
Cephalopod – Virtual Data Model Composition
through PartialQuery Translation

Holger Pirk
hlgr@imperial.ac.uk

Imperial College London
London, UK

David Conor Loughlin
david.loughlin19@imperial.ac.uk

Imperial College London
London, UK

ABSTRACT
Most applications have an ideal data model they should be sup-
ported by: business data by relations, social networks by graphs,
messaging applications by documents and machine learning by
vectors. Unfortunately, many applications need to be implemented
against a “less-than-ideal” (we use the term “imposed”) data model:
business data is stored in documents, learned models must pro-
cess relational tuples and graphs are embedded in vectors. The
textbook solution to that problem is physical integration: Extract-
ing, Transforming and Loading data from the imposed into the
ideal data model. While effective, this ETL-process is expensive and
leads to staleness. Virtual integration (through query rewriting)
avoids these problems but leads to a combinatorial explosion of
ideal-to-imposed-model mappings.

We propose to address this problem by developing a “Bridge
Representation” that can be used to implement virtual integration
through query translation when possible and physical integration
through data transformation when necessary.

In this paper, we outline the idea, study a number of guiding
use cases and develop a research agenda towards such a Bridge
Representation and a system that implements the approach.We also
provide some preliminary results indicating that even non-bijective
data-model integrations like vector embeddings can be supported
at a fraction of the cost of physical integration.

1 MOTIVATION

Most applications are built on top of a logical data model that pro-
vides functionality such as storage of data-primitives like tuples,
graphs or vectors, operators like joins, edge-traversal, or vector-
products and even the enforcement of integrity constraints like
dimensionalities, uniqueness or connectedness. Selecting an ap-
propriate data model for an application is a key design decision
that affects developer-productivity, performance and quality of an
application throughout its lifecycle.

Consider, e.g., the case of Retrieval-AugmentedGeneration (RAG),
a technique that has recently been proposed to address two of the
key shortcomings of Large-Language Models (LLMs): the expen-
sive model refinement when new data comes in and the model’s
tendency to “hallucinate” facts when generating responses. Under
RAG, an LLM receives a set of relevant input data just before a

This paper is published under the Creative Commons Attribution 4.0 International
(CC-BY 4.0) license. Authors reserve their rights to disseminate the work on their
personal and corporate Web sites with the appropriate attribution, provided that you
attribute the original work to the authors and CIDR 2025. 15th Annual Conference
on Innovative Data Systems Research (CIDR ’25). January 19-22, Amsterdam, The
Netherlands

Model Training

Model Inference

Mail Clients

Reporting

Graph Key Value Vectors Document

Graph Key Value Vectors Document +
Metadata

OLAPRAG

Web-Interfaces

End-User Apps

Reasoning

Network Analysis

Recommenders

Session Management

Content Management

Caches

Relations

Relations

Ideal
Actual

Data M
odel

Figure 1: Applications, Appropriate & Imposed Data Models

prompt is submitted. If that data fits into the “context window” of
the model and is relevant to the question, RAG significantly im-
proves result quality, reduces hallucinations and removes the need
for retraining [Lewis et al.(2020)]. To determine the most relevant
data for a prompt, RAG performs a top-k similarity search on vec-
tor embeddings of all data items. This, naturally, requires data to
be stored as Vectors in an appropriate Data Management System
(DMS). Unfortunately, most data is not stored in vector databases
and has to be embedded before being used for RAG. This embedding
is expensive: given, e.g., the current OpenAI-pricing, the cost of
embedding all global non-spam email traffic (361 billion emails of,
on average, 434 words) would exceed $20 million per day.

RAG is by nomeans the only application in which “appropriate” and
“imposed” data models diverge: the need to make newly developed
software interact with existing infrastructure, combine data from
different sources or accommodate the adoption of a specific tech-
nology in an organization often imposes a data model. Arguably,
any combination of appropriate and imposed data models arises in
practice, leading to a landscape like the one illustrated in Figure 1:
different applications (the top row) call for different appropriate
data models (the middle row) but must be supported on any of the
existing models (the bottom row). The state of the art to bridge the
gap between imposed and appropriate models is Extract, Transform
& Load (ETL): in regular intervals, data in the imposed model is
extracted from the source, transformed into the appropriate model
and loaded into a system designed for the appropriate model. ETL
requires the development and maintenance of ETL-"pipelines", is
costly to execute and renders data in the appropriate model stale
when new data arrives at the source.

