributing and managing data across the machine’s memory

hierarchy. This includes the initial distribution of data fragments

within the system’s memory, aiming for superior performance by

considering factors such as NUMA architectures and cache utiliza-

tion, but also the management of data generated or transferred as

queries are executed, speci�cally during the shu�e or join phases.

Di�erent designs also a�ect the parallelism degree, e.g., the num-

ber of active worker instances, and the amount of exchanged data.

(1) WIM: Single-Worker Instance perMachine.The Single-Worker

Instance per Machine policy is used by many distributed query en-

gines [17, 21], in particular Presto [61] and SparkSQL [27]. The

deployment policy is independent of the topology of the underly-

ing hardware and a single database worker instance manages all

resources, as shown in Fig. 9. It is up to the query engine to decide

how to allocate or access the data fragments. In addition, there are

no restrictions on how memory is accessed. All threads can access

the L3 cache within each chiplet, in addition to the local and remote

main memory. This means that the worker instances must manage

their resources internally to get the most out of the underlying

hardware.

Advantages: The implementation is independent from the physi-

cal system architecture. Threads have the entire L3 cache at their

disposal to store and access data e�ciently. Moreover, with just a

single database worker instance for each machine in the cluster,

communication between nodes is minimized [29, 57].

Disadvantages: Maximizing data and thread locality is non-trivial.

Inadequate allocation of data between the chiplets’ L3 caches risks

congesting interconnects, leading to performance reductions. Re-

designing the database engine to make it more hardware-aware

requires cost and e�ort, and, in many cases, this is not viable.

(2) WIN: Single-Worker Instance perNUMA. In the Single-Worker

Instance per NUMA, there are as many database worker instances

as NUMA nodes. Each worker instance can only use the computa-

tional resources of the NUMA nodes that they are associated with.

Communication between instances takes place through the net-

work stack. The OS can migrate threads but only within the NUMA

node to which the worker is bound. In terms of data allocation, the

WIN design relies on the Membind policy [19], which forces each

instance to only use its local memory. An example of this design

can be found in SingleStore [10]. SingleStore places each database

worker instance on a separate NUMA node [3].

Advantages: This policy avoids memory accesses across NUMA

nodes and avoids interconnect congestion. The work is partitioned

by the database engine, thus generating a fair use of the resources

shared in NUMA domains.

Disadvantages: As shown in §2, communication variability can be

signi�cant even within a NUMA domain. An instance may experi-

ence higher latency when accessing memory located on a di�erent

chiplet within the same NUMA domain. The number of chiplets can

also be high, and managing memory across multiple chiplets can be

complex. Ensuring good cache locality may require a chiplet-aware

scheduling policy, which adds overhead and complexity to system

operation. In addition, local inter-worker communication takes

place via the network stack with less bandwidth than what can

be achieved through interconnects. A larger number of database

worker instances increases inter-machine communication.

(3) WICP: Single-Worker Instance per Chiplet. This design as-

signs the computational resources of each chiplet to a distinct data-

base worker instance. Similar to WIN, all instances interact via the

network stack, with each one exclusively using the cache and mem-

ory local to its chiplet. Data is allocated in the local main memory of

the NUMA node where the chiplet resides, and can be cached only

in the chiplet’s local L3 cache. As far as we know, this deployment

policy is not currently used by any major distributed database or

data processing system.

Advantages: By dedicating a database worker instance to each

chiplet, Single-Worker Instance per Chiplet o�ers a localized ap-

proach that can minimize inter-core latency and increase inter-core

bandwidth for machines with high heterogeneity in core-to-core

communication (see §2.3 and §2.4). With each instance working



on its own cache, the WICP design eliminates cross-chiplet com-

munication and favors a more balanced data allocation, avoiding

congestion of the interconnect.

Disadvantages: By forcing instances to run on a speci�c subset

of cores, we can restrict their memory bandwidth. Moreover, by

forcing a worker instance to use only a single chiplet’s cores, we

limit the access to other chiplets’ L3 caches, thereby shrinking the

available cache size and necessitating slower main memory use for

data exceeding the local cache capacity. The high number of chiplets,

even within a single NUMA node, could lead to signi�cant overhead

in ensuring data consistency and synchronization across them.

(4) WIC: Single-Worker Instance per CPU Core. The Single-

Worker Instance per CPU Core design uses one database worker

instance per CPU core and is adopted by systems such as Green-

plum [2, 5], and H-Store [43]. Here, we use as many database work-

ers as there are CPU cores on the machine. All worker instances

exchange data via the network stack. In addition, each instance

prioritizes data placement in the memory and the cache local to the

core of the worker instance.

Advantages: The policy provides improved data and thread place-

ment. It prevents cores from communicating through the intercon-

nect and thus avoids potential congestion. As a result, WIC-based

systems exhibit good single-thread performance.

Disadvantages: The WIC deployment policy increases the amount

of communication and data exchange required for data processing.

In addition, as with WICP, each process is limited to using only the

relevant cache partition available in its chiplet.

4 EXPERIMENTAL ANALYSIS

We conduct a range of experiments to evaluate the behavior of

the di�erent deployment policies for distributed query engines on

modern chiplet-based machines (§4.1). Speci�cally, we answer the

following questions:

Q1: What is the impact of deployment policies on the perfor-

mance of distributed query engines on a modern chiplet-based

machine? (§4.2)

Q2: How do di�erent deployment policies a�ect a query engine’s

intra-machine multi-core scalability? (§4.3)

Q3:What is the trade-o� between improving cache locality through

the chiplet’s local L3 cache and expanding the cache size accessible

to the process at the cost of reduced bandwidth? (§4.4)

Q4: How sensitive are deployment policies with respect to di�erent

characteristics (§4.5) including (i) the number of worker instances

of a query engine (§4.5.1); (ii) the properties of the query work-

load (§4.5.2); and (iii) the data skew (§4.5.3)?

4.1 Experimental setup

Testbed. The experiments are conducted on a diverse set of chiplet-

based machines. This evaluation environment di�ers from the one

described in §2, and now also includes two machines equipped

with two NUMA domains. We selected dual-socket machines for

our evaluation, because certain systems optimize their deployment

strategies according to the number of NUMA nodes present [10].

Speci�cally, we use the following:

(1) AMD EPYC Milan features a dual-socket AMD EPYC 7713

processor, with 64 CPU cores per socket, 512 GB of RAM, and

8 chiplets. It runs Ubuntu 23.04.

(2) Intel Sapphire Rapids contains a dual-socket Intel Sapphire

Rapids Xeon Platinum 8480+, with 112 CPU cores, and 512 GB of

RAM. It has two NUMA domains, each containing 4 tiles, and runs

Ubuntu 22.04.

(3) ARM Graviton 3 has a single-socket processor with 64 CPU

cores and 128 GB of RAM, running Ubuntu 22.04.

Query engines.We use common distributed query engines includ-

ing Presto [61], SingleStore [34] and SparkSQL [27]. The default

deployment policy is Single-Worker Instance per Machine (WIM).

We aim to show how existing engines can manage the hetero-

geneity of chiplet-based architectures, without modifying the sys-

tems’ source code. We note, however, that tailored in-engine opti-

mizations can o�er further performance improvements, but this is

beyond the scope of this paper.

Benchmark suites.We use a set of benchmarks including TPC-

H [24], TPC-DS [23], and JCC-H [32]. Overall, they contain 143 queries

and represent various types of workloads, including ad-hoc analyt-

ical queries and decision support queries. In the TPC-H, TPC-DS,

and JCC-H evaluations, queries are executed sequentially.

To explore various deployment policies, we leverage the libnuma

library [45] to spawnworker instances on a core/NUMA/chiplet and

enforce a given data placement. In our evaluation, unless speci�ed

otherwise, we utilize datasets with a scale factor of 100 (i.e., 100 GB

of data size). All results are averaged over �ve runs.

