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ABSTRACT
To execute distributed joins in parallel on compute clusters, systems
partition and exchange data records between workers. With large
datasets, workers spend a considerable amount of time transferring
data over the network. When compute clusters are shared among
multiple applications, workers must compete for network bandwidth
with other applications. These variances in the available network
bandwidth lead to network skew, which causes straggling workers
to prolong the join completion time.

We describe SquirrelJoin, a distributed join processing technique
that uses lazy partitioning to adapt to transient network skew in
clusters. Workers maintain in-memory lazy partitions to withhold a
subset of records, i.e. not sending them immediately to other work-
ers for processing. Lazy partitions are then assigned dynamically
to other workers based on network conditions: each worker takes
periodic throughput measurements to estimate its completion time,
and lazy partitions are allocated as to minimise the join completion
time. We implement SquirrelJoin as part of the Apache Flink dis-
tributed dataflow framework and show that, under transient network
contention in a shared compute cluster, SquirrelJoin speeds up join
completion times by up to 2.9× with only a small, fixed overhead.

1 Introduction
With the recent explosion of big data analytics, users frequently
want to execute parallel joins over large datasets to combine and
analyse data from different sources. For this, organisations deploy
massively-parallel, shared-nothing distributed dataflow systems such
as Hadoop [39], Spark [4] or Flink [18], which perform join com-
putation on large compute clusters.

As the cost of acquiring and operating large compute clusters
becomes substantial, organisations increasingly share clusters be-
tween different applications. Cluster managers such as Mesos [23]
or YARN [42] successfully isolate CPU and memory resources for
each application through virtual machines (VMs) or, more recently,
containers. Network bandwidth, however, remains a contended re-
source. In particular, the available edge bandwidth of cluster nodes,
typically limited by a 1 Gbps or 10 Gbps NIC, can become a bot-
tleneck, affecting the performance of data processing jobs [34, 45].
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The uneven distribution of network flows, and thus available band-
width, across nodes creates what we refer to as network skew.

The performance of distributed join processing is particularly sen-
sitive to network skew. In a distributed repartition join [9], workers
read data records from input partitions in parallel and repartition
them based on a join key, i.e. transfer them to other workers that
then apply the join predicate. Redistributing a large number of
data records is limited by the available network bandwidth between
nodes: in practice, it accounts for up to 43% of the join completion
time [30]. In a shared network, this traffic competes with other
network flows for edge bandwidth. Network skew thus introduces
straggling workers, which increases join completion time due to the
late-arrival of results or head-of-line blocking [36]. The join compu-
tation only completes after the last worker has finished processing.

Previous work has focused on data skew [44], i.e. the imbalance
of data processed by nodes due to an uneven key distribution in
the join. Prior solutions for data skew cannot help with network
skew: they either rely on prior knowledge of the skew [46, 33],
which is infeasible when organic background traffic causes network
skew, or they migrate state between workers across the network to
mitigate data skew [16, 36], which would only exacerbate network
skew when the network is the bottleneck.

Addressing network skew therefore requires a new approach. We
describe a runtime mitigation technique for network skew based on
lazy partitioning. The key idea behind lazy partitioning is that, in-
stead of using a single hash-based mapping of join keys to workers,
workers retain some of the data records in lazy partitions maintained
in memory. Lazy partitions are then flexibly assigned at runtime to
workers in reaction to network skew conditions.

When realising this idea, we overcome three challenges: how to
(i) measure network skew in the cluster; (ii) determine an optimal
allocation of lazy partitions to workers in response to network skew;
and (iii) minimise the overhead of maintaining lazy partitions when
there is no network skew in the cluster.

We describe SquirrelJoin, a new distributed join processing tech-
nique to mitigate network skew by retaining records at workers.1

SquirrelJoin is lightweight and compatible with existing distributed
join algorithm implementations in dataflow systems. In SquirrelJoin,
a coordinator continuously measures the throughput of workers
participating in the join processing to produce estimated completion
times. Network skew is detected if the estimated completion time
of a worker is statistically significantly higher than that of the rest.

While network skew can affect either receiving or sending work-
ers, SquirrelJoin only focuses on receiver-side skew because our
theoretical analysis shows that any mitigation of sender-side skew
can offer only a limited benefit in practice. To mitigate receiver-side

1similar to how squirrels stash away food before winter
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Figure 1: Distributed join processing model

skew, SquirrelJoin assigns proportionally more data from lazy par-
titions to faster receivers. As a result, workers affected by receiver-
side skew have to process less data, thus equalising data processing
across the cluster with network skew.

We demonstrate the feasibility of SquirrelJoin through an im-
plementation as part of Apache Flink [18], a popular distributed
dataflow system for join processing. In our implementation, all
skew detection and assignment decisions occur asynchronously and
do not require further synchronisation between senders, reducing
SquirrelJoin’s overhead to a minimum.

After describing distributed join processing and the problem of
network skew in clusters (§2), we make the following contributions:

• we formally analyse the effectiveness of record reassignment
to mitigate network skew at receivers and senders, respectively.
Our analysis informs our use of a simple, yet effective, way to
balance receiver-side network skew in SquirrelJoin (§3);

• we describe lazy partitioning and an algorithm for partition
assignment to dynamically adapt receiver partitions to network
skew (§4);

• we describe SquirrelJoin, a distributed join processing tech-
nique that mitigates network skew. SquirrelJoin collects robust
progress metrics to make decisions about the assignment of lazy
partitions (§5).

We evaluate SquirrelJoin using Apache Flink and a variety of net-
work skew scenarios on a shared cluster, using interfering real-world
applications and synthetic micro-benchmarks (§6). Our results show
that SquirrelJoin achieves speed-ups of up to 2.9×, while adding a
fixed 10 s increase in job completion time without network skew.
After a discussion of related work (§7), the paper concludes (§8).

2 Network Skew in Join Processing
We start by modelling distributed join processing in a compute
cluster (§2.1). We detail the issue of network skew in shared clus-
ters (§2.2) and why existing approaches fail to address it (§2.3).

2.1 Distributed join processing
Join model. We model an equi-join, S \J T , over relational tables,
S and T , with records, r ∈ R, each with a join attribute J . We use
J(r) to refer to the value of the join attribute for record r.

When faced with large amounts of data, join processing can be
distributed to exploit data parallelism on a cluster of n nodes. We
assume that the records from S and T are partitioned horizontally
into a set of input partitions, I = {I1, I2, . . . , In}. The set of records
across all partitions is equal to the set of records across S and T .
Each node i stores an input partition Ii = {ra, rb, . . .} locally. To
balance load, input partitions are typically equally sized [46].

We consider an implementation of the equi-join as a hash-based
repartition join [9], in which the n input partitions {I1, . . . , In} with

records from S and T are repartitioned according to the join at-
tribute J into n output partitions, {O1, . . . , On}. Each output partition
contains all records from both tables with the same value for the join
attribute J , so the join predicate can be evaluated local to an output
partition. Each node i maintains one output partition Oi .

As shown in Fig. 1, a node i executes a join worker wi ∈Wwith a
sender and a receiver process: the sender process reads each record
from the local partition Ii , determines the output partition Oj , and
sends the record to the receiver process of the responsible worker w j .
The receiver process of w j applies the join predicate to Oj , which
contains all records from S and T with the same value for the join
attribute J , to generate the join result.

In symmetric hash joins, such as XJoin [41], sender processes
repartition records from S and T simultaneously, which requires
receiver processes maintain all received records until the join com-
pletes. To reduce memory usage, two-phase repartition joins, such
as the GRACE hash join [25] or the hybrid hash join [15], repartition
S and T sequentially. Assuming that S is the smaller table, (i) in a
build phase, sender processes first repartition records from S, and
the receiver processes store the received records; and (ii) in a probe
phase, sender processes repartition the records from T , and receiver
processes probe their stored records from S for matches.
Network model. We model the network as a set of channels H ∈
H, between nodes, each with the same maximum capacity C . In a
network with full-bisection bandwidth, the capacity C is determined
by the network interface card (NIC), e.g. 1 Gbps. We denote the
overall join completion time as∆. The maximum channel volume L
is then the amount of data that can be transferred over a channel
during∆, L =∆C . For example, the maximum channel volume for
a 1 Gbps channel with a join that runs for 100 seconds is 100 Gb.