We propose to address all of these issues by replacing costly and
eager ETL by on-demand translation of queries against one data model

CIDR’25, January 19-22, 2025, Amsterdam, The Netherlands Holger Pirk and David Conor Loughlin

Actual Data
Model

Appropriate
Data ModelETL

Query

Response

Actual Data
Model

Appropriate
Data Model

Query
Translation Query

Response

State of the Art: Physical Integration

Proposed: Virtual Integration

Intermediate
Response

Figure 2: Physical vs. Virtual Data Integration

into queries against another model. Figure 2 contrasts the state of
the art with the approach we propose.

1.1 Key Idea

Data model integration is a long-standing challenge in data man-
agement. Due to its complexity, it has traditionally been solved
by transforming data from source to target model. Building on
the transformation as a formal definition of the mapping between
source and target model, we propose to a) invert the transformation
function, b) apply it to the query rather than the data and c) gen-
erate plans that opportunistically combine data-transformation and
query-translation to achieve (close-to) optimal performance.

While there have been some recent advances in the develop-
ment of data-oriented Intermediate Representations (IRs) for query
execution, current IRs aim to be general enough to capture arbi-
trary execution, serve to generate code for any platform (CPUs,
GPUs, FPGAs, TPUs, etc.) and allow any of the optimizations that is
supported by modern compilers. This broad ambition led to many
competing standards, dialects and frameworks, with none of them
being close to achieving universal adoption (LLVM IR and MLIR
being, at least, close for the sole purpose of executable code gener-
ation). This broad ambition makes them unfit for the translation of
queries between high-level query languages and data models.

Instead, we propose an approach that specifically aims at data-
model integration: inspired by the idea of “Bridge Languages” in
linguistics, we aim to develop a “Bridge Representation”, i.e.,
an IR with two objectives: first, to translate the parts of query
plans from the appropriate to the imposed when that is possible
and beneficial and, second, to efficiently transform data from im-
posed to appropriate data models when query translation is not
possible or beneficial. To maximize performance, the decision to
“translate (queries) or transform (data)” shall be possible ei-
ther at the granularity of the entire query plan or parts of it. We
illustrate the concept in Figure 3 and refer to it as “Partial Query
Translation (PQT)” throughout this paper: original queries (im-
plemented against one model) are partially translated into queries
against another, those parts are evaluated, the results (and the rest
of the query) transferred to another model, the rest of the query
evaluated and the result returned to the user.

Graph Vectors Relations

Graph Vectors Relations

Bridge Representation

Figure 3: Virtual Data Model Integration

2 GUIDING USE CASES

The idea of virtual data model integration through Partial Trans-
lation (PT) can be applied to any combination of appropriate and
imposed data models illustrated in Figure 1. However, we propose to
guide our efforts by focusing on three high-impact use cases chosen
to cover a large part of the problem space while keeping engineer-
ing effort moderate. The flow of each of these cases corresponds to
one of the colored query/data-flows illustrated in Figure 3.

Blue Case: Retrieval-Augmented Generation on Unembedded Data.
In the context of the RAG case, we outlined in Section 1, the ground
truth of an organization’s data usually lives in data sources that
do not expose vectors as their data model: email servers, word
documents and relational databases. These do not support vector
embeddings or operations on them. They do, however, support the
filtering and sorting of data using per-data-item predicates. We
propose to generate filter predicates to extract and embed only data
items that are likely to be relevant, thereby reducing cost by many
orders of magnitude.

Green Case: ML-Accelerated Reasoning on Knowledge Graphs. In
the context of “Classic” Artificial Intelligence, reasoning on Knowl-
edge Graphs is the de-facto gold standard: it is precise, explainable
and free from false positives. However, it is computationally expen-
sive. Fact prediction based on Graph-Neural Networks (GNNs) is
faster but prone to produce false positives (as well as, less frequently,
false negatives) [Zhang and Chen(2018)]. A hybrid approach has
the potential to combine the strengths of either approach: the GNN
can quickly predict facts, and the classic reasoner can confirm or
contradict them. As illustrated in Figure 3, we propose to support
this case by partially processing each query in a vector-processing
engine before sending it to a graph-processing engine.