Metrics.We measure the query execution time of all deployment

policies (WIM, WIN, WICP and WIC) for each query engine on each

machine. For better visualization, we compare the speedups of WIN,

WICP and WIC over the baseline—the default deployment of WIM.

4.2 Deployment on chiplet-based machines

We investigate the performance impact of the four deployment

policies (see §3.2) on the chiplet-based machines. To this end, we

evaluate the TPC-H workload using Presto, SingleStore and Spark-

SQL and compare the speedups of WIC, WIN and WICP over the

default deployment policy, WIM. We �rst explore the general trends

before delving into a detailed investigation of results, speci�cally

on the AMD EPYC Milan.

Recall that the Graviton 3 is a single-socket design composed of

seven chiplets, with only one containing the computational cores.

Consequently, the WIM, WIN and WICP policies ultimately correspond

to the same con�guration. We use a modi�ed version of WICP with

multiple worker instances per chiplet. The ARM variant of WICP

employs 16 worker instances, each assigned 4 cores, similar to the

setup used in the STREAM benchmark from §2.5.

Deployment e�ciency across chiplet architectures. Fig. 7 shows

the geometric mean speedup of TPC-H queries for the di�erent

deployment policies: WIC, WICP, and WIN, with WIM as the baseline.

The WICP policy consistently outperforms the others, notably

enhancing SparkSQL’s performance with speedups on AMD EPYC

Milan (3.41×), Intel Sapphire Rapids (6.97×), and ARM Graviton 3

(1.36×) processors. SparkSQL also shows performance gains with

the WIC policy, achieving improved e�ciency across the board:



0 1 2 3 4

AMD

Intel

ARM

Presto
1.8

2.6
0.8

2.1
3.5

0.7

1.0
1.2

1.0

WIN WICP WIC

0 1 2 3 4 5

AMD

Intel

ARM

SingleStore
2.7

3.4
2.6

2.1
2.7

1.1

WIN WICP WIC

0 1 2 3 4 5

AMD

Intel

ARM

SparkSQL
1.7

3.4
1.7

4.6
6.9

3.9

1.0
1.4
1.3

WIN WICP WIC

Figure 7: Geomean speedups over WIM

0 1 2 3 4

Q1

Q2

Q3

Q4

Q5

Q6

Q7

Q8

Q9

Q10

Q11

Q12

Q13

Q14

Q15

Q16

Q17

Q18

Q19

Q20

Q21

Q22

Presto
1.7
1.8

0.7

1.7
1.9

0.2

2.0
3.3

1.7

2.0
3.9

2.0

2.1
3.8

0.6

1.2
1.6

1.2

2.1
3.4

0.6

2.0
2.8

0.3

1.8
2.4

0.7

2.2
3.5

1.3

2.2
3.4

0.4

2.0
3.8

2.1

2.1
4.0

1.6

1.3
1.4

0.7

1.5
1.6

0.5

2.0
2.2

1.0

2.1
3.4

1.7

1.4
1.5

0.9

1.4
1.5

0.4

2.4
3.7

1.1

2.0
3.7

1.7

WIN WICP WIC

0 1 2 3 4 5

Q1

Q2

Q3

Q4

Q5

Q6

Q7

Q8

Q9

Q10

Q11

Q12

Q13

Q14

Q15

Q16

Q17

Q18

Q19

Q20

Q21

Q22

SingleStore
1.1
1.1
1.0

2.0
2.5

1.9

1.7
2.6

2.1

1.8
2.6

1.5

2.4
2.6

1.8

2.1
2.3

2.1

15.9
23.9
16.1

1.4
2.4

1.8

4.2
5.7

2.9

1.8
1.9

1.6

2.1
2.3

1.6

1.5
2.0

1.8

7.0
18.1
13.8

1.9
2.3

1.8

3.6
4.0
3.9

3.9
4.4

3.1

1.8
2.2

2.0

1.4
1.9

1.4

1.2
1.5

1.1

5.9
7.9
6.3

1.8
1.9

1.5

22.5
21.2
17.4

WIN WICP WIC

0 1 2 3 4 5

Q1

Q2

Q3

Q4

Q5

Q6

Q7

Q8

Q9

Q10

Q11

Q12

Q13

Q14

Q15

Q16

Q17

Q18

Q19

Q20

Q21

Q22

SparkSQL
1.2
1.3
0.4

1.5
4.1

2.3

2.2
5.0

2.6

1.6
4.1

2.0

0.9
2.1
2.0

0.9
0.8
0.2

1.8
3.2

2.3

1.5
4.6

2.7

1.1
4.2

1.6

2.0
4.7

2.5

1.8
3.1

1.4

1.9
5.4

2.4

1.8
2.2

1.0

1.7
4.3

2.2

1.4
4.6

2.3

2.2
4.4

2.4

1.9
3.5

2.0

2.1
3.0

2.3

1.8
4.7

2.2

2.2
5.2

2.6

3.1
4.7

1.6

1.7
2.7

1.4

WIN WICP WIC

Figure 8: TPC-H speedups on AMD EPYCMilan with scale factor 100

1.71× on AMD, 3.92× on Intel, and 1.27× on ARM. The reason

is that the SparkSQL engine unevenly allocates data across the

multiple threads with the WIM policy. This leads to higher LLC

miss rates, a high rate of remote NUMA reads and consequently a

congested interconnect hindering e�ciency. WICP mitigates these

issues by evenly spreading data among database worker instances,

enhancing data locality and reducing the interconnect pressure.

SingleStore and Presto also see bene�ts under the WICP policy,

with respective speedups of 2.64× and 3.40× on AMD EPYC Milan,

and 3.64× and 2.70× on Intel Sapphire Rapids. This suggests that,

although Intel Sapphire Rapids o�ers better inter-core communi-

cation than AMD EPYC Milan, achieving peak performance still

demands a resource allocation strategy that takes the processor’s

topology into account. In addition, Presto does not perform as well

with the WIC policy, experiencing a drop in performance (0.84× on

AMD and 0.65× on Intel). This occurs because, in the WIC policy, the

database worker instance responsible for coordination, is restricted

to using just one core, thereby slowing down the overall execution

during aggregations.

The ARM Graviton 3 processor, unsupported by SingleStore,

shows limited improvements compared to AMD and Intel. This

stems from its architecture, which includes a single computational

chiplet, mirroring the design of monolithic processors. Moreover,

due to the single-socket con�guration on the ARM Graviton 3, WIN

and WIM represent identical deployments.

Analysis of TPC-H queries. We also note varied performance

across individual queries as shown in Fig. 8. We now focus on a

detailed investigation of all queries on each evaluated system.

(1) SingleStore’s closed-source nature restricts our analysis to

query plans, preventing us from examining speci�c algorithms or

runtime-generated code. From the query plans, we observe that

SingleStore uses di�erent query plans under the WICP policy com-

pared to those generated under the WIM policy. The query plans for

WICP enhance data processing speeds by optimizing data locality

for table scans and employing parallelized and distributed query

operators (e.g., Bloom �lters and hash joins).

Speci�cally, Q7, Q9, Q13, Q15, Q16, Q20, and Q22 experience the

biggest boost in performance, with Q13, Q15, Q16, Q20, and Q22

sharing a uniform query plan across all deployment scenarios that

utilizes TableScan and Repartition operations. We focus on Q13

because of its extended execution time and substantial transient

memory usage [36]. Notably, under WICP policy, Q13’s Orders table

scan is signi�cantly faster, taking only 0.4 seconds, as opposed to

5.36 seconds with the WIM policy. Similarly, Repartition operations

complete in 0.25 seconds under WICP compared to 5.06 seconds

under WIM. We attribute the speedup to WICP’s superior data locality

that minimizes data access times. Consequently, Q13, Q20, and

Q22 exhibit better performance over Presto and SparkSQL, with

speedups of 18×, 8× and 21×, respectively.