In a full-duplex network, nodes have independent send and re-
ceive channels, HS and HR, respectively (see Fig. 1). The sender
process of worker wi can use channel HS

i to send records to other
workers; its receiver process can use HR

i to receive records. Note
that the send and receive channels of a node are shared by the
join worker’s sender and receiver processes with other applications
executing on the same node. For convenience, we assume that node i
also has a local channel H L

i that its sender process can use to send
records to its receiver process. The local channel does not incur
network traffic by using inter-process communication (IPC).

For a channel Hi , we define the join transfer volume AS
i and AR

i
as the actual amount of data that worker wi has transferred on send
and receive channels respectively. The join channel utilisation Ui is
then the ratio between the join transfer volume and the maximum
channel volume, e.g. UR

i = AR
i /L. In the ideal case of equal-sized

input and output partitions and no CPU bottlenecks, all workers send
and receive the same amount of data, so, without network skew, all
channels have the same join channel utilisation,

∀wi , w j ∈W : US
i = US

j = UR
i = UR

j = 1.
If Ui < 1, (i) the channel is under-utilised because the join com-

putation on worker wi is limited by another resource (e.g. CPU)
or waits for records from another worker; or (ii) the channel is
congested because some of its capacity is used by other application
traffic on node i. In the latter case, the channel may be a bottleneck,
making wi a straggling worker. If different channels experience
different degrees of congestion, we refer to this as network skew.

2.2 Network skew in shared clusters
For many organisations, compute clusters are a source of major
capital and operational expenses. To amortise costs, organisations
are moving away from dedicated clusters for specific data process-
ing tasks towards consolidating multiple applications on the same
cluster [23]. These cluster applications then share the network.



As a result, network skew due to background network traffic is
increasingly common. Background traffic created by cluster applica-
tions may be concentrated on a subset of nodes, which reduces the
available bandwidth to applications on some nodes, while leaving
others unaffected [45, 27]. It also varies significantly over time in
different dimensions, which means that static deployment changes
or fixed bandwidth allocations are insufficient:
Duration. The distribution of flow sizes for cluster traffic covers
a wide range from 10 KB to 1 GB [21, 8]. The majority of flows
are small, but larger “elephant” flows account for most of the data.
Microsoft reports that in one cluster 99% of flows were smaller than
100 MB, but 90% of the data was transferred in the remaining 1%
of flows [21]. That means that most of the network resources are
utilised by large flows, which can cause long interference periods.
Severity. Besides the flow size, the number of concurrent flows on
a node also varies. This determines the severity of the interference,
as more background flows mean less bandwidth available for join
processing. In the same Microsoft cluster, machines have around
10 concurrent incoming and outgoing flows in the median. However,
there is a long tail, and 5% of the time, machines experience more
than 80 concurrent flows [21]; results from another cluster show
a median of 36 concurrent flows with a 99.99th percentile of over
1600 [2]. These heavy tails can cause a significant decrease in the
available bandwidth for join processing.
Variability. Cluster traffic is highly variable in terms of flow arrival
times [21, 24, 8]. Greenberg et al. clustered the traffic matrices from
a Microsoft data centre over a day but failed to find a representative
subset to predict traffic accurately [21]. Even in periods of stable
network traffic, the nodes involved in the network transfers experi-
ence high churn. Thus it is hard to predict both traffic volume and its
location, making the avoidance of network skew a priori impossible.
The above characteristics of background traffic lead to frequent pe-
riods of network congestion, resulting in network skew. In one day,
a 1500-machine cluster saw 665 episodes of congestion of between
10 s and 382 s each: 86% of links experienced congestion of more
than 10 s, and 15% experienced congestion exceeding 100 s [24].
Hot spots were most severe in clusters with data analysis jobs:
approximately 20% of the links in the network core experienced
congestion for more than 50% of the time [8]. An important obser-
vation is that longer lasting congestion periods do not affect network
links evenly but are localised to a small subset of links. This is the
prime condition that leads to network skew.

2.3 Addressing other types of skew
Instead of network skew, existing solutions have focused on two
other types of skew in distributed join processing:
Data skew is caused by an unequal key distribution in the input data.
This may lead to an imbalanced partitioning of data: workers that
must now perform more computation than others become stragglers.

Approaches to address data skew can be divided into static and
dynamic techniques. Static techniques [33, 29, 32] attempt to apply
more balanced partitioning functions that account for the skewed
data distribution. For example, Rödiger et al. [32] sample a small
subset of the data before the join processing to determine the heavy
hitters and apply selective broadcast to distribute them across many
nodes. Such an approach, however, is not applicable to network
skew, which appears and also disappears dynamically at runtime.

Dynamic techniques react to data skew as it develops and then
change the work assignment on-the-fly. Some existing proposals [26]
assume that keys are ordered and new keys can be assigned to
arbitrary workers, but this is not the case for most datasets. More
general solutions instead migrate already-partitioned data between

nodes at runtime [5, 16, 36]. Under network skew, a mitigation
approach that migrates data between workers is not possible because
the network itself is the cause of the skew and thus a constrained
resource. Sending more data as part of the migration would further
exacerbate the problem of network skew.
Resource skew is caused by the non-uniform allocation of node
resources, such as CPU or disk, to workers. In practice, resource
skew is often addressed by isolating resources: for example, cluster
resource managers, such as Mesos [23] and YARN [42], can provide
workers with guaranteed CPU resources through containers, thus
reducing interference that would lead to resource skew.

While network skew is technically a type of resource skew, exist-
ing isolation techniques such as containers do not offer guarantees
regarding available network bandwidth between nodes. In addition,
network skew introduces unidirectional bottlenecks due to TCP
congestion control and full-duplex network links—a congested net-
work link may only affect the sender or receiver process of a worker,
whereas CPU bottlenecks affect the whole node.

While a number of approaches exist to isolate network band-
width [6, 28, 31, 11], they cannot fully solve network skew: (i) static
approaches [6, 28] assign bandwidth to cluster users a priori, lead-
ing to under-utilisation if demands are set too high; and (ii) work-
conserving approaches [31, 11] dynamically allocate bandwidth to
achieve high utilisation while providing minimum guarantees. How-
ever, they either require setting a minimum bandwidth value [31],
which is hard to determine correctly, or implement some form of
max-min fairness, which is susceptible to network skew [11]. In
addition, these advanced techniques are currently not available in
public cloud environments. In general, network isolation approaches
can enforce sharing constraints on congested links but are unable to
avoid these links completely, leading to a sub-optimal network util-
isation. Thus, mitigating network skew effectively requires explicit
support as part of data processing applications.

3 Record Reassignment Under Network Skew
Our goal is to mitigate the effect of network skew on the completion
time of join workers. The basic idea follows: in response to network
skew, we reassign records among the output partitions, {O1, . . . , On},
maintained by different workers, and shift traffic from congested to
under-utilised channels. We adjust the repartitioning performed by
the join by reassigning all records that share the same value for the
join attribute J , {r | J(r) = α}, from an output partition Oi to a
partition Oj before any records are sent via the network.

By modelling this record reassignment, we want to establish an
upper bound on the improvement in job completion time that it can
provide with network bottlenecks. We want to find the reassignment
that achieves the maximum decrease in join completion time, which
happens when the load on the most congested channel is decreased
as much as possible without introducing a new straggling worker.
We separately consider the scenarios with (i) congested receive
channels and (ii) congested send channels.

For our theoretical analysis, we assume: (1) a uniform data dis-
tribution of the join attribute J results in equally-sized output parti-
tions O across nodes, ∀i, j ∈ W, |Ii | = |I j | = |Oi | = |Oj |. While
good hash functions typically achieve nearly balanced partition
sizes [46, 33], we only make this assumption to calculate a ceiling
of the potential benefit of reassignment. Data skew may change
channel utilisation and the granularity at which we make reassign-
ments (see §4.2); (2) a single network bottleneck dominates join
completion time. Reassignment can only help mitigate skew as long
as another contested resource, e.g. the CPU, does not become the
dominating bottleneck; and (3) a priori knowledge of network skew.