Orange Case: Supporting Vector-Operations in Relational Data
Management Systems. The last driving use case relates to classic re-
lational data processing: cloud data processing system vendors like
Microsoft [sql([n. d.])] and Snowflake [sno([n. d.])] have recently
extended their offerings with Vector-operations to support oper-
ations like similarity search and image-processing. However, to
minimize the impact on existing systems, vendors built on existing
unstructured datatypes, i.e., JSON, String/Varchar or Binary/BLOB.

Cephalopod – Virtual Data Model Composition through Partial Query Translation CIDR’25, January 19-22, 2025, Amsterdam, The Netherlands

However, retrofitting vector-operators onto a relational system
induces overhead, complicates use and obfuscates optimization op-
portunities. Offloading vector operations to a purpose-built vector
database kernel or system will combine the best performance of
either system. Partial Translation and Transfer through a Bridge
Representation Representation is the key enabler for this.

3 CHALLENGES

The key problem we aim to reduce is the high cost of data transfor-
mation when serving data in one model in another model. We can
break this problem down into three challenges.

Partial Query Translation

The first challenge in supporting any of the outlined cases is deter-
mining how an operation on one data model can be translated into
another. Some operations, such as single-step graph traversals and
relational joins, are known to be equivalent, and bijective transla-
tion functions are well-established [Paradies et al.(2015)]. Inverting
a data transformation to create a query translation is, therefore,
tractable. Others, like vector embedding, however, are not invertible
and may even be lossy, which prevents accurate query translation.
In Section 7, we provide preliminary results that suggest that many
of these can, however, be over-approximated. This will significantly
reduce the size of the dataset that requires transformation. After the
transformation, the set can be refined to eliminate false positives.

To meet this challenge, both bijective as well as injective trans-
formations need to be supported, which raises research questions
such as “What languages/queries can be fully translated?”, “Are there
characteristics of data models that cannot be replicated in other data
models?” and How can injective data transformations be inverted
through over-approximated query translation?. In particular, the last
one is intellectually exciting.

The Bridge Representation

The second challenge is to avoid the combinatorial number of re-
quired model-to-model transformations by developing an appropri-
ate Bridge Representation (BR) (as illustrated in Figure 3).While sim-
ilar to “classic” data-oriented IRs [Palkar et al.(2017), Pirk et al.(2016),
Lattner et al.(2021), Funke et al.(2020)], the required Bridge Repre-
sentation has fundamentally different requirements: where clas-
sic IRs are intended as steps towards the generation of low-
level/executable code, we propose to develop a representation
designed to (opportunistically) translate one high-level language
into another.

Such a Bridge Representation inherits some of the requirements
of classic IRs: it should be succinct, machine-readable and small
with respect to the number of exposed primitives. A BR, however,
goes beyond the requirements of an IR: it must occupy a different
point in the design space of query representations.

To illustrate this point, consider Figure 4. It displays three desider-
ata of query representations: first (on the x-axis), it should be gen-
eral enough to represent any query on any data model. Second (on
the y-axis), it should capture semantic information (formal operator

Generality

Sem
antics

Fid
elit

y
Plain Text

Classic IR
(LLVM, MLIR, etc.)

Algebraic
 Plan

Figure 4: The Query Representations Design Space

semantics, equivalence, statefulness, etc.). Third (on the z-axis), it
should contain the information to re-constitute the original query
(or at least an equivalent query) from the representation. We term
this property “Fidelity”. To the best of our knowledge, all query rep-
resentations strike a compromise between these desiderata: Plain
Text, e.g., is highly general and has high fidelity but offers no se-
mantic information. Algebraic plans provide semantic information
at the expense of generality. Classic IRs offer generality and se-
mantic information but make it exceedingly hard to reconstitute a
high-level representation. Given the purpose of each of these repre-
sentations, the trade-offs are well-justified. A BR, however, requires
all of these desiderata, making its development challenging.

However, some properties of IRs are not required for BRs: the
need to be optimizable is strongly relaxed as queries will be opti-
mized in the target system. Further, generality is a “soft require-
ment”: if a specific operation is fundamentally not representable
in the BR, it can be represented as a “gray box”, i.e., in a form that
can be “decompiled” into the language it was generated from but
not translated into any other language. Such gray-box operators
require data transformation at runtime, they are, in some cases,
necessary to faithfully capture a data model. Note that while plain
text would be an appropriate representation for the purpose of
decompilation (due to its high fidelity and generality), it fails to
capture any semantics, preventing effective translation to other
data models.