SingleStore achieves speedups of 23.9× and 5.7× under the WICP

policy for Q7 and Q9, respectively. This is attributed to the adop-

tion of query plans in the WICP, WIN, and WIC policies that favor

Bloom �lters and hash joins over the conventional nested loop

joins used in the WIM policy. The SingleStore coordinator opts for

Bloom �lters and hash joins, because they are easily parallelizable

and distributable across worker instances, cutting down the data

transfer volume and execution time.

(2) Presto. In contrast to SingleStore, Presto uses a consistent query

plan across all policies. However, the number of generated data

fragments depends on the number of worker instances, and the

computing resources assigned. As the number of workers increases,

the number of (smaller) fragments also goes up. The smaller the

fragments, the more likely they �t in the L3 cache, boosting data lo-

cality. The engine’s improved e�ciency is particularly evident when

executing the ScanFilterTable operator, which dominates Presto’s

query execution time. By re�ning this process, Presto signi�cantly

reduces the execution times across all benchmark queries. In fact,

Q5 and Q18 show the best speedups, as they spend 88% and 96% of

their execution time, respectively, on the ScanFilter operation on

Orders. Q1, Q2, Q6, Q14, Q16, Q19 and Q20 exhibit less than a 2×

speedup, because they do not involve the Orders table.

Interestingly, despite the Lineitem table being larger than the

Orders table in the TPC-H benchmark, we do not observe the same



1 8 16 32 48 64 80 96 112 128
Number of cores

0

10

20

30

40

50

60

70

N
o
rm

al
iz
ed

sp
ee
d
u
p

WIM
WIN
WICP

(a) Presto

1 8 16 32 48 64 80 96 112 128
Number of cores

0

10

20

30

40

50

N
o
rm

al
iz
ed

sp
ee
d
u
p

WIM
WIN
WICP

(b) SingleStore

1 8 16 32 48 64 80 96 112 128
Number of cores

0

5

10

15

20

25

30

N
o
rm

al
iz
ed

sp
ee
d
u
p

WIM
WIN
WICP

(c) SparkSQL

Figure 9: Multicore scalability on AMD EPYC Milan

performance gains. This is due to Presto’s approach to handling

scans and �lters. Before executing joins, Presto typically scans and

�lters tables to reduce the number of rows processed. However,

Presto skips this step for the Lineitem table, due to its extensive

size and the signi�cant time typically consumed by this phase. As a

result, queries involving the Orders table perform better compared

to those using the Lineitem table (e.g., Q1, Q6, Q14, Q19, and Q20).

The WIC deployment underperforms on Presto compared to

SparkSQL and SingleStore because, in our evaluation, Presto’s Mas-

ter instance also acts as a Worker, utilizing one core just like the

other Worker instances. In contrast, SparkSQL and SingleStore use

a dedicated Master that can use all the resources, allowing more

e�cient task coordination.

(3) SparkSQL. Unlike SingleStore and Presto, SparkSQL is particu-

larly a�ected by the negative e�ects of unbalanced data distribution.

Fig. 8 shows that SparkSQL achieves speedups ranging from 3.51×

to 5.15× in the WICP deployment over WIM. This notable perfor-

mance boost is primarily attributed to the ine�cient handling of

data by SparkSQL under the WIM con�guration, where it tends to

distribute data unevenly across chiplets. This results in excessive

communication between chiplets and interconnect congestion. Our

observation is that the interconnect is congested for an average

of 34% of the query execution time. Such congestion particularly

impacts the join operations, because SparkSQL relies on SortMerge

Join. The WICP deployment strategy e�ectively mitigates these is-

sues by forcing the use of local memory, ensuring a balanced data

distribution.

Insights. Users should deploy the query engine workers on chiplet-

based machines using the WICP policy for improved performance.

WICP enhances data locality, boosting the e�ciency of queries that

involve extensive data scanning or shu�ing. The higher distribution

level of the WICP policy, compared to WIM and WIN, produces query

plans that better exploit easily parallelizable operators.

4.3 Multi-core scalability

Next, we examine the scalability of di�erent deployment policies

on the AMD EPYC Milan machine. We evaluate the performance

of the TPC-H queries using three query engines (i.e., Presto, Single-

Store and SparkSQL) and measure their speedups when increasing

the CPU core count from 1 to 128. The results are shown in Fig. 9.

WICP scales best for all three query engines, achieving near-linear

scalability up to 64 cores (i.e., the number of cores in a single NUMA

domain). The performance keeps improving beyond 64 cores but at

a lower rate, reaching speedups of 71× (Presto), 55× (SingleStore),

and 31× (SparkSQL) at 128 cores. WICP improves shared memory

access by taking into account the partitioned L3 cache and ensuring

an even data distribution, thus reducing resource contention.

WIN also exhibits good scalability up to 64 cores, but its perfor-

mance increases more slowly than WICP. With more cores, WIN’s

scalability �attens. In contrast, WICP maintains increasing perfor-

mance speedups, outperforming WIN by 2.15× for SparkSQL (Fig. 9c),

1.44× for Presto (Fig. 9a) and 1.25× for SingleStore (Fig. 9b), respec-

tively. This superior scalability of WICP, especially for SparkSQL, is

attributed to improved cache utilization within chiplets and mini-

mized interconnect congestion. Furthermore, the high inter-core

communication variability in a single NUMA domain on the AMD

EPYC Milan machine, discussed in §2, reduces WIN’s scalability.

As expected, WIM shows the worst performance: for all three

query engines, WIM only scales to 16 cores, corresponding to the

combined core count of just two chiplets. Beyond this, WIM’s scala-

bility signi�cantly diminishes and reaches a plateau.

4.4 Chiplet L3 cache e�cacy

For the WICP deployment policy, we further investigate the trade-

o� between only fetching data from a chiplet’s local cache (coined

WICP_Local) and also fetching from other chiplets’ caches (coined

WICP_Mixed). As explained in §2, each chiplet is equipped with

its own local L3 cache to speed up data access, while fetching

data from other chiplets incurs inter-chiplet communication over-

head. WICP_Local enforces data access on the local L3 cache, while

WICP_Mixed exploits the capacity of L3 caches of all chiplets but,

bears the overhead of inter-chiplet communication.

In our setup, WICP_Local uses CPU cores within a single chiplet,

while WICP_Mixed uses the same number of cores but evenly dis-

tributed across chiplets. We assess the impact of these two deploy-

ment policies when running the STREAM benchmark on a single

socket of an AMD EPYC Milan processor. Fig. 10 reports the ag-

gregated bandwidth when increasing the size of an array from

0.8 MB to 1536 MB. The bandwidth is lower than previously shown

in Fig. 5a due to using a smaller number of cores.

We observe that WICP_Local achieves higher bandwidth than

WICP_Mixed until the array size reaches 32 MB, the single chiplet’s

L3 capacity. This is because WICP_Local avoids inter-chiplet com-

munication. However, for larger array sizes, WICP_Local’s band-

width suddenly drops, as it needs to fetch data from main memory.

In contrast, WICP_Mixed shows more stable bandwidth due to its



153676838419296482412631.50.8
Data Size (MB) - Log Scale

0

25

50

75

100

125

B
an
dw

id
th

(G
B
/s
)

WICP Local

WICP Mixed

Chiplet L3 cache size

Total L3 cache size

Figure 10: AMDMilan: STREAM benchmark with 8 cores (1 chiplet)

1 2 3 4

Local

Mixed

Presto

2.6

2.4

1 2 3 4

Local

Mixed

SingleStore

3.3

1.9

1 2 3 4

Local

Mixed

SparkSQL

3.4

3.5

Figure 11: Geomean speedups over WIM on AMDMilan

ability to leverage the total capacity of L3 caches from all chiplets,

256 MB. Beyond this, WICP_Mixed’s bandwidth also declines.

We further examine WICP_Local’s and WICP_Mixed’s impact on

query performance with Presto, Singlestore, and SparkSQL using

the TPC-H benchmark, with a scale factor of 50 GB, on the same

AMD EPYC Milan processor. We compare their geomean speedups

over the default WIM deployment, as shown in Fig. 11.