(1) Congested receive channels. First we consider m straggling
workers, M = {wb1

, wb2
, . . . , wbm

}, with congested receive chan-
nels of the same magnitude, i.e. their network bandwidth is limited
equally. The n−m receiver processes on the other workers, and all
n sender processes can utilise the full channel capacity. Since all
straggling workers are symmetric, we use any wb ∈M to determine
the bottleneck join channel utilisation, UR

b = AR
b/L.

We want to minimise the runtime of the straggling workers by
reassigning records from straggling to non-straggling workers. The
set of reassigned records is RM =

⋃m
i=1 Obi

\ bObi
where Obi

are the
records assigned to worker wbi

before reassignment, and bObi
are

the records after reassignment. Reassigned records are distributed
evenly among non-straggling workers,

∀r ∈ OM,∃wi ∈W\M : r ∈ bO i and ∀wi , w j ∈W\M : |bO i |= |bO j |.

We refer to the amount of data at worker wb ∈M after reassign-
ment as bAR

b. Now the fraction of records k that is reassigned from
the straggling worker wb is

k = (AR
b − bA

R
b)/A

R
b.

As a result of the reassignment, the join completion time ∆,

∆=
bAR

b

UR
b C
=

AR
b(1− k)

UbC
,

is decreased: while worker wb remains a straggler due to its con-
gested receive channel, Ub is constant, which means that bAR

b is re-
duced by a factor of (1− k).

Next we determine the maximum fraction of records k to reassign
from the straggling workers before other channels become con-
gested, i.e. reach a join channel utilisation of 1. For that, we analyse
the change in the join transfer volume for each of the remaining
non-congested channels:
Case (1): Receive channels on non-straggling workers. Worker wi
receives (n − 1)/n of its records via HR

i , and the rest via H L
i . A

fraction of k records from each of the m straggling workers is
reassigned evenly across all non-straggling workers, increasing the
size of Oi at wi by km/(n−m). A fraction (n− 1)/n of the newly
assigned records therefore increase the load on channel HR

i :

bAR
i = AR

i

�

1+
km

(n−m)

�

(1)

Case (2): Send channels on straggling workers. After reassignment,
each straggling worker wb must send additional records via HS

b .
Originally, (n− 1)/n of the records in Ib were sent via HS

b , while
the remaining 1/n records used H L

b . Now an additional fraction k
of the records from H L

b are also sent via HS
b :

bAS
b = AS

b

�

1+
k

(n− 1)

�

(2)

Case (3): Send channels on non-straggling workers. Finally, the
reassignment shifts traffic on a non-straggling worker wi from HS

to H L , thus decreasing AS
i . Of the fraction of records in Ii originally

sent via HS
i , (n−1)/n, only km/((n−m)(n−1)) are reassigned to

Oi and now use H L
i . The remaining reassigned records still use HS

i
despite having new output partitions, yielding:

bAS
i = AS

i

�

1−
km

(n−m)(n− 1)

�

(3)

Considering the join transfer volumes after reassignment for these
three cases, the receive channels on non-straggling workers, given
by Eq. (1), experience the highest relative increase. To find the
value of k that maximises the reduction in join completion time,
we observe that a new bottleneck forms when UR

i =1 for wi /∈ M.

Since UR
i = AR

i L by definition, after substituting 1 for UR
i , we can

solve bAR
i = bL for k to find when this bottleneck appears:

AR
i

�

1+
km

(n−m)

�

=
AR

i

Ub
(1− k) ⇒ k =

1− Ub

1+ Ub m
(n−m)

(4)

Eq. (4) gives the optimal value of the fraction of records k to re-
assign: reassigning fewer is suboptimal for the original bottleneck;
and reassigning more exacerbates a new bottleneck.
Example: Consider a distributed join with 32 workers with one
straggling worker whose receive channel utilisation is limited to
half the channel. Eq. (4) predicts a maximum improvement of 49.2%
from record reassignment. The benefit decreases slightly as more
straggling workers are added: for m=5, the maximum improvement
is 45.7%. A 50% improvement would be equal to the case without
network skew, so reassignment offsets most, but not all, of the effect
of network skew among receive channels.
(2) Congested send channels. Next we perform the same analy-
sis for m straggling workers, M = {wb1

, wb2
, . . . , wbm

} with con-
gested send channels, limited to the same join channel utilisation,
US

b = AS
b/L. Since records cannot be reassigned between input

partitions, the only way to reduce the load on a send channel HS
b is

for worker wb to process more records locally, i.e. reassign them to
Ob. Analogous to the congested receive channels above, we reduce
the join completion time ∆ by (1− k) by reassigning a fraction

k = (AS
b − bA

S
b)/A

S
b.

Next we analyse the effect on the remaining three types of chan-
nels to calculate the maximum improvement of this reassignment:
Case (1): Send channels on non-straggling workers. After reassign-
ment, some sent records change output partitions, but they are still
sent via HS

i . An extra km(n− 1)/(n−m) of the records originally
processed locally are now also sent via HS

i . Given that (n − 1)/n
of the records sent use HS

i , and 1/n use H L
i , the new join transfer

volume for wi increases:

bAS
i = AS

i

�

1+
km

n−m

�

(5)

Case (2): Receive channels on straggling workers. Before reas-
signment, each straggling worker wb ∈ M received a fraction of
(n− 1)/n records in Ob via HR

b . After reassignment, the size of Ob
increases by k, of which (n− 1)/n arrive via HR

b :
bAR

b = AR
b (1+ k(n− 1)) (6)

Case (3): Receive channels on non-straggling workers. Finally,
records are taken evenly from all non-straggling workers wi /∈ M.
k(n − 1)/(n − m) of the records originally assigned to each non-
straggling worker are reassigned to each wb:

bAR
i = AR

i

�

1− km
n− 1
n−m

�

(7)

Receive channels on straggling workers show the highest join trans-
fer volume increase. Similar to before, we assume a new bottleneck
is created when UR

b=1, and solve for k to find the highest speed-up:

AS
b (1+ k(n− 1)) =

AS
b

Ub
(1− k) ⇒ k =

1− Ub

Ub(n− 1) + 1
(8)

Compared to congested receive channels, record reassignment is
less effective for congested send channels because the reassignment
quickly overloads the receive channels of the straggling workers.
Example: With 32 workers and one congested send channel (50%
capacity), the maximum reduction in completion time after record
reassignment is 3% according to Eq. 8: only |Oi |(n−m)/n records
are available at non-congested workers; if mk|Ob| > Oi(n−m)/n,
k is limited by (n−m)/mk, leading to even less improvement.
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Figure 2: Lazy partitioning (Some lazy partitions are already assigned.)

We conclude from the above analysis that record reassignment can
effectively offset network skew among receive channels, but is sig-
nificantly less effective against skew on send channels. Thus our
solution focuses on receive channels, but our evaluation with real-
world applications generating background traffic (§6.3) shows that
their traffic patterns frequently create receive-side bottlenecks.

4 Lazy Partitioning
We now introduce lazy partitioning to adapt to network skew in
distributed join processing. Based on the analysis in §3, we focus
on receiver-side skew. We describe lazy partitions (§4.1), how skew
is detected and rebalanced (§4.2), and how lazy partitioning behaves
without skew (§4.3). We will explore the behaviour of all parameters
introduced in this section in §6.6, justifying their default values.

4.1 Lazy partitions
We introduce lazy partitioning to implement a practical form of
record reassignment. Record reassignment can effectively offset net-
work skew in receiver channels, but assignments must be recorded
to ensure consistency if keys appear multiple times. A data structure
recording assignments grows with the number of entries, so tracking
the output partition of each individual key of large datasets entails
significant overhead. Instead we group records into fine-grained
partitions: any input partition consists of multiple smaller partitions,
Ii = {pi1, pi2, . . .}, and each smaller partition is treated as an atomic
unit; correspondingly output partitions consist of these same smaller
partitions, Oj = {p j1, p j2, . . .}. Each record appears in one of these
partitions based on its join key.