Research questions associated with this challenge are “How
can queries be represented, translated and rewritten using a Bridge
Representation?” and “How is the semantic relationship/mapping of
operators in different systems best represented to simplify the transla-
tion/transformation process?”.

Optimizing “Transfer vs. Translate”

While addressing the challenges outlined above enables the trans-
lation of queries, query translation is not always preferable to data-
transformation: depending on factors like operator implementation,
indices, execution model or optimizer decisions, transferring data to

CIDR’25, January 19-22, 2025, Amsterdam, The Netherlands Holger Pirk and David Conor Loughlin

a more efficient system can be beneficial. Given the focus on cross-
data-model querying, the decision to translate or transform should
be made cost-based and at subplan-granularity. The cost model
must not only reflect “static” properties of each system (operators,
optimizer and execution model) but also “dynamic” properties of
the database (indices, memoization of transformed data or the need
to invalidate transformed data upon update).

This requires answering research questions such as “What heuris-
tics and/or cost models can be used to decide on which system to
evaluate what operator?”, “How can systems transfer data efficiently
and securely when that is necessary (e.g., by defining external tables
or using shared memory)?” or “How can data be effectively memo-
ized, updated and invalidated when that is necessary for freshness or
privacy reasons?”.

4 APPROACH

Building on BOSS

My group at Imperial College has, in the last three years, developed
BOSS, a data management system pioneering a new class of systems:
designed from scratch to allow easy, overhead-free composition
from specialized components. We have demonstrated the utility of
this architecture tomanage hardware-heterogeneity [Mohr-Daurat et al.(2023a)],
supportmachine learningworkloads [Mohr-Daurat and Pirk(2021)]
and impute missing data [Mohr-Daurat et al.(2023b)]. We are cur-
rentlyworking on the integration of storage/compute-disaggregation
and adaptive query processing strategies to exploit patterns in the
data.

BOSS is built on two design principles: the first is the ability to
represent partially evaluated queries by allowing the free compo-
sition of unevaluated operators (i.e., code) and results of operator
evaluation (i.e., data) in a single, unified representation. The second
is the ability to move data between components without the need
for costly data copies through the use of a technique we call “de-
structive decomposition and recomposition”. These two principles
make BOSS the ideal platform for the composition of data models
we envision. We have already started to explore and implement the
presented ideas as extensions to BOSS.

Directions

Based on the BOSS DBMS, we envision work in five directions.

BOSS Backends. Restricting our focus on relations, graphs and
vectors, we propose to integrate kernels supporting these data
models into BOSS. For relations, we already integrated Meta’s
Velox [Pedreira et al.(2022), Mohr-Daurat et al.(2023a)], for vectors,
we have started to integrate the Milvus kernel [Wang et al.(2021a)]
and, for graphs, the Boost Graph Library [Siek et al.(2001)]. All
of these will be integrated into BOSS as “Engines”, i.e., libraries
conforming to the existing BOSS APIs. While integrating existing
libraries as Engines requires the development of wrapper code, we
do not foresee substantial challenges in that effort.

Bridge Representation. The heart of this work is the Bridge Rep-
resentation to connect the imposed and appropriate data models.

Embed

Flatten

Fa
cto

rize

Relations Vectors

MatricesDocuments

Graphs

Property
Graphs

Grammar/Schema/Dimensions
Dynamic Static

Nested
Flat

Walks

(no
standard)

No

Yes

Adja
cenc

y

Figure 5: Dimensions of Structured Data Models

Building on the existing BOSS query representation, the BR will be
implemented in the form of a grammar for symbolic expressions.
The grammar will, to the extent possible, reflect the commonality
between operators of the different data models but also allow data-
model-specific extensions to that “common core” (which can, then,
be grounded in rewriting rules).

Rewriting. This effort will build on the BR, complementing it with a
definition of equivalences of the data-model-specific/non-common
operators. Capturing equivalence of operators of different data
models, while non-trivial, is still possible through careful analysis
of the solution space.