We observe performance speedups for both WICP_Local and

WICP_Mixed, but di�erent query engines show di�erent impacts.

For SingleStore, WICP_Local achieves much higher speedups than

WICP_Mixed, 3.32× vs. 1.85×. In the same vein, Presto has a pref-

erence for WICP_Local over WICP_Mixed, but the gap is smaller,

2.61× vs. 2.38×. However, SparkSQL shows a di�erent trend with

WICP_Mixed (3.40×) that slightly outperforms WICP_Local (3.32×).

These di�erent behaviors stem from how these query engines im-

plement data movement during the shuffle and join operations.

Tab. 2 shows the peak memory and bandwidth when executing the

most relevant queries for each query engine.

SingleStore stands out as the only system that transfers data

within the capacity of an L3 cache (i.e., WICP_Local performs much

better). Tab. 2 also shows that SingleStore exhibits a more signi�-

cant di�erence in maximum bandwidth between WICP_Local and

WICP_Mixed, compared to Presto and SparkSQL. It consistently

achieves higher bandwidth in WICP_Local. In contrast, both Presto

and SparkSQL incur larger data movement beyond the combined

L3 cache capacity, resulting in data being fetched from the main

memory. Most of the execution time is spent on accessing mem-

ory and therefore, the performance gap between WICP_Local and

WICP_Mixed becomes small.

When data exceeds a single L3 cache but �ts within the combined

L3 caches, the WICP_Mixed policy utilizes cache resources more

e�ectively. Therefore, when deciding on a placement policy, the

task scheduler should take into account the available cache size,

the chiplet’s share of L3 cache, and the working set size.

Insights. Users should use the WICP_Local deployment policy when

the working set is below the capacity of a single chiplet’s L3 cache.

When the amount of data is larger than the chiplet’s share of the L3

Table 2: Peak memory usage and bandwidth of TPC-H queries

Presto Query ID Memory (GB) Local (GB/s) Mixed (GB/s)

2 2.16 251.49 233,51
7 9.13 298.38 284.99
17 1.71 236.03 236.07
19 0.51 221.15 217.14
21 32.80 291.87 281.21

SingleStore Query ID Memory (GB) Local (GB/s) Mixed (GB/s)

2 0.02 41.38 37.86
7 0.32 210.83 165.26
17 0.32 220.91 177.40
19 0.02 138.95 99.43
21 0.30 182.16 153.11

SparkSQL Query ID Memory (GB) Local (GB/s) Mixed (GB/s)

2 2.10 146.30 155.28
7 3.40 209.25 204.86
17 6.80 245.37 225.65
19 0.43 118.64 123.98
21 12.60 253.27 250.12

cache size but smaller than the size of combined L3 caches, one should

use the WICP_Mixed deployment policy. When accessing a larger

amount of data, the performances of WICP_Local and WICP_Mixed

are similar, and the thread to core placement has less impact.

4.5 Sensitivity analysis

In this section, we explore the sensitivity and real-world appli-

cability of our �nding with a diverse set of workloads and con�gu-

rations.

4.5.1 Number of worker instances. We�rst explore how the number

of worker instances a�ects the query performance of WICP on the

Intel Sapphire Rapids. We vary the number of worker instances Ĥ,

where each worker instance is assigned +112/Ĥ, cores. Whenever

possible, we map cores to a worker instance from a single chiplet

and NUMA domain. We measure the speedup of WICP over the

default deployment policy, WIM for all three query engines.

Fig. 12 shows the geometric mean of speedups on TPC-H. Here,

Presto (Fig. 12a), SingleStore (Fig. 12b), and SparkSQL (Fig. 12c) ex-

hibit the same trend that the speedup keeps increasing to 8 worker

instances, reaching 3.62×, 2.75× and 7.04×, respectively. Their

speedups plateau at 8 worker instances and start to deteriorate

from 28 worker instances. Note that Intel Sapphire Rapids has

8 chiplets. This means query engines achieve a superior balance of

computation and communication granularity when the number of

worker instances equals the number of chiplets.

4.5.2 �ery variety. Next, we investigate how the diversity of

queries a�ects the performance of query engines on a chiplet-based

machine i.e., AMD EPYC Milan. To this end, we use SingleStore to

evaluate the TPC-DS workload. For each query, we measure the

performance speedups of WICP and WIN over the default WIM, as

illustrated in Fig. 13.

We observe little impact of query diversity on performance. All

queries exhibit speedupswith the WICP and WIN deployment policies.

Q1, Q21, Q22, Q37, Q39, Q81, Q83, Q84 and Q91 show the highest

speedups because they spend most of the execution time scanning

large tables (e.g., the inventory table), which bene�t from WICP

(see §4.2). By examining the execution plans, we �nd that such scan

phases cause expensive remote memory accesses in WIM.



1 2 4 8 16 28 56 112

Number of Workers

1

2

3

S
p
e
e
d
u
p
s
o
v
e
r
W

IM

(a) Presto

1 2 4 8 16 28 56 112

Number of Workers

1.0

1.5

2.0

2.5

S
p
e
e
d
u
p
s
o
v
e
r
W

IM
(b) SingleStore

1 2 4 8 16 28 56 112

Number of Workers

2

4

6

S
p
e
e
d
u
p
s
o
v
e
r
W

IM

(c) SparkSQL

Figure 12: Varying the number of database worker instances on

a dual-socket Intel Sapphire Rapids (geomean speedup with TPC-H

SF 100)

1 2 3 4 5

Speedup vs. WIM

WIN

WICP

1.3x faster
3.0x faster

Figure 13: Presto: TPC-DS on AMD EPYC Milan

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 Geomean

1.00

2.00

4.00

8.00

16.00

S
p
ee
d
u
p
s
o
ve
r
W
IM

WIN

WICP

Figure 14: SingleStore: JCC-H on AMD EPYC Milan

Insights. Queries involving extensive data scans or signi�cant data

shu�ing bene�t from the enhanced locality that WICP can provide.

Overall, all queries see improvements with WICP, even with complex

benchmark suites such as TPC-DS.

4.5.3 Data skew. Finally, we explore the impact of skewed work-

loads on the performance of deployment policies. We use Single-

Store to evaluate with the JCC-H benchmark [32], which introduces

the join-crossing-correlations and injects skew into its dataset and

query workload. We measure the speedups of WICP and WIN over

the default WIM.

Fig. 14 shows the speedups for individual queries and their geo-

metric mean speedups. Here, we observe that skewed workloads

a�ect the performance of the WICP. The geometric mean speedups

for WICP and WIN are 2.31× and 1.72×, respectively, compared to

TPC-H’s 3.40× and 2.68×, respectively. The reason is that data

skew by nature enforces more locality in the default WIM policy

and challenges the e�ciency of WICP by leading to imbalanced

workload distribution. Speci�cally, data skew implies that certain

data items are accessed more frequently than others. With the WIN

policy, this frequent access to speci�c data items leads to increased

resource contention. In contrast, while the WICP policy eliminates

cross-chiplet communication, it encounters limitations when the

data exceeds the capacity of a chiplet’s smaller cache, relying on

slower main memory accesses.

To e�ectively manage data skew in chiplet-based processors, one

strategy is to implement skew-aware resource allocationwhile keep-

ing the processing localized. This involves dynamically adjusting

the resources from each chiplet based on the data distribution [26].