We call these partitions lazy partitions because we can withhold
assignment to output partitions until the job is underway: workers
buffer records at sender processes prior to an assignment decision
that can offset network skew. O∅ denotes the set of lazy partitions
not yet allocated to an output partition. Initially, this set contains all
records. Assigning a lazy partition p ∈ O∅ to the output partition
on worker wi removes all partitions with the same join keys across
all workers from O∅ and adds them to Oi . When a lazy partition
is assigned, all its buffered records are sent to the assigned worker,
and future records are sent directly without buffering. At join com-
pletion, all lazy partitions must have been assigned, i.e. O∅ =∅.

Fig. 2 shows an example of lazy partitioning. Keys k4, k5 and
k6 are buffered in lazy partitions. Records with those keys are thus
kept by the sender processes, partitioned into two lazy partitions,
which can be assigned later. The lazy partitions with keys k1, k2
and k3 have already been assigned to output partitions. When a
sender process reads a new record with a given key, it either buffers
the record or sends it immediately, depending on whether the key’s
corresponding lazy partition has been assigned.

Algorithm 1: Detect skew and compute assignment

Input :W: set,O∅: set,τskew: const,τassign: const, t: now()

1 δslowest←maxwi∈W{
ρ(O i , t)

r(i,t) }
2 Wfinished←∅
3 if minwi∈W{

ρ(O i , t)
r(i,t) } < δslowest(1−τskew) then

4 foreach wi ∈W do
5 δi ←

ρ(O i , t)
r(i,t)

6 while wi /∈Wfinished ∧ ∃{p1 . . . p|W|} ∈ O∅ do
7 δ′i ←

ρ(Oi , t)
r(i,t) +

|{p1 ...p|W|}|
r(i,t)

8 if δ′i >δslowest ∨ δ′i −δi >τassign then
9 Wfinished←Wfinished ∪ {wi}

10 else
11 O∅← O∅ \ {p1 . . . p|W|}
12 Oi ← Oi ∪ {p1 . . . p|W|}

Lazy partitions are assigned in two cases: (i) when network skew
is detected and a rebalancing decisions is made (§4.2); and (ii) when
the lazy partitions at a worker exhaust the allocated memory (§4.3).

4.2 Detecting and balancing skew
Correctly deciding when lazy partitions should be assigned to mit-
igate network skew is critical. Late detection policies [26] make
decisions after some workers have already finished, and shift load
to these workers. Such an approach, however, suffers from head-
of-line blocking and would also prevent the reaction to transient
network skew during the join execution. Instead, we want to make
assignment decisions as early as possible, which requires periodic
measurements to detect straggling workers.

As the analysis from §3 has led us to focus on the receiver
side, we need a measure of progress for each receiver process. Re-
ceiver processes continuously monitor their throughput in terms
of received data records per second and use it to estimate their
completion time. Significant differences in these estimates indicate
network skew and trigger an assignment decision.

Each worker maintains a counter γ of the number of processed
records. We denote the number of records still to be received by
worker i at time t in the assigned partitions Oi by ρ(Oi , t). Assum-
ing that the total number of records is known in advance, e.g. from
statistics maintained by a query optimiser, it is possible to compute
ρ(Oi , t) = ρ(Oi , 0) − γ. Using ρ, the rate r(i, t) of a worker wi
at time t is r(i, t) = (ρ(Oi , t)−ρ(Oi , t ′))/(t − t ′), where t ′ is the
time of the last measurement. We denote t − t ′ as the assignment
interval τassign. The node completion time δi is then given by:

δi =
ρ(Oi , t)
r(i, t)

(9)

We use the estimated completion times of workers to compute
a lazy partition assignment. Our algorithm greedily assigns lazy
partitions to workers until their new estimated completion time
either equals that of the slowest worker or exceeds a specified thresh-
old. Alg. 1 detects network skew and computes the lazy partition
assignment using the set of all workers, the set of unassigned lazy
partitions, and sensitivity thresholds τskew and τassign. A master node
executes the algorithm and broadcasts its result to all workers.

First, the slowest worker (line 1) is compared to the fastest worker
(line 3). Repartitioning only occurs if the estimated completion time
of the fastest worker is less than the skew threshold, τskew, defined as
a fraction of the slowest worker. τskew controls the sensitivity of the
approach: smaller values cause more rebalancing decisions, while
larger values cause slower reaction. By default, τskew is set to 5%,
which gives robust behaviour in practice (see §6.6).



Algorithm 2: Consume lazy partitions

Input :W: set,O∅: set,τconsume: const, t: now()
1 l ← d|O∅|τconsumee
2 δslowest ←minwi∈W (r(i, t))
3 q = l/
∑n

i=0 li
4 foreach wi ∈W do
5 li = dq

r(i,t)
δslowest

e
6 while li > 0∧ ∃{p1 . . . p|W|} ∈ O∅ do
7 Oi ← Oi ∪ {p1 . . . p|W|}
8 li ← li − 1

If network skew is detected, the algorithm makes an assignment.
Since all sender processes use the same partitioning scheme, the
algorithm assigns the equivalent partition for each sender process
to ensure that workers receive all records that must be joined with
each other (line 6). A new estimated completion time is computed
for a worker, assuming the given set of lazy partition is assigned to it
(line 7). If the estimated completion time exceeds that of the slowest
worker or the cumulative increase for this round exceeds a threshold,
τassign, the worker is marked as finished for this round (lines 8–9);
otherwise the lazy partition is assigned (lines 10–12).

The complexity of the detection algorithm is O(W) because it
must scan all workers to find the slowest one. The reassignment
heuristic has a worst case complexity of O(O∅), which occurs when
all lazy partitions are assigned in one step.

Using the assignment interval τassign as an assignment thresh-
old makes the algorithm robust to transient network skew. Fully
rebalancing perceived network skew can cause an imbalance if
the skew disappears before the join computation finishes. In this
case, faster workers may receive too many lazy partitions relative to
straggling workers, while consuming lazy partitions that could be
used to address such an imbalance. Using an assignment threshold
avoids this, and we always assign enough to last at least until the
next assignment decision. By default, τassign is 5 s, and we explore
this parameter in §6.6.

Alg. 1 takes into account the number of unsent records in the lazy
partitions when making assignments (line 7). The total size of a lazy
partition is obtained by linearly extrapolating its current size accord-
ing to the fraction of input that has not yet been seen. For example,
if a lazy partition contains l records and 50% of the input data was
processed, the lazy partition accounts for approximately 2l records.
This makes our approach aware of data skew: the algorithm tracks
the aggregate size of the records assigned to each output partition
until a threshold is met. It therefore adapts the assignments to offset
any differences in the sizes of lazy partitions caused by data skew.
Reassignment decisions involving large lazy partitions will assign
fewer partitions than those involving many smaller partitions.

4.3 Consumption without network skew
Without network skew, lazy partitions must eventually be assigned
to receiver processes to ensure join completion. Each worker has
a finite amount of memory M to store lazy partitions. Si denotes
the lazy partition size, i.e. the memory required to store all lazy
partitions on worker wi . Once any worker has filled up its memory,
∃wi ∈W : Si = M , it must consume a subset of its lazy partitions
to make room for more records.

Alg. 2 formalises the consumption. It first determines the number
of lazy partitions that should be consumed (line 1) and then calcu-
lates the rate of the slowest worker (line 2). Each worker receives
a weighted number of lazy partitions according to this ratio: (i) the
average weight is computed (line 3); and (ii), for each worker, the
amount to assign is determined (line 5) and assigned (lines 6–8).
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Figure 3: SquirrelJoin architecture (Solid lines represent the data plane;
dashed lines represent the control plane.)

