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ABSTRACT

Despite the wide adoption of graph processing across many differ-
ent application domains, there is no underlying data structure that
can serve a variety of graph workloads (analytics, traversals, and
pattern matching) on dynamic graphs with transactional updates.

In this paper, we present Sortledton, a universal graph data struc-
ture that addresses the open problem by being carefully optimizing
for the most relevant data access patterns used by graph computa-
tion kernels. It can support millions of transactional updates per
second, while providing competitive performance (1.22x on av-
erage) for the most common graph workloads to the best-known
baseline for static graphs – csr. With this, we improve the ingestion
throughput over state-of-the-art dynamic graph data structures,
while supporting a wider range of graph computations under trans-
actional guarantees, with a much simpler design and significantly
smaller memory footprint (2.1x that of csr).
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1 INTRODUCTION

Graph processing on dynamic datasets is an increasingly important
problem for many application domains, from recommender systems
to fraud and threat detections [25, 46, 50, 51]. Today many scenarios
need to perform a wide range of graph computations – analytics,
graph pattern matching (gpm), and traversals – on diverse datasets,
which can be highly dynamic and entail millions of edge insertions
per second [50]. For example, Alibaba uses a combination of graph
analytics and interactive graph traversals for fraud detection [17],
while the Twitter recommendation service is based on gpm and
traversals [25, 51]. Both need to perform the above-mentioned
analysis while ingesting many updates per second [17, 51].

Building a system that can efficiently process such a diverse set
of graph algorithms over a dynamic graph dataset is still an open
problem. This is largely because such a system needs an underlying
data structure that can absorb a high rate of transactional updates,
while efficiently processing the wide range of heterogeneous graph
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Figure 1: Supporting scans, transactional updates and inter-

sections for a universal graph data structure is challenging.

workloads. Designing such a universal data structure is a non-trivial
challenge, that we discuss and address in this paper.

Figure 1 depicts the related work landscape in the context of
supporting such requirements. Most of the existing related work
has not succeeded at supporting all of them. Let’s focus on the
data structure that stores the neighborhood of vertices. First, to
achieve a competitive performance on graph analytical workloads
(e.g., page rank) or traversals (e.g., single