For example, in a distributed computing system (e.g., Spark [16]),

instances handling larger or more complex data partitions can be

allocated speci�c chiplet’s resources that are local to those data

partitions. This dynamic allocation can be achieved using real-time

monitoring tools that analyze data load on chiplets and perfor-

mance metrics across instances, similar to those used in distributed

database systems (e.g., Apache Cassandra [30]).

Insights. Designing data systems on chiplet-based processors must

account for data skew, which can hinder performance gains with WICP

due to increased cross-chiplet communication and congestion. Despite

this, WICP generally outperforms WIN for most queries. To e�ectively

manage data skew, guidelines include (i) the redistribution of com-

munication tra�c, (ii) the implementation of skew-aware resource

allocation, and (iii) the dynamic adjustment of chiplet resources based

on data distribution while maintaining localized processing.

5 DISCUSSION

The chiplet age. The trend towards chiplet-based processors is a

clear sign of a signi�cant shift in the world of computing. The key

factor behind it is the �exibility that chiplets o�er. Manufacturers

can mix and match di�erent components such as CPUs, GPUs, and

memory to create con�gurations that meet speci�c performance

needs for particular applications. The introduction of standards

such as the Universal Chiplet Interconnect Express (UCIe) further

cements the future of chiplets in the industry [62]. UCIe standard-

izes the interconnects between di�erent chiplets, facilitating inter-

operability between components made by various manufacturers,

which speeds up the adoption of chiplet technology.

Another exciting development is the integration of High Band-

width Memory (HBM) into chiplet designs, as used by Intel pro-

cessors. This integration signi�cantly increases memory band-

width, making chiplet-based processors especially e�ective for data-

intensive tasks.

NUMA domain con�guration. NUMA is an integral part of mod-

ern multiprocessing systems. AMD and Intel have developed spe-

ci�c features that can be enabled by changing BIOS con�gurations

to enhance NUMA con�gurations: AMD’s NUMA Per Socket (NPS)

and Intel’s Sub-NUMA Clustering (SNC). AMD’s NPS, in EPYC

processors, divides sockets into multiple NUMA nodes, each with

its own memory, optimizing memory bandwidth and latency. On

the other hand, Intel’s SNC, starting from Xeon Scalable processors,

splits processor resources into smaller NUMA domains, focusing

on cache and memory e�ciency to reduce latency.

These features boost performance by improving memory and

cache utilization, especially in demanding applications such as

large-scale databases and data analytics. However, this is not a

complete solution as many systems, such as Presto or SparkSQL,

do not e�ectively exploit multiple NUMA domains. In conclusion,

these features can only realize their full potential when paired with

software that is equally attuned to the nuances of the hardware.

Inter-machine scalability. When discussing distributed query

engines, it is essential to recognize that they are designed for multi-

machine environments. We actually exploit this when applying the

WICP deployment design and leaving all the e�ort in managing the

partitioning and distribution of data, along with the creation of the

appropriate query plan, to the query execution engine. Compared to



the traditional WIM design, WICP employs signi�cantly more worker

instances, resulting in increased communication overhead during

query processing. Thus, one should consider integrating multiple

high-performance network cards with the database’s worker in-

stances during setup to mitigate NIC-related bottlenecks.

Furthermore, when comparing WICP and WIM deployments, the

single-machine scenario is the least favorable for WICP due to its

need for inter-worker communication, unlike WIM which requires

none. However, as more machines are added, the performance

gap between WICP and WIM decreases. For example, with a two-

chiplet machine, WIM needs no communication, while WICP requires

50% communication for processing. With two machines, the gap

narrows further: WIM’s communication need rises to 50%, whereas

WICP’s increases to 75%. For this reason, we believe that speedup

improves as the number of machines increases.

Chiplet dollar cost. Chiplet technology is still relatively new, but

as it matures and production volume increases, economies of scale

will likely bring down the cost of chiplet-based servers [9]. Even

today, the list price for Intel’s 4th Gen. Xeon Platinum processors

is 14% higher compared to 3rd Gen. monolithic processors with

the same CPU core count [14, 15]. In addition, chiplets improve

manufacturing yield, as smaller chiplets are less likely to have de-

fects [37], and their modular design enables reuse, which amortizes

design costs over multiple products.

Dennard scaling. The slowdown of Dennard scaling, which previ-

ously enabled power e�ciency gains with transistor miniaturiza-

tion, has limited the scaling of traditional monolithic processors.

This slowdown is partly due to increased manufacturing di�cul-

ties, which led to higher error rates and lower yields as transistors

become smaller. To address these challenges and continue scal-

ing, chiplet technology has emerged as an alternative approach.

Breaking down processors into smaller, modular chiplets, maintains

higher yields and improves power e�ciency compared to a mono-

lithic design that crams everything onto one die [47]. This modular

approach allows for independent scaling of di�erent chiplet types,

leading to a higher CPU core count than traditional NUMA designs.

6 RELATED WORK

Recent CPU advancements are comprehensively documented in

industrial white papers and vendor manuals from major compa-

nies such as AMD and Intel [49, 54, 56]. Leading researchers [42]

have also brought attention to these developments. For a deeper un-

derstanding of physical implementations and control mechanisms,

peer-reviewed studies provide valuable insights. For example, Suggs

et al. [63] investigate the Zen 2 architecture; Schöne et al. [60] fo-

cus on energy e�ciency aspects; and Na�ziger et al. [55] discuss

multi-die chiplet con�gurations.

Other prior studies have evaluated the latency and bandwidth

capabilities of chiplet-based processors: Velten et al. [64] conduct an

in-depth experimental evaluation of the memory hierarchy in AMD

EPYC Rome and Intel Xeon Cascade Lake SP server processors; Fo-

touhi et al. [39] examine the energy and performance bene�ts of a

point-to-point silicon-photonic interconnect, highlighting its poten-

tial to create a scalable chiplet-based UMA system; and Chirkov et

al. [35] also evaluate the interconnect’s performance and introduce

Meduza, a write-update coherence protocol for chiplet systems.

To date and to the best of our knowledge, there have been no

studies on the e�ect of chiplet processor designs on data intensive

applications such as databases and distributed query engines. Prior

work has evaluated the performance of distributed databases when

running on modern multiprocessor machines [44, 58, 59] but with

a particular focus on NUMA. For example, Porobic et al. [58] in-

troduce the concept of hardware islands and focus on determining

the right trade-o� between shared-everything and shared-nothing

deployments in multiprocessor systems, measuring the impact of

distributed transactions and skewed requests on di�erent OLTP

workloads. Similarly, Salomie et al. [59] proposed to treat a multi-

core machine as a distributed system and replicate their internal

logic to address their inherent scalability limitations.

7 CONCLUSION

Our work focuses on the critical in�uence of chiplet-based CPU

architectures on the performance of multi-core query engines. This

is a timely study given the recent adoption of chiplet designs by all

leading processor manufacturers. We propose a chiplet-granular

deployment policy that optimizes task allocation to exploit the ar-

chitectural bene�ts of chiplets. With a wide range of experiments,

we show that one can signi�cantly enhance the query performance

with careful chiplet-aware placement of tasks and data, even with-

out modifying existing engines, regardless of whether they are used

on-premise or deployed in the cloud environment.

Our observations help us derive guidelines on internal optimiza-

tions that can be used within engines, customizing their resource

allocation policies on novel chiplet-based processors. Overall, we

conclude that query engines need us to rethink resource alloca-

tion strategies to exploit the underlying hardware resources of

chiplet-based processors to a full extent.