This size-weighted assignment accounts for data skew because
the number of records is assigned according to the combined sizes,
rather than the number of the lazy partitions containing the records.
This adds to the join transfer volume by the same proportion for
each receiver channel, which increases the estimated completion
time δi of all channels by the same amount. Because lazy partitions
are assigned in groups, the nominal sizes of individual partitions do
not affect the increase in δi .

A consumption threshold τconsume specifies how many lazy parti-
tions should be consumed when a worker exhausts its memory. The
threshold is specified as a percentage over all lazy partitions that
have not been assigned yet—as more lazy partitions are assigned,
the absolute amount therefore decreases. Ideally, τconsume should
be small to retain as many lazy partitions as possible for later use
in rebalancing. If τconsume is too small, however, workers consume
lazy partitions too frequently, increasing overhead. As we show
empirically in §6.6, τconsume = 5% is a robust default.
τconsume also determines the number of lazy partitions required.

The consumption algorithm selects a set of lazy partitions based
on their combined size (line 1). If there are too few lazy partitions,
at least one lazy partition cannot be assigned to each worker. Thus
the number of partitions required has a lower bound of |W|/τconsume
when O∅ contains all records. As more assignments are made, the
size of O∅ shrinks geometrically, so it is advisable to have more
lazy partitions to ensure an even distribution in later assignments.
The upper bound is one partition per key, but there is a significant
overhead in tracking assignment decisions for each key.

For example, with 64 workers and τconsume of 5%, the minimum
number of lazy partitions required is 1280. In our experiments, we
use approximately three times this number (3200 lazy partitions) to
stay well above this calculated minimum.

5 SquirrelJoin Implementation
We now describe SquirrelJoin, an implementation of lazy partition-
ing on top of the hash-based repartition join algorithm in Apache
Flink [18]. SquirrelJoin addresses two challenges: (i) minimising
overhead for maintaining and consuming lazy partitions (§5.1); and
(ii) creating robust completion time estimates (§5.2).

5.1 Architecture
SquirrelJoin extends the task-based architecture of systems such as
Flink or Spark. Each worker has multiple readers that read input
data records in parallel and send them to receiver processes.

Fig. 3 shows the SquirrelJoin architecture consisting of (i) a lazy
partition coordinator to make assignment decisions, and (ii) lazy
partition managers to manage the lazy partitioning on workers.
Workers have (i) lazy partitions to store records in memory; (ii) lazy



partitioners to determine if records should be stored in a lazy parti-
tion; and (iii) lazy partition readers to consume lazy partitions after
assignment. The components communicate via control messages.
Lazy Partition Coordinator (LPC). The LPC is part of the Flink
master node and coordinates the lazy partition assignment. It pe-
riodically retrieves current progress rates from the LPMs on the
workers and runs Algorithm 1 to detect and rebalance skew. It
also polls LPMs to retrieve the lazy partition sizes and consumes
partitions as per Algorithm 2 when workers exhaust memory. The
LPC broadcasts all assignment decisions to the LPMs.
Lazy Partition Managers (LPMs). Each worker has an LPM that
reports aggregate statistics from local lazy partitions to the LPC and
stores assignment decisions received from the LPC. The decisions
are queried by local lazy partitioners to identify the receiver process
for a data record whose lazy partition was already assigned.
Lazy Partitioners. Flink exploits the parallelism of multi-core CPUs
by running multiple reader tasks at a worker. In SquirrelJoin, each
reader is associated with a lazy partitioner, which decides if a data
record should be stored in a lazy partition or sent to a receiver
process. This decision must be done consistently across all readers
on all workers. Lazy partitioners can query the LPM to determine
if the lazy partition for a given record has been assigned or not. To
reduce the performance impact of adding records to lazy partitions,
each reader maintains its own set of lazy partitions. This avoids
the need for synchronisation between reader tasks and reduces the
latency added by the lazy partitioner.
Lazy Partitions. Lazy partitions are stored in a hash table with a
unique identifier per partition as the key and the stored records as
the value. Records are stored in byte arrays in serialised form to
reduce instantiated objects and garbage collection overheads.
Lazy Partition (LP) Readers. After a lazy partition has been as-
signed, a LP reader reads and sends records from the assigned lazy
partitions to the specified destinations. By consuming lazy partitions
concurrently, readers do not require extra logic for receiving and
parsing assignment decisions, reducing delay on the critical path.

5.2 Mitigating estimation error
The LPC requires good time estimates to make good assignment de-
cisions. Multiple effects create errors in the estimation, such as the
measurement granularity or transient network effects. For example,
we found TCP unfairness to be a major error source: TCP imple-
ments max-min flow fairness, i.e. each network flow on a shared
link receives an equal amount of bandwidth, but TCP converges
slowly under congestion [2]. Such estimation errors lead to wrong
assignment decisions, which can cause degraded performance.

SquirrelJoin uses three simple yet effective techniques to mitigate
estimation errors:
Sliding window average. The LPC takes regular throughput mea-
surements. Single measurements are noisy, so the assignment algo-
rithm uses the average rate over the preceding τassign interval. After
an assignment, there is a back-off period equal to τassign before the
next assignment decision to ensure the throughput is measured after
the previous assignment. If no assignment is made, the assignment
algorithm executes again after the next measurement.
Friedman test. The Friedman test [19] filters statistically insignif-
icant network skew. Progress rates measured by the LPC naturally
differ, with some workers appearing faster than others, resulting in
an ordering of workers. If the differences in rates are caused by
measurement error, the order of processes will change randomly be-
tween measurements, but a consistent phenomenon such as network
skew maintains the same ordering. The Friedman test determines if

the ordering is consistent across multiple measurements. We set the
detection level of the Friedman test to 1%.
Skew thresholds. In addition to the relative skew threshold τskew
(see §4.2), an absolute skew threshold is used to avoid addressing
insignificant skew. Even if statistically significant skew is detected
and the relative difference is above tskew, reacting can be wasteful
if the expected absolute difference is small—instead lazy partitions
could be used to mitigate more severe future network skew. Thus
the LPC only reacts to network skew that is predicted to extend job
completion time by more than 5 seconds.

5.3 Multi-join execution
In a query with multiple joins, each join is executed independently,
i.e. it allocates and maintains its own lazy partitions and has separate
LPM and LPC instances. Progress measures for one join only affect
the lazy partition assignment of that join, which guarantees that a
join only reacts to skew that occurs during its execution. Without
data dependencies between the joins, it is straightforward to support
different join trees, such as bushy or left/right-deep trees, during an
n-way join. This makes SquirrelJoin compatible with existing query
optimisers because it does not impose restrictions on join ordering.

6 Evaluation
We evaluate SquirrelJoin’s effectiveness for different queries (§6.2)
and different sources and types of background traffic (§6.3). We
also explore the robustness of its measurements (§6.4) and consider
its scalability (§6.5). Finally, we analyse different choices for the
available parameters (§6.6).

6.1 Experimental set-up
We deploy Apache Flink [18] on a 17-node cluster (16 nodes with 4
workers each and 1 master node) on Google Compute Engine. We
use “n1-standard-16” VMs with 16 CPU cores at 2.5 GHz and with
60 GB of memory. We allocate 12 GB of memory to each worker.
We configure the VMs (using the Linux tc tool) to have virtual
1 Gbps NICs. We store input data on a RAM disk to ensure that
storage I/O is not a bottleneck.
Queries. As our workload, we consider the join queries Q2, Q3, Q9,
Q10, Q16, and Q21 from the TPC-H benchmark [40]. The queries
cover a large variety of workloads with different numbers of joined
tables, small and large input table sizes, and different run times.
We project away fewer attributes to saturate the network links, and
preprocess input tables, applying the selections, to observe each
join in isolation. We use a scale factor of 300 for all queries except
Q10, which we use for our scalability experiment. For Q10, we
use a scale factor of 1000, giving each preprocessed table a size of
roughly 160 GB. We use a subset of 40 GB per table and later vary
the subset size (see §6.2 and §6.5). All input data is stored in HDFS.
Note that we do not include the nation and region tables because
they would be joined via a broadcast join.