Figure 5 illustrates that space and notable points in it along
three dimensions: data model flat- vs. nested-ness (y-axis), dynamic
vs. static dimensionality (x-axis) and the existence of an (inherent)
notion of adjacency (i.e., an implicit neighbour relationship) on
the z-axis. Interestingly, data models can be located in that space
fairly accurately. The figure also illustrates the (well-known) tech-
niques to transform data in one representation into data of another
(note that often, multiple different instances of a transformation
are known). The flattening [Ulrich and Grust(2015)] and factoriza-
tion [Olteanu and Schleich(2016)] transformations are invertible
(through unflattening and multiplication). The bijective nature of
the transformation allows the translation of queries and data along
those axes. The Embedding transformation, however, is generally
not invertible, preventing the accurate rewriting of a vector-query
into a relational-, graph- or document-query.

However, our results in Section 7 suggests that a function that
determines filter predicates from an embedding transformation can
be learned by a neural network through self-supervised learning.
While the learned function is likely to yield false positives, these do
not constitute a result quality problem as they can be removed when
generating the final response. They do, however, increase the cost
and response latency, e.g., in RAG-applications as false positives
will require extraction, embedding and ranking. By tuning the filter-
generating network to increase recall at the expense of lowered
precision, users can tune the system to achieve the performance-
to-quality tradeoff their application requires.

Cephalopod – Virtual Data Model Composition through Partial Query Translation CIDR’25, January 19-22, 2025, Amsterdam, The Netherlands

To implement partial query translation among data models, we
plan to follow state-of-the-art Multi-Level IRs (like MLIR): these
define equivalences in the form of “virtual operators”, i.e., operators
that do not necessarily have an implementation but can be re-
duced to other, data-model-specific operators. Once those operator-
equivalences are established, model-specific query plans can be
rewritten using state-of-the-art plan transformation (i.e., rule-based
rewriting) and “answering-queries-using-views” [Halevy(2001)]
techniques. To implement those, we will build on BOSS’ support
for partial query evaluation to develop a rewriting framework for
BOSS.

Optimization. This direction will build on the rewriting framework
and the availability of internal cost estimates of data-model-specific
systems as well as offline training to allow the estimation of cross-
kernel-processing costs. By capturing (internal) processing cost
with learned transformation/transfer cost, we plan to develop a
holistic optimizer that minimizes overall execution cost.

Due to its low cross-kernel migration costs, BOSS is the ideal
platform to compose data-model-specific kernels. BOSS is designed
to maximize extensibility and allows the integration of kernels with
widely varying semantics, rewrite modules that opportunistically
translate queries between them and (cost-based) optimizers. It even
allows the “injection” of custom code for data-model conversion as
a User-Defined Function if a kernel supports that. The key enabling
techniques for overhead-free composition are the avoidance of data
copies through a novel cross-kernel, single-owner/move-centric
memory-management model and the ability to store operators and
intermediate results in a query plan.

Instances. In the final direction, we plan to develop applications sup-
porting each of the guiding use cases. These will serve as validation
for the concept but also solve practical data-science problems. For
the orange case, we will develop a hybrid vector/relational system
behind a standard JDBC/ODBC driver. It will provide the illusion
of vectors as native datatypes in any relational DBMS. For the blue
case, we will develop a system to make business-data available for
querying through LLMs. For the green case, we will implement a
GNN-accelerated graph-reasoning framework (with a SPARQL-like
query API).

5 PRELIMINARY RESULTS

To indicate the viability of the approach, we conducted a prelimi-
nary study using email data. We sampled 16000 emails of a single
recipient in the Enron email corpus [William W. Cohen(2015)], and
calculated a two-dimensional vector embedding of the email bodies
using the “thenlper/gte-small” model [Li et al.(2023)] (available via
HuggingFace)1.

Figure 6 plots the 2-D embedding of the email body on x and y
and encodes the sender in the color of the points. The top-4 senders
are encoded in unique colors, while all other senders are purple
points. We observe a strong correlation between embedding and

1Note that the low dimensionality is for visualization purposes. In practice, vector
embeddings are between 32 and 4096 or more depending on the data and application.

Figure 6: Correlation of 2-D Email Body Embeddings (X- and
Y-axes) and Senders (Color of the Points)

sender: specifically, we observe that most green points cluster in
the top right, while red points cluster on the left and top middle.

These results support the intuition that vector embeddings of
the body (which are designed to capture the textual content) cor-
relate with the sender – most emails originating from a person
cover similar content. To explore opportunities for exploiting that
correlation to accelerate RAG applications, we experimented using
the sampled recipient’s email data from the Enron corpus, in CSV
format, and compared the execution of vector-similarity queries
performed with and without pre-filtering on the sender.