REFERENCES
[1] 2023. Apache Hadoop. https://hadoop.apache.org. Accessed: 2023-6-19.
[2] 2023. Introduction to Greenplum. https://docs.greenplum.org/6-10/install_guide/

preinstall_concepts.html. Accessed: 2023-6-19.
[3] 2023. SingleStore Documentation. https://docs.singlestore.com/v7.3/

introduction/documentation-overview/. Accessed: 2023-6-19.
[4] 2023. Teradata online documentation. https://docs.teradata.com/r/

Teradata-VantageTM-SQL-Fundamentals/June-2022/Introduction-to-SQL-
Fundamentals. Accessed: 2023-6-19.

[5] 2023. VMware Greenplum 6.24 documentation. https://docs.greenplum.org/6-
12/common/gpdb-features.html. Accessed: 2023-6-19.

[6] 2024. Amazon Athena. https://docs.aws.amazon.com/whitepapers/latest/big-
data-analytics-options/amazon-athena.html. Accessed: 2023-6-19.

[7] 2024. Amazon Redshift provisioned clusters. https://docs.aws.amazon.com/
redshift/latest/mgmt/working-with-clusters.html. Accessed: 2023-6-19.

[8] 2024. Analyzing Unconventional Logic Semiconductors – A Shift Away from
Semiconductor Manufacturers. https://hacarus.com/ai-lab/03312022-graviton3/.
Accessed: 2024-3-1.

[9] 2024. Chiplet Market Update. https://chipletsummit.com/proceeding_�les/
a0q5f000001WuE0/20230125_PLEN_Hackenberg.PDF. Accessed: 2024-5-12.

[10] 2024. Con�guring NUMA for SingleStore. https://support.singlestore.com/hc/en-
us/articles/360058633252-Con�guring-NUMA-for-SingleStore. Accessed: 2024-
3-1.

[11] 2024. Core to Core Latency Data on Large Systems. https://chipsandcheese.com/
2023/11/07/core-to-core-latency-data-on-large-systems/. Accessed: 2024-5-12.

[12] 2024. The evolution of single-core bandwidth in multicore proces-
sors. https://sites.utexas.edu/jdm4372/2023/04/25/the-evolution-of-single-core-
bandwidth-in-multicore-processors/. Accessed: 2024-5-12.

[13] 2024. The evolution of single-core bandwidth in multicore systems — up-
date. https://sites.utexas.edu/jdm4372/2023/12/19/the-evolution-of-single-core-
bandwidth-in-multicore-systems-update/. Accessed: 2024-5-12.

[14] 2024. Intel® Xeon® Platinum 8380 Processor. https://ark.intel.com/content/
www/us/en/ark/products/212287/intel-xeon-platinum-8380-processor-60m-

https://hadoop.apache.org
https://docs.greenplum.org/6-10/install_guide/preinstall_concepts.html
https://docs.greenplum.org/6-10/install_guide/preinstall_concepts.html
https://docs.singlestore.com/v7.3/introduction/documentation-overview/
https://docs.singlestore.com/v7.3/introduction/documentation-overview/
https://docs.teradata.com/r/Teradata-VantageTM-SQL-Fundamentals/June-2022/Introduction-to-SQL-Fundamentals
https://docs.teradata.com/r/Teradata-VantageTM-SQL-Fundamentals/June-2022/Introduction-to-SQL-Fundamentals
https://docs.teradata.com/r/Teradata-VantageTM-SQL-Fundamentals/June-2022/Introduction-to-SQL-Fundamentals
https://docs.greenplum.org/6-12/common/gpdb-features.html
https://docs.greenplum.org/6-12/common/gpdb-features.html
https://docs.aws.amazon.com/whitepapers/latest/big-data-analytics-options/amazon-athena.html
https://docs.aws.amazon.com/whitepapers/latest/big-data-analytics-options/amazon-athena.html
https://docs.aws.amazon.com/redshift/latest/mgmt/working-with-clusters.html
https://docs.aws.amazon.com/redshift/latest/mgmt/working-with-clusters.html
https://hacarus.com/ai-lab/03312022-graviton3/
https://chipletsummit.com/proceeding_files/a0q5f000001WuE0/20230125_PLEN_Hackenberg.PDF
https://chipletsummit.com/proceeding_files/a0q5f000001WuE0/20230125_PLEN_Hackenberg.PDF
https://support.singlestore.com/hc/en-us/articles/360058633252-Configuring-NUMA-for-SingleStore
https://support.singlestore.com/hc/en-us/articles/360058633252-Configuring-NUMA-for-SingleStore
https://chipsandcheese.com/2023/11/07/core-to-core-latency-data-on-large-systems/
https://chipsandcheese.com/2023/11/07/core-to-core-latency-data-on-large-systems/
https://sites.utexas.edu/jdm4372/2023/04/25/the-evolution-of-single-core-bandwidth-in-multicore-processors/
https://sites.utexas.edu/jdm4372/2023/04/25/the-evolution-of-single-core-bandwidth-in-multicore-processors/
https://sites.utexas.edu/jdm4372/2023/12/19/the-evolution-of-single-core-bandwidth-in-multicore-systems-update/
https://sites.utexas.edu/jdm4372/2023/12/19/the-evolution-of-single-core-bandwidth-in-multicore-systems-update/
https://ark.intel.com/content/www/us/en/ark/products/212287/intel-xeon-platinum-8380-processor-60m-cache-2-30-ghz.html
https://ark.intel.com/content/www/us/en/ark/products/212287/intel-xeon-platinum-8380-processor-60m-cache-2-30-ghz.html


cache-2-30-ghz.html. Accessed: 2024-5-12.
[15] 2024. Intel® Xeon® Platinum 8460H Processor. https://ark.intel.com/content/

www/us/en/ark/products/231744/intel-xeon-platinum-8460h-processor-
105m-cache-2-20-ghz.html. Accessed: 2024-5-12.

[16] 2024. Mastering Dynamic Resource Allocation in Apache Spark. https://www.
sparkcodehub.com/spark-dynamic-allocation. Accessed: 2024-5-12.

[17] 2024. MySQL Documentation. https://dev.mysql.com/doc/. Accessed: 2024-3-1.
[18] 2024. NUMA Balancing. https://www.kernel.org/doc/html/latest/admin-guide/

sysctl/kernel.html#numa-balancing. Accessed: 2023-6-19.
[19] 2024. numactl(8) — Linux manual page. https://man7.org/linux/man-pages/

man8/numactl.8.html. Accessed: 2024-5-12.
[20] 2024. Oracle Exadata Database Machine X8-2. https://www.oracle.com/

technetwork/database/exadata/exadata-x8-2-ds-5444350.pdf. Accessed: 2023-6-
19.

[21] 2024. Overview of ClickHouse Architecture. https://clickhouse.com/docs/en/
development/architecture. Accessed: 2024-3-1.

[22] 2024. Sapphire Rapids: Golden Cove Hits Servers. https://chipsandcheese-
com.translate.goog/2023/03/12/a-peek-at-sapphire-rapids/?_x_tr_sl=en&_x_
tr_tl=it&_x_tr_hl=it&_x_tr_pto=sc. Accessed: 2024-5-12.

[23] 2024. TPC Benchmark™ DS. https://www.tpc.org/TPC_Documents_Current_
Versions/pdf/TPC-DS_v3.2.0.pdf. Accessed: 2024-3-1.

[24] 2024. TPC Benchmark™ H. https://www.tpc.org/TPC_Documents_Current_
Versions/pdf/TPC-H_v3.0.1.pdf. Accessed: 2024-3-1.