We compare SquirrelJoin to the default hash-based repartition
join implementation in Flink. Each experiment is repeated 5 times,
and we report the 25th, 50th and 75th percentiles as errorbars.

6.2 Query workloads
To analyse SquirrelJoin’s effectiveness, we evaluate it with different
join queries under network skew and for a workload with data skew.
Join queries. We use the above TPC-H queries and run each query
with and without network skew. To generate network skew, we use
iperf, a bandwidth measurement tool, to create 30 competing TCP
flows from an external machine to one VM. All flows start 1 s after
the query and last for 300 s, affecting all joins.
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Fig. 4 shows that SquirrelJoin detects and balances network skew
for all queries, and its performance is consistently similar to a de-
ployment without background traffic. It achieves speed-ups of up
to 2.9× over the regular join. Without network skew, the start-up
phase adds a small overhead, which we analyse in §6.5.

The input tables of Q3, Q10, and Q21 are large (> 10 GB), result-
ing in the highest benefit achieved by SquirrelJoin. In these cases,
transfers are long, and SquirrelJoin can assign most of the input
data to non-congested receivers. Q9 is a 4-way join, which takes
roughly 200 s to complete without network skew. Due to the longer
runtime, SquirrelJoin’s benefit under network skew decreases be-
cause the background traffic finishes before the query. Nevertheless,
SquirrelJoin still improves completion time by 1.5×.

Note that, for queries with small input tables (Q2 and Q16), the
reaction time of SquirrelJoin relative to the size of the input tables
is slower. This means that the bulk of the table has already been sent
before the first assignment decision, and SquirrelJoin provides less
benefit. However, it still balances network skew for the remainder
of the input data, leading to faster completion times.
Probe table sizes. To emulate longer running joins, we use the TPC-
H query 10 and vary the size of the lineitem table by increasing
the subset of data from the original preprocessed table. We use
three differently sized lineitem tables, 40 GB (Q40), 60 GB (Q60)
and 80 GB (Q80). Network skew starts randomly at 1–40 s after the
join and lasts for its remainder. We rerun each query 50 times and
plot the cumulative distribution function (CDF).

Fig. 5 shows that, for larger probe tables, the CDF for both Squirrel-
Join and the regular join shifts to the right by approximately 20 s
as the overall join takes longer to complete. The shape of the CDF,
however, does not change. This shows that SquirrelJoin scales with
the size of the probe table and can retain lazy partitions long enough
to also balance late-occurring network skew.

Compared to the regular join, whose performance depends on the
start time of the network skew, SquirrelJoin is largely unaffected
by this, only deviating 10%–15% from the median. SquirrelJoin
does experience a short tail around the 95th percentile. In some
cases, network skew starts right after a consumption decision was
made. This means that fewer partitions are available for rebalancing
compared to when the skew starts before the consumption decision.
Data skew. Next we study how SquirrelJoin handles data skew.
TPC-H data have uniformly distributed join keys, so we generate a
skewed dataset according to Rödiger et al. [33]. The dataset models
urban population and joins the primary key of a city table to a
foreign key of a people table. The foreign key is skewed and
randomly drawn from a Zipf distribution because many people live
in few large cities. The people relation contains 1 billion records,
and city has 100 million records. Both tables are partitioned in
equally-sized input partitions across all nodes. We vary the Zipf
factor s from 0 (uniform) to 1 (highly-skewed) and compare the
regular join to SquirrelJoin and a version of SquirrelJoin without
the size-weighted assignment that handles data skew (see §4.2).
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Fig. 6 shows that the data skew only affects completion times
when the skew factor s is ≥ 0.85. This is consistent with previous
findings [33] that basic hash partitioning is sufficient to balance
most data skew. When s=1, the regular join exhibits a slow-down of
1.5×, which is similar for SquirrelJoin without size-weighted assign-
ment. SquirrelJoin with size-weighted assignment, however, tracks
the lazy partition sizes and balances the assignments to achieves
a stable completion times for all skew factors. Fig. 7 confirms the
even data size distribution by showing the distribution of received
records across the workers in a CDF.

6.3 Network skew
To study how effective SquirrelJoin handles different types of net-
work skew, we run TPC-H query 10 with a variety of background
traffic patterns. We start off with network skew caused by back-
ground traffic from real-world applications sharing the network.
Background traffic. We use the following applications, commonly
found in shared clusters, to introduce background traffic:
(1) Log aggregation. Log aggregation services collect logs from
cluster machines and consolidate them at one or few aggregator
servers. This “many-to-few” traffic is susceptible to generate net-
work skew, for example, when the cluster experiences a high volume
of log data due to ongoing error reporting. We deploy Facebook’s
Scribe [35] with one aggregator server.
(2) Data analytics. Besides Flink, a cluster may host other data
processing frameworks such as Hadoop, Spark or TensorFlow. A job
containing few operators with large fan-ins, e.g. a reducer during a
MapReduce job or a parameter server for distributed machine learn-
ing, can generate receiver-side skew. We run a Terasort job [22]
in MapReduce with 32 mappers and 4 reducers.
(3) Distributed search. Distributed search engines also follow a
many-to-few pattern. Incoming search requests are partitioned and
processed by backend servers, and the results are collected at a
frontend server. Request bursts can cause substantial network skew.
We use Apache Solr [37] as a distributed search system.
(4) Data transfer. Large point-to-point data transfers occur in clus-
ters, e.g. during VM migration or large file uploads. Such transfers
can be accelerated by parallelising multiple TCP connections. We
emulate a VM migration operation by transferring an 8 GB Debian
image to one of the Flink workers. We uses 30 TCP flows to transfer
8 GB, so the skew disappears before the join completes.
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We run Q10 with each of the interfering applications separately
and plot the results in Fig. 8. Regular join experiences up to a 2×
slow-down with background traffic as the number of competing
TCP flows that each application generates equals the number of
flows of each worker (15), thus halving the bandwidth available to
Flink. SquirrelJoin detects the network skew in all cases and adapts
accordingly, achieving speed-ups up to 1.7× over regular join.

When background traffic is distributed evenly across nodes, all
Flink workers are affected equally, thus reducing individual strag-
glers and decreasing SquirrelJoin’s benefit. In Fig. 9, we vary the
number of reducers for a background Terasort MapReduce job.
The gap between regular join and SquirrelJoin decreases as the
traffic is spread across more reducer nodes. With more reducers, the
time of the shuffle phase, and thus the duration of the background
traffic, is also decreased, affecting the join less.

Another observation is that the regular join experiences a higher
variance for 8 reducers. With more reducers, it is more likely that
MapReduce schedules multiple reducers on a single node, thus in-
creasing the number of competing TCP flows to that node. Squirrel-
Join is resilient to such issues.
Network skew start times. To evaluate SquirrelJoin’s ability to
retain lazy partitions when network skew appears later during the
join computation, we vary the time at which synthetic network skew
begins. We delay the onset of the 30 competing iperf flows by dif-
ferent percentages of the join completion time (without background
traffic) and then run them until the join completes.

Fig. 10 shows that, when the network skew occurs early, the regu-
lar join experiences a 2.9× slow-down as 30 competing TCP flows
cause Flink’s available bandwidth to drop to roughly 1/3. As ex-
pected, the later the network skew occurs during the join execution,
the less impact it has on the join completion time until it completes
before the background traffic starts (110%).

SquirrelJoin’s completion time is around 80 s, regardless of net-
work skew, yielding a maximum improvement of 2.1×. The sta-
ble completion times indicate SquirrelJoin consumes lazy parti-
tions slowly enough to always have data available for rebalancing.
SquirrelJoin cannot eliminate all effects of network skew because it
sends some data records over the congested network link to estimate
completion times, and it adds a start-up overhead. This means that
late-occurring network skew affects SquirrelJoin longer than the
regular join, explaining the difference at 110%.
Network skew finish times. Next, we investigate how SquirrelJoin
behaves when network skew finishes before the join completes. This
shows SquirrelJoin’s robustness against short periods of network
skew. We repeat the same experiment as above but now always
introduce network skew when starting the join and then vary its
duration, again in terms of percentage of the join completion time.