To perform this experiment, we implemented a system using
several BOSS engines forming an execution pipeline. Concerning
the queries, we randomly sample 5 unique emails from the data
set, calculate the embeddings of their bodies, and execute a top-10
vector-similarity search for each embedding.

We execute queries with pre-filtering in a system comprised of
5 BOSS engines, the first is the CSV Loader Engine responsible
for loading the CSV email data into a BOSS table. The second en-
gine is the Sender Prediction Engine which predicts the most likely
sender for the query embedding using a simple neural network
we pre-trained. The third engine, called the Relational Volcano
Processing Engine, filters the input data on the previously pre-
dicted sender. After pre-filtering, the Embedding Engine (fourth
engine) uses the “thenlper/gte-small” model to calculate a 384-
dimensional vector embedding for each remaining body. Finally,
the Vector Database Engine (the fifth engine) performs the similar-
ity search using the execution engine of the milvus vector database
(Knowhere) [Wang et al.(2021b)]. When executing the queries with-
out any pre-filtering, the system is instead composed of the CSV
Loader, Embedding, and Vector Database engines.

For hardware, we performed the experiment on a server with two
Intel Xeon Silver 4114 2.20 GHz CPUs, each with 10 physical cores,
a 14 MB LLC cache and 196 GB of memory. To run the experiments
we use Ubuntu 18.04 with Linux Kernel 4.15.0-209 and compile all
code with Clang version 14 using compiler flags -O2.

CIDR’25, January 19-22, 2025, Amsterdam, The Netherlands Holger Pirk and David Conor Loughlin

Figure 7: Average Runtime
for Calculating the Embed-
dings of Email Bodies

Figure 8: Average Cosine
Similarities Scores for Top-
10 Similarity Search

Figure 7 plots the average runtime to embed the email bodies
in both the non-pre-filtering and pre-filtering approaches. We also
plot an additional pre-filtering approach in which the sender pre-
diction model is replaced with an oracle that returns exactly the
senders of the emails in the query results produced by the non-
pre-filtering approach. The plot shows that the embedding time
for the entire dataset is orders of magnitude greater than that of
either the predicted sender or oracle approaches. This is due to the
pre-filtering approaches reducing the number of bodies for which
embeddings are calculated from 1̃6000 to between 200 and 1000.

These embedding runtime results indicate significant perfor-
mance improvement, but this performancemay come at the expense
of quality. Figure 8 plots the cosine similarities, averaged across the
results, for both the non-filtering and predicted sender pre-filtering
approaches, and it shows the mean absolute error (MAE) between
the two approaches. We consider the shown cosine similarities of
each approach to be close with a small MAE. This indicates that,
while the sender prediction model does predict the senders per-
fectly, the pre-filtering still returns email bodies very similar to the
query email body.

Together, Figure 7 and Figure 8 show that pre-filtering using
metadata, like the sender of an email, can offer great performance
improvement without sacrificing much of the quality of the results
of top-k similarity queries. Naturally, the simple sender prediction
model we used could be improved upon using more sophisticated
architectures and more training data to offer even higher-quality
results. Further, pre-filtering is not limited to a single attribute, indi-
cating there are more opportunities to reduce the set of candidates
that need to be transformed.

6 RELATEDWORK

In its effort to combine different data models, our work is most
obviously related to the work on Polystores [Duggan et al.(2015)].
However, we innovate in several respects: first, we provide a foun-
dational underpinning to Polystores by capturing the relationship
between different models, where systems like BigDawg rely on
ad-hoc shims to connect data sources (without providing guidance
on how these shims are implemented). Second, we aim to provide
not only location transparency but semantic transparency as well –

users will experience the illusion of querying data in the appropri-
ate data model even if the data is stored in a different one. Last, we
aim to provide tighter integration, ideally at the level of plans and
operators rather than declarative queries.

In partially evaluating subqueries, our work is related to ideas
of answering queries using views [Halevy(2001)] and Query De-
composition [Mackinnon et al.(1998)]. However these approaches
focus on schema-heterogeneity but assume a common data model.
In contrast, our work focuses on the heterogeneity of the data model
as well as the schema.

There have been efforts to rewrite queries against new models
(such as, for a time, graphs) into queries against more traditional
models (such as relations) [Jindal et al.(2014)]. Similarly, the trans-
lation of document queries (at the time in XPath or XQuery) to rela-
tional queries has received significant attention [Grust et al.(2003)].
However, this work focuses on mappings between one ideal and
one imposed model and, therefore, has no need for Intermediate
Representations.

Lastly, there is work on data-model integration using Intermedi-
ate Representations. Themost recent approach is Obi-Wan [Buron et al.(2020)].
The authors suggest RDF/SPARQL as a Bridge Representation (though
they do not use that term). However, their efforts lack generality:
the approach is currently limited to querying data that straightfor-
wardly maps between models (e.g. because it originated in the ideal
model and has only been transformed into the imposed model). Our
work aims to support arbitrary schema and queries.

7 CONCLUSION

The mismatch between ideal and imposed data model is faced by
many applications. While this mismatch used to be a minor problem
when only a few data models were in use, the ongoing proliferation
of data models exacerbate the problem over time.

To address the problem, we propose a middle-ground approach
between physical and virtual data integration, based on a “Bridge
Representation” of queries that enables translation of queries be-
tween models when possible and transformation of data when
necessary. We outline study requirements for such a Bridge Repre-
sentation and outline a research agenda towards it. We demonstrate
that, even when no perfect query translation is possible, queries
can be overapproximated during translation, which reduces trans-
formation cost compared to transforming all data.

REFERENCES
[sno([n. d.])] [n. d.]. Snowflake Vector Embeddings. https://docs.snowflake.com/en/

user-guide/snowflake-cortex/vector-embeddings. Accessed: 2024-08-01.
[sql([n. d.])] [n. d.]. Vector Similarity Search with Azure SQL database and Ope-

nAI. https://devblogs.microsoft.com/azure-sql/vector-similarity-search-with-
azure-sql-database-and-openai/. Accessed: 2024-08-01.

[Buron et al.(2020)] Maxime Buron, François Goasdoué, Ioana Manolescu, and Marie-
Laure Mugnier. 2020. Obi-Wan: ontology-based RDF integration of heterogeneous
data. PVLDB (2020).

[Duggan et al.(2015)] Jennie Duggan, Aaron J Elmore, Michael Stonebraker, Magda
Balazinska, Bill Howe, Jeremy Kepner, Sam Madden, David Maier, Tim Mattson,
and Stan Zdonik. 2015. The bigdawg polystore system. Sigmod Record (2015).

[Funke et al.(2020)] Henning Funke, Jan Mühlig, and Jens Teubner. 2020. Efficient
generation of machine code for query compilers. In DaMoN.

[Grust et al.(2003)] Torsten Grust, Maurice Van Keulen, and Jens Teubner. 2003. Stair-
case join: Teach a relational DBMS to watch its (axis) steps. In VLDB.

https://docs.snowflake.com/en/user-guide/snowflake-cortex/vector-embeddings
https://docs.snowflake.com/en/user-guide/snowflake-cortex/vector-embeddings
https://devblogs.microsoft.com/azure-sql/vector-similarity-search-with-azure-sql-database-and-openai/
https://devblogs.microsoft.com/azure-sql/vector-similarity-search-with-azure-sql-database-and-openai/

Cephalopod – Virtual Data Model Composition through Partial Query Translation CIDR’25, January 19-22, 2025, Amsterdam, The Netherlands

[Halevy(2001)] Alon Y Halevy. 2001. Answering queries using views: A survey. VLDB
Journal (2001).

[Jindal et al.(2014)] Alekh Jindal, Praynaa Rawlani, Eugene Wu, Samuel Madden,
Amol Deshpande, and Mike Stonebraker. 2014. Vertexica: your relational friend
for graph analytics! (2014).

[Lattner et al.(2021)] Chris Lattner, Mehdi Amini, Uday Bondhugula, Albert Cohen,
Andy Davis, Jacques Pienaar, River Riddle, Tatiana Shpeisman, Nicolas Vasilache,
and Oleksandr Zinenko. 2021. MLIR: Scaling compiler infrastructure for domain
specific computation. In IEEE CGO.

[Lewis et al.(2020)] Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio Petroni,
Vladimir Karpukhin, Naman Goyal, Heinrich Küttler, Mike Lewis, Wen-tau Yih,
Tim Rocktäschel, et al. 2020. Retrieval-augmented generation for knowledge-
intensive nlp tasks. NeurIPS (2020).

[Li et al.(2023)] Zehan Li, Xin Zhang, Yanzhao Zhang, Dingkun Long, Pengjun Xie,
and Meishan Zhang. 2023. Towards general text embeddings with multi-stage
contrastive learning. arXiv preprint arXiv:2308.03281 (2023).

[Mackinnon et al.(1998)] Lachlan M Mackinnon, David H Marwick, and M Howard
Williams. 1998. A model for query decomposition and answer construction in
heterogeneous distributed database systems. Journal of Intelligent Information
Systems (1998).

[Mohr-Daurat and Pirk(2021)] Hubert Mohr-Daurat and Holger Pirk. 2021. Ho-
moiconicity For End-to-end Machine Learning with BOSS.. In BICOD.

[Mohr-Daurat et al.(2023a)] Hubert Mohr-Daurat, Xuan Sun, and Holger Pirk. 2023a.
BOSS-An Architecture for Database Kernel Composition. PVLDB (2023).

[Mohr-Daurat et al.(2023b)] Hubert Mohr-Daurat, Giorgios Theodorakis, and Holger
Pirk. 2023b. Hardware-Efficient Data Imputation through DBMS Extensibility.
PVLDB (2023).

[Olteanu and Schleich(2016)] Dan Olteanu and Maximilian Schleich. 2016. Factorized
databases. SIGMOD Record (2016).

[Palkar et al.(2017)] Shoumik Palkar, James J Thomas, Anil Shanbhag, Deepak
Narayanan, Holger Pirk, Malte Schwarzkopf, Saman Amarasinghe, and Matei
Zaharia. 2017. Weld: A Common Runtime for High Performance Data Analytics.
CIDR (2017).

[Paradies et al.(2015)] Marcus Paradies, Wolfgang Lehner, and Christof Bornhövd.
2015. GRAPHITE: an extensible graph traversal framework for relational database
management systems. In SSDM.

[Pedreira et al.(2022)] Pedro Pedreira, Orri Erling, Masha Basmanova, Kevin Wilfong,
Laith Sakka, Krishna Pai, Wei He, and Biswapesh Chattopadhyay. 2022. Velox:
meta’s unified execution engine. PVLDB (2022).

[Pirk et al.(2016)] Holger Pirk, Oscar Moll, Matei Zaharia, and Sam Madden. 2016.
Voodoo-a vector algebra for portable database performance on modern hardware.
PVLDB (2016).

[Siek et al.(2001)] Jeremy G Siek, Lie-Quan Lee, and Andrew Lumsdaine. 2001. The
Boost Graph Library: User Guide and Reference Manual, The. Pearson Education.

[Ulrich and Grust(2015)] Alexander Ulrich and Torsten Grust. 2015. The flatter, the
better: Query compilation based on the flattening transformation. In SIGMOD.

[Wang et al.(2021a)] Jianguo Wang, Xiaomeng Yi, Rentong Guo, Hai Jin, Peng Xu,
Shengjun Li, Xiangyu Wang, Xiangzhou Guo, Chengming Li, Xiaohai Xu, et al.
2021a. Milvus: A purpose-built vector data management system. In SIGMOD.

[Wang et al.(2021b)] Jianguo Wang, Xiaomeng Yi, Rentong Guo, Hai Jin, Peng Xu,
Shengjun Li, Xiangyu Wang, Xiangzhou Guo, Chengming Li, Xiaohai Xu, et al.
2021b. Milvus: A Purpose-Built Vector Data Management System. In Proceedings
of the 2021 International Conference on Management of Data. 2614–2627.

[William W. Cohen(2015)] Carnegie Mellon University William W. Cohen. 2015. En-
ron Email Dataset. https://www.cs.cmu.edu/~enron/ Accessed: 2024-11-07.

[Zhang and Chen(2018)] Muhan Zhang and Yixin Chen. 2018. Link prediction based
on graph neural networks. NeurIPS (2018).

https://www.cs.cmu.edu/~enron/

	Abstract
	1 Motivation
	1.1 Key Idea

	2 Guiding Use Cases
	3 Challenges
	4 Approach
	5 Preliminary Results
	6 Related Work
	7 Conclusion