[25] Josep Aguilar-Saborit, Raghu Ramakrishnan, Krish Srinivasan, Kevin Bock-
srocker, Ioannis Alagiannis, Mahadevan Sankara, Moe Sha�ei, Jose Blakeley,
Girish Dasarathy, Sumeet Dash, Lazar Davidovic, Maja Damjanic, Slobodan Dju-
nic, Nemanja Djurkic, Charles Feddersen, Cesar Galindo-Legaria, AlanHalverson,
Milana Kovacevic, Nikola Kicovic, Goran Lukic, Djordje Maksimovic, Ana Manic,
Nikola Markovic, Bosko Mihic, Ugljesa Milic, Marko Milojevic, Tapas Nayak,
Milan Potocnik, Milos Radic, Bozidar Radivojevic, Srikumar Rangarajan, Mi-
lan Ruzic, Milan Simic, Marko Sosic, Igor Stanko, Maja Stikic, Sasa Stanojkov,
Vukasin Stefanovic, Milos Sukovic, Aleksandar Tomic, Dragan Tomic, Steve
Toscano, Djordje Trifunovic, Veljko Vasic, Tomer Verona, Aleksandar Vujic,
Nikola Vujic, Marko Vukovic, and Marko Zivanovic. 2020. POLARIS: The Dis-
tributed SQL Engine in Azure Synapse. Proceedings VLDB Endowment 13, 12
(2020), 3204–3216.

[26] Hossein Ahmadvand, Tooska Dargahi, Fouzhan Foroutan, Princewill Okorie, and
Flavio Esposito. 2021. Big Data Processing at the Edge with Data Skew Aware
Resource Allocation. 2021 IEEE Conference on Network Function Virtualization
and Software De�ned Networks (NFV-SDN) (2021), 81–86.

[27] Michael Armbrust, Reynold Xin, Cheng Lian, Yin Huai, Davies Liu, Joseph K.
Bradley, Xiangrui Meng, Tomer Kaftan, Michael J. Franklin, Ali Ghodsi, and
Matei A. Zaharia. 2015. Spark SQL: Relational Data Processing in Spark. Pro-
ceedings of the 2015 ACM SIGMOD International Conference on Management of
Data (2015).

[28] Nikos Armenatzoglou, Sanuj Basu, Naga Bhanoori, Mengchu Cai, Naresh
Chainani, Kiran Chinta, Venkatraman Govindaraju, Todd J Green, Monish Gupta,
Sebastian Hillig, Eric Hotinger, Yan Leshinksy, Jintian Liang, Michael McCreedy,
Fabian Nagel, Ippokratis Pandis, Panos Parchas, Rahul Pathak, Orestis Polychro-
niou, Foyzur Rahman, Gaurav Saxena, Gokul Soundararajan, Sriram Subrama-
nian, and Doug Terry. 2022. Amazon Redshift Re-invented. SIGMOD/PODS ’22:
International Conference on Management of Data (2022).

[29] Claude Barthels, Ingo Müller, Timo Schneider, Gustavo Alonso, and Torsten
Hoe�er. 2017. Distributed join algorithms on thousands of cores. Proceedings
VLDB Endowment 10, 5 (2017), 517–528.

[30] Giuseppe Baru�a, Mauro Femminella, Matteo Pergolesi, and Gianluca Reali. 2020.
Comparison of MongoDB and Cassandra Databases for Spectrum Monitoring
As-a-Service. IEEE Transactions on Network and Service Management 17 (2020),
346–360.

[31] Carsten Binnig, AndrewCrotty, Alex Galakatos, TimKraska, and Erfan Zamanian.
2015. The end of slow networks: It’s time for a redesign. (2015).

[32] Peter Boncz, Angelos-Christos Anatiotis, and Ste�en Kläbe. 2018. JCC-H: Adding
join crossing correlations with skew to TPC-H. (2018), 103–119.

[33] Irina Calciu, Siddhartha Sen, Mahesh Balakrishnan, and Marcos K Aguilera. 2017.
Black-box Concurrent Data Structures for NUMA Architectures. ASPLOS ’17:
Architectural Support for Programming Languages and Operating Systems (2017).

[34] Jack Chen, Samir Jindel, Robert Walzer, Rajkumar Sen, Nika Jimsheleishvilli,
and Michael Andrews. 2016. The MemSQL query optimizer. Proceedings VLDB
Endowment 9, 13 (2016), 1401–1412.

[35] Grigory Chirkov and David Wentzla�. 2023. Seizing the Bandwidth Scaling of
On-Package Interconnect in a Post-Moore’s Law World. Proceedings of the 37th
International Conference on Supercomputing (2023).

[36] Markus Dreseler, Martin Boissier, Tilmann Rabl, and Matthias U�acker. 2020.
Quantifying TPC-H choke points and their optimizations. Proceedings of the
VLDB Endowment 13 (2020), 1206 – 1220.

[37] Yinxiao Feng and Kaisheng Ma. 2022. Chiplet actuary: a quantitative cost model
and multi-chiplet architecture exploration. Proceedings of the 59th ACM/IEEE
Design Automation Conference (2022).

[38] Sérgio Fernandes and Jorge Bernardino. 2014. What is BigQuery? Proceedings of
the 19th International Database Engineering & Applications Symposium (2014).

[39] Pouya Fotouhi. 2019. Enabling scalable chiplet-based uniform memory archi-
tectures with silicon photonics. Proceedings of the International Symposium on
Memory Systems (2019).

[40] Fabien Gaud, Baptiste Lepers, Justin R. Funston, Mohammad Dashti, Alexandra
Fedorova, Vivien Quéma, Renaud Lachaize, and Mark Roth. 2015. Challenges of
memory management on modern NUMA systems. Commun. ACM 58 (2015), 59
– 66.

[41] AnuragGupta, DeepakAgarwal, Derek Tan, Jakub Kulesza, Rahul Pathak, Stefano
Stefani, and Vidhya Srinivasan. 2015. Amazon redshift and the case for simpler
data warehouses. Proceedings of the 2015 ACM SIGMOD International Conference
on Management of Data (2015).

[42] John L. Hennessy and David A. Patterson. 2019. A new golden age for computer
architecture. Commun. ACM 62 (2019), 48 – 60.

[43] Robert Kallman, Hideaki Kimura, Jonathan Natkins, Andrew Pavlo, Alexander
Rasin, Stanley Zdonik, Evan P. C. Jones, Samuel Madden, Michael Stonebraker,
Yang Zhang, John Hugg, and Daniel J. Abadi. 2008. H-Store: A High-Performance,
Distributed Main Memory Transaction Processing System. Proc. VLDB Endow. 1,
2 (2008), 1496–1499.

[44] T Kiefer, B Schlegel, and W Lehner. 2013. Experimental Evaluation of NUMA
E�ects on Database Management Systems. BTW.

[45] Andi Kleen. 2005. A numa api for linux. Novel Inc (2005).
[46] B Lepers, V Quéma, and A Fedorova. 2015. Thread and Memory Placement on

NUMA Systems: Asymmetry Matters.” USENIX Annual Technical Conference.
[47] Mian Liao, Daniel H. Zhou, P. Wang, and Minjie Chen. 2023. Power Systems on

Chiplet: Inductor-Linked Multi-Output Switched-Capacitor Multi-Rail Power De-
livery on Chiplets. 2023 Fourth International Symposium on 3D Power Electronics
Integration and Manufacturing (3D-PEIM) (2023), 1–7.

[48] Ravi Mahajan, Robert Sankman, N. Patel, Dae woo Kim, Kemal Aygun, Zhiguo
Qian, Yidnekachew S. Mekonnen, Islam A. Salama, Sujit Sharan, Deepti Iyengar,
and D. Mallik. 2016. Embedded Multi-die Interconnect Bridge (EMIB) – A High
Density, High Bandwidth Packaging Interconnect. 2016 IEEE 66th Electronic
Components and Technology Conference (ECTC) (2016), 557–565.

[49] Michael Mattioli. 2021. Rome to Milan, AMD Continues Its Tour of Italy. IEEE
Micro 41, 4 (2021), 78–83.

[50] John D. McCalpin. 1991-2007. STREAM: Sustainable Memory Bandwidth
in High Performance Computers. Technical Report. University of Vir-
ginia, Charlottesville, Virginia. A continually updated technical report.
http://www.cs.virginia.edu/stream/.

[51] John D. McCalpin. 2021. Mapping Core and L3 Slice Numbering to Die Locations
in Intel Xeon Scalable Processors. (2021).

[52] John D. McCalpin. 2023. Bandwidth Limits in the Intel Xeon Max (Sapphire
Rapids with HBM) Processors. ISC Workshops (2023).

[53] Gabe Mounce, James Lyke, Stephen J. Horan, R. Doyle, Raphael R. Some, and
Wesley A. Powell. 2016. Chiplet based approach for heterogeneous processing
and packaging architectures. 2016 IEEE Aerospace Conference (2016), 1–12.

[54] Samuel D. Na�ziger, Noah Beck, Thomas D. Burd, Kevin M. Lepak, Gabriel H.
Loh, Mahesh Subramony, and Sean White. 2021. Pioneering Chiplet Technology
and Design for the AMD EPYC™ and Ryzen™ Processor Families : Industrial
Product. 2021 ACM/IEEE 48th Annual International Symposium on Computer
Architecture (ISCA) (2021), 57–70.

[55] Samuel D. Na�ziger, Kevin M. Lepak, Milam Paraschou, and Mahesh Subramony.
2020. 2.2 AMD Chiplet Architecture for High-Performance Server and Desktop
Products. 2020 IEEE International Solid- State Circuits Conference - (ISSCC) (2020),
44–45.

[56] Nevine Nassif, Ashley Munch, Carleton L. Molnar, Gerald Pasdast, Sitaraman V.
Lyer, Zibing Yang, Oscar Mendoza, Mark Huddart, Srikrishnan Venkataraman,
Sireesha Kandula, Ra� Marom, Alexander M. Kern, William J. Bowhill, David
Mulvihill, Srikanth Nimmagadda, Varma Kalidindi, Jonathan Krause, Moham-
mad MinHazul Haq, Roopali Sharma, and Kevin Duda. 2022. Sapphire Rapids:
The Next-Generation Intel Xeon Scalable Processor. 2022 IEEE International Solid-
State Circuits Conference (ISSCC) 65 (2022), 44–46.

[57] Orestis Polychroniou, Wangda Zhang, and Kenneth A. Ross. 2018. Distributed
Joins and Data Placement for Minimal Network Tra�c. ACM Trans. Database
Syst. 43 (2018), 14:1–14:45.

[58] Danica Porobic, Ippokratis Pandis, Miguel Branco, Pınar Tözün, and Anastasia
Ailamaki. 2012. OLTP on Hardware Islands. Proc. VLDB Endow. 5 (2012), 1447–
1458.

[59] Tudor-Ioan Salomie, Ionut Emanuel Subasu, Jana Giceva, and Gustavo Alonso.
2011. Database engines on multicores, why parallelize when you can distribute?
European Conference on Computer Systems (2011).

[60] Robert Schöne, Thomas Ilsche, Mario Bielert, Markus Velten, Markus Schmidl,
and Daniel Hackenberg. 2021. Energy E�ciency Aspects of the AMD Zen 2
Architecture. 2021 IEEE International Conference on Cluster Computing (CLUSTER)
(2021), 562–571.

[61] Raghav Sethi, Martin Traverso, Dain Sundstrom, Dave Phillips, Wenlei Xie,
Yutian Sun, Nezih Yegitbasi, Haozhun Jin, Eric Hwang, Nileema Shingte, and

https://ark.intel.com/content/www/us/en/ark/products/212287/intel-xeon-platinum-8380-processor-60m-cache-2-30-ghz.html
https://ark.intel.com/content/www/us/en/ark/products/231744/intel-xeon-platinum-8460h-processor-105m-cache-2-20-ghz.html
https://ark.intel.com/content/www/us/en/ark/products/231744/intel-xeon-platinum-8460h-processor-105m-cache-2-20-ghz.html
https://ark.intel.com/content/www/us/en/ark/products/231744/intel-xeon-platinum-8460h-processor-105m-cache-2-20-ghz.html
https://www.sparkcodehub.com/spark-dynamic-allocation
https://www.sparkcodehub.com/spark-dynamic-allocation
https://dev.mysql.com/doc/
https://www.kernel.org/doc/html/latest/admin-guide/sysctl/kernel.html#numa-balancing
https://www.kernel.org/doc/html/latest/admin-guide/sysctl/kernel.html#numa-balancing
https://man7.org/linux/man-pages/man8/numactl.8.html
https://man7.org/linux/man-pages/man8/numactl.8.html
https://www.oracle.com/technetwork/database/exadata/exadata-x8-2-ds-5444350.pdf
https://www.oracle.com/technetwork/database/exadata/exadata-x8-2-ds-5444350.pdf
https://clickhouse.com/docs/en/development/architecture
https://clickhouse.com/docs/en/development/architecture
https://chipsandcheese-com.translate.goog/2023/03/12/a-peek-at-sapphire-rapids/?_x_tr_sl=en&_x_tr_tl=it&_x_tr_hl=it&_x_tr_pto=sc
https://chipsandcheese-com.translate.goog/2023/03/12/a-peek-at-sapphire-rapids/?_x_tr_sl=en&_x_tr_tl=it&_x_tr_hl=it&_x_tr_pto=sc
https://chipsandcheese-com.translate.goog/2023/03/12/a-peek-at-sapphire-rapids/?_x_tr_sl=en&_x_tr_tl=it&_x_tr_hl=it&_x_tr_pto=sc
https://www.tpc.org/TPC_Documents_Current_Versions/pdf/TPC-DS_v3.2.0.pdf
https://www.tpc.org/TPC_Documents_Current_Versions/pdf/TPC-DS_v3.2.0.pdf
https://www.tpc.org/TPC_Documents_Current_Versions/pdf/TPC-H_v3.0.1.pdf
https://www.tpc.org/TPC_Documents_Current_Versions/pdf/TPC-H_v3.0.1.pdf


Christopher Berner. 2019. Presto: SQL on Everything. 2019 IEEE 35th International
Conference on Data Engineering (ICDE) (2019), 1802–1813.

[62] Debendra Das Sharma, Gerald Pasdast, Zhiguo Qian, and Kemal Aygun. 2022.
Universal Chiplet Interconnect Express (UCIe): An Open Industry Standard for
Innovations With Chiplets at Package Level. IEEE Transactions on Components,
Packaging and Manufacturing Technology 12 (2022), 1423–1431.

[63] David Suggs, Mahesh Subramony, and Dan Bouvier. 2020. The AMD “Zen 2”
Processor. IEEE Micro 40 (2020), 45–52.

[64] Markus Velten, Robert Schöne, Thomas Ilsche, and Daniel Hackenberg. 2022.
Memory Performance of AMD EPYC Rome and Intel Cascade Lake SP Server
Processors. Proceedings of the 2022 ACM/SPEC on International Conference on
Performance Engineering (2022).

[65] Shiliang Zhu, Min Miao, Zhuanzhuan Zhang, and Xiaolong Duan. 2022. Research
on A Chiplet-based DSA (Domain-Speci�c Architectures) Scalable Convolutional
Acceleration Architecture. 2022 23rd International Conference on Electronic Pack-
aging Technology (ICEPT) (2022), 1–6.


	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 Chiplet-based architectures
	2.2 Testbed configuration
	2.3 Core-to-core latency
	2.4 Core-to-core bandwidth
	2.5 Aggregate memory bandwidth

	3 Deployments of Query Engines
	3.1 Architecture of distributed query engines
	3.2 Design space overview and trade-offs

	4 Experimental Analysis
	4.1 Experimental setup
	4.2 Deployment on chiplet-based machines
	4.3 Multi-core scalability
	4.4 Chiplet L3 cache efficacy
	4.5 Sensitivity analysis

	5 Discussion
	6 Related work
	7 Conclusion
	References