Fig. 11 shows that the regular join experiences a linear increase
in completion time with longer network skew, while SquirrelJoin
keeps completion times constant. We conclude that lazy partitions
can handle transient network skew without overreacting.

If the network skew is short, the impact on the regular join is low,
and the start-up overhead of SquirrelJoin dominates the completion

time. At around 50%, which translates to approximately 30 s, the
lines cross and the regular join becomes worse. As discussed in
§2.2, typical network skew lasts for more than 10 s, often lasting
for 100 s or more. While SquirrelJoin introduces an overhead for
periods shorter than 30 s, it provides a benefit for most realistic
longer occurrences of network skew.

Multiple waves of network skew. We now explore a more dynamic
environment, combining the above two scenarios. We initiate differ-
ent waves of transient network skew. Each wave lasts for 15 s and
generates skew at a different node. We create up to 8 waves. Waves
are continuous, i.e. once the previous wave has finished, the next
wave starts immediately. We start the first wave after 10 s.

Fig. 12 shows that, with more waves, the completion times of the
regular join increase linearly until 7 waves when it saturates. The
reason is that the join finishes before wave 7 occurs and, hence, the
completion time is not further affected. SquirrelJoin is stable until
3 waves and then experiences a slight increase until 5 waves, after
which it is stable again at 80 s.

In summary, SquirrelJoin consistently outperforms the regular
join and produces stable results in a highly dynamic environment.
Its robustness mechanisms and gradual partition assignment prevent
wrong decisions when skew affects nodes for short time periods.

Network skew severity. SquirrelJoin should detect and mitigate
network skew independently of its severity. We now vary the num-
ber of competing TCP flows generated by iperf.

Fig. 13 shows the completion times for SquirrelJoin and the reg-
ular join. It also includes the times as predicted by our model for
the base case without any reassignment (model projected) and
the ideal case in which perfect knowledge about network skew is
available a priori and an optimal assignment can be computed before
running the join (model optimal).

The regular join experiences a linear increase in completion time
as we increase the number of competing TCP flows. This is expected
because TCP’s max-min fairness proportionally splits the available
network bandwidth between different flows and, hence, the available
bandwidth for the join decreases with more background flows.

SquirrelJoin also experiences an increase in completion time,
but the increase is less steep. The gap between the regular join
and SquirrelJoin increases until SquirrelJoin reaches a speed-up of
approximately 2.3× for 40 competing TCP flows. After that, the
difference stays nearly constant. The reason is that even though
SquirrelJoin correctly detects and rebalances the network skew, it
must send a small amount of data over the shared link to obtain re-
liable progress measurements. The more competing network flows
use that link, the longer it takes for SquirrelJoin to transmit the data.

The time predicted by model projected closely matches the
observed time of the regular join. As the optimal model assumes
perfect a priori knowledge of the network skew, it does not account
for any data sent over the shared link and, hence, model optima
and SquirrelJoin diverge slightly. The figure shows that Squirrel-
Join achieves at least 70% of the maximum theoretically possible
improvement for 20 or more competing flows.
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Figure 16: Cluster size
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Figure 18: Algorithm scaling
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Figure 19: Parameter τskew

6.4 Robustness
Next we explore the robustness and accuracy of SquirrelJoin’s mea-
surement and assignment mechanisms under different conditions.
Uneven CPU load. We first investigate the behaviour of Squirrel-
Join when stragglers are caused by imbalances in CPU utilisation.
We run the join from TPC-H Query 10 and vary the number of
contended CPU cores on one node using the Linux stress tool
(see Fig. 14) without network skew.

The performance of both the regular join and SquirrelJoin de-
creases linearly with more contended CPU cores. SquirrelJoin per-
forms slightly worse due to its overhead (see §6.5), but the relative
difference remains almost constant. CPU utilisation is bidirectional
and affects senders and receivers evenly. Hence it is not visible in
the receiver rates, and SquirrelJoin does not react to it.

While SquirrelJoin is robust to CPU contention, we believe that,
in practice, such situations are rare. Cluster schedulers such as Yarn
or Mesos already isolate CPU resources to prevent CPU imbalances.
Estimation accuracy. We also assess the accuracy of SquirrelJoin’s
completion time estimates. We execute the join without network
skew and record the estimates every second, comparing them to the
actual time that it took to complete the join. We run 4 workers per
node, giving us 64 estimates per measurement. We show the range
of errors for each measurement in Fig. 15. Negative error indicates
the completion time was overestimated.

Initially the errors are high (we exclude the first two data points,
which are above 100%) due to the start-up effects before senders
send at their full rates. Despite the high error, the variance of the
error in these measurements is low, i.e. the completion time is under-
estimated equally for all receivers. After 6 iterations, the magnitude
of the error is less than 10%, and the variance remains low.

The error increases again at around iteration 10 during the change
between the two phases of the two-phase hash join. After the build
phase finishes there is a short interruption between the phases before
data from the probe table is sent, which affects progress rate mea-
surements. After that, errors are consistently between 0 and -10%.
To avoid wrong decisions during the phase change, SquirrelJoin
does not balance network skew after the first sender and before the
last sender has finished the build phase.

Our error estimates are accurate and, more importantly, have low
variance. This, combined with the robustness mechanisms from
§5.2, ensures good assignment decisions.

6.5 Scalability and overhead
We analyse SquirrelJoin’s scalability and overhead with different
cluster and input data sizes.
Cluster size. We deploy Flink with three cluster sizes (16, 24 and
32 nodes), and compare SquirrelJoin and the regular join with and
without network skew. We scale the input data with the cluster size
to keep the same data-to-node ratio and allocate 20 GB of memory
to each Flink worker in order to handle the increase in output size
due to more join matches. Since the number of network flows to
each worker in the join increases with the number of nodes, we also
increase the number of competing background flows, thus maintain-
ing the same network bottleneck utilisation in all deployments.

Fig. 16 shows consistent behaviour across cluster sizes; there
is little difference between SquirrelJoin and regular join without
network skew while SquirrelJoin outperforms regular join under
network skew. Overall, we observe a small increase in completion
times as the cluster size grows: the Flink implementation experi-
ences higher overheads in larger clusters, and there is an increase in
computation required to finish processing the growing set of output
records per node. These effects impact both approaches equally.
Input data size. We compare the regular join and SquirrelJoin
without network skew as input tables grow. We use the same prepro-
cessed tables as before and increase the subset of data from 20 GB
to 80 GB per table until the join would start spilling.

Fig. 17 shows the same overhead of 10 s for SquirrelJoin for
40 GB and 80 GB of input data. This fixed overhead is from the start-
up phase of SquirrelJoin in which the network is not used before
the first assignment decision. For larger data sizes, the difference
decreases until both joins exhibit the same behaviour for 160 GB of
input data. For larger partitions of the input tables, more matches are
found, and the join computation shifts from being network-bound
to CPU-bound, reducing SquirrelJoin’s impact on completion time.
Algorithmic overhead. SquirrelJoin adds overhead by executing
the assignment algorithm on the LPC (see §5.1). Other overheads,
such as simple computations and data structure lookups, require
constant time, but the execution time of the assignment algorithm
grows with the cluster size. We investigate if this can create a
bottleneck by running the algorithm for various cluster sizes.

Fig. 18 shows the execution time of the algorithm for various
numbers of workers (64 to 16,384). The results suggest the algo-
rithm is unlikely to be a bottleneck. Even for extremely large clus-
ters the times are in the range of tens of milliseconds. Note that the
assignment algorithm runs in parallel with the join computation, and
the system never pauses to wait for the result. At worst, the runtime
of the algorithm increases the reaction latency. We show in §6.6 that
this negligibly impacts the effectiveness of lazy partitioning.

6.6 Parameter choices
We finish with a sensitivity analysis of SquirrelJoin’s parameters in
order to establish the generality of our default values.
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Skew threshold. We vary τskew from 1% to 75%, with higher values
being more sensitive to network skew. We use background traffic
intensities from zero to 30 competing flows to find a robust value.

Fig. 19 shows that values of τskew around 5% perform well for all
intensities of background traffic. This value is not brittle in that all
values between 5 and 50% perform similarly. Staying on the lower
end of that range allows us to maintain more partitions to adapt to
future network skew changes. Below this range, SquirrelJoin is too
sensitive, leading to bad decisions—we observe high completion
times for 20 competing TCP flows with τskew values of 1% and
2.5% because SquirrelJoin reacts to noise. With very large values
network skew is ignored as noise, and no adjustments are made.
Consumption threshold. Next we evaluate τconsume. Higher values
cause more lazy partitions to be consumed when the available mem-
ory fills up before network skew is detected. We vary the start time
of the background traffic from 1 s to 30 s after the start of the join.

Fig. 20 shows that SquirrelJoin achieves the best performance for
τskew values between 1% and 5%. Higher percentages cause a slow-
down of up to 1.9× due to the earlier consumption of lazy partitions,
which leaves fewer for later rebalancing. This even affects Squirrel-
Join when the network skew begins shortly after the start of the join
because an initial consumption is required to start sending out data
and collect progress measurements.
Assignment interval. We vary the assignment interval, τassign, from
2.5 s to 15 s with and without network skew. Shorter intervals result
in more reactive reassignments, but are less robust to noisy measure-
ments and bursty traffic.

Fig. 21 shows that the low values of 2.5 s and 5 s perform better
in the presence of network skew. Larger values lead to a slower
reaction—more lazy partitions are assigned evenly across receivers
when workers’ memory fills up more often before the first assign-
ment decision. This exacerbates the effect of the network skew while
consuming lazy partitions. The assignment interval does not affect
performance without background traffic because SquirrelJoin does
not make assignment decisions.

We observe that even the shortest intervals are not susceptible
to noise in this set-up using constant, steady background traffic.
This shows our noise mitigation techniques (see §5.2) help improve
the robustness of SquirrelJoin. Setting τassign to 5 s increases the
number of measurements for the χ2 approximation in the Friedman
test, making SquirrelJoin more robust to transient skew.
Lazy partition size. Since the overhead depends on when the first
consumption decision is taken, we evaluate the impact of the amount
of memory that is allocated for storing lazy partitions. We execute
the join with and without network skew from 30 competing TCP
flows and vary the allocated memory from 500 MB to 1.75 GB.

As shown in Fig. 22, without network skew, less memory reduces
the start-up overhead because lazy partitions are consumed more fre-
quently. A 500 MB allocation reduces the overhead by 4 s, roughly
50% less than for sizes above 1.5 GB. Less memory, however, also
limits the amount of network skew that can be rebalanced. More lazy
partitions are consumed before SquirrelJoin has enough information

to identify and address network skew. With 500 MB, the benefit of
rebalancing decreases by 98%. At around 1.75 GB, SquirrelJoin can
offset most network skew, and the overhead is still reasonably small.

7 Related Work
Distributed join processing. Kitsuregawa et al. introduced hash-
based joins [25], which DeWitt et al. [14] parallelised. Their ap-
proach is still employed by modern massively-parallel data process-
ing systems such as Hive [39] or SparkSQL [4]. Other work studied
joins in these systems, e.g. using semi-joins [9] or implementing
multi-way joins [1] for traffic reduction. These approaches, however,
do not consider dynamic adaptation and thus suffer from variations
in network performance.

Recent work optimises join network traffic by careful data parti-
tioning. Rödiger et al. mitigate data skew and achieve equally sized
partitions with adaptive radix partitioning and coordinate network
traffic by scheduling communication to maximise network utilisa-
tion [33]. FlowJoin [32] also tries to determine optimal partitioning
with minimal overhead by sampling the input at the beginning of the
join and determining a distribution-aware partitioning mechanism
before the join begins. Track Join [30] introduces a tracking phase
to identify where matching tuples are stored for particular keys,
then derives an optimal partitioning to minimise the total amount of
traffic. Lazy partitioning at runtime is orthogonal. These techniques
can improve the partitioning used as input for SquirrelJoin.
Adaptive query processing. Other works suggest adapting query
plans to changes in resource availability. Query scrambling [3]
dynamically executes parts of a query operator tree not stalled by
reads to hide network delays when reading from widely-distributed
data. As this approach only changes the execution order of operators
at inter-operator granularity, unlike SquirrelJoin, it does not have
to ensure the consistency of operator state. Other approaches [38,
41] schedule background processing when incoming tuples for an
operator are delayed, but this assumes other tasks are ready to run,
which is not always the case for distributed joins.

Eddies [5, 13] act as tuple routers: they change the order in which
tuples are processed by operators, essentially reordering the query
plan at runtime. To undo bad routing decisions, Deshpande and
Hellerstein extend eddies to modify and migrate operator state [13]—
something we want to avoid due to the additional network overhead.

The Flux operator [36] balances transient data skew, which is
similar to our approach. By keeping a single buffer per receiver
at the senders, Flux changes the arrival order of incoming tuples
and thereby avoids head-of-line blocking. However, it does not
repartition data and is hence unable to balance more persistent skew.

Other recent approaches focus on adaptive theta joins [16] with
provable bounds for state migration cost to minimise, but not fully
compensate for, the migration effort. Xiong et al. [45] use software-
defined networking (SDN) to capture the current network state and
adjust query plans accordingly. This adaptation only occurs at query
granularity and requires SDN support, limiting the applicability in
public cloud environments.



Optimal partitioning. Gedik describes a hybrid hash function for
flexible data partitioning, but since partitions are not entirely buffered
at senders, state migration is still necessary [20]. Resource Brico-
lage [29] defines an optimisation problem to maximise utilisation
in heterogeneous clusters. While our work shares the heterogeneity
assumption, it focuses on adapting partitioning dynamically. Co-
partitioning data such as in CoHadoop [17] completely avoids shuf-
fling data but requires joins to be always on the same key—an
assumption that does not hold for many analytical jobs.

SkewTune [26] mitigates the effects of data skew in MapReduce
by repartitioning data across output nodes when reduce tasks finish
early. This approach requires ordered input data, making the solu-
tion less general. Vernica et al. [43] use situation-aware mappers to
implement dynamic data partitioning in MapReduce. The approach
has a similar approach as lazy partitioning in that it buffers data at
senders until a histogram, for determining an optimal partitioning,
has been sampled. However, it is less adaptive and repartitions all
records in a single assignment.
Network isolation. Controlled sharing of network bandwidth, e.g.
through bandwidth guarantees to tenants in data centres [6, 7, 28],
can avoid bandwidth fluctuations and stabilise application perfor-
mance. This approach introduces two main challenges: (i) band-
width guarantees cannot prevent network variations caused by mul-
tiple applications executed by the same tenant; and (ii) tenants
rarely know the exact bandwidth requirements of their applications,
resulting in either increased costs or lower performance. These
problems make our approach still useful in clusters that enforce
bandwidth guarantees.
Traffic scheduling maximises network utilisation via coordinated
data transmissions [10, 12]. Chowdhury et al. decide on the lo-
cation of write replicas in a distributed file system according to
current bandwidth utilisation [10]. This is similar to our work, but
the file granularity disallows adapting the replica destinations dur-
ing writing. Existing approaches perform a priori optimisations or
consider the network without regard to application semantics. This
reduces possible performance gains for concrete algorithms such as
distributed joins, which can benefit from altering the network flows.

8 Conclusions
We presented lazy partitioning for distributed joins, a new technique
that dynamically adapts to network skew in shared compute clusters.
It delays the assignment of partitions to join workers in order to
permit future reassignment decisions that offset network skew.

We implemented lazy partitioning in SquirrelJoin for Apache
Flink and showed its effectiveness in reacting to network skew.
SquirrelJoin measures individual progress rates of join workers and
makes assignment decisions based on robust completion time esti-
mates, thus maximising network utilisation and avoiding congested
network paths. It therefore significantly improves join completion
times in shared compute clusters under background network traffic
with minimal overhead when no skew exists.
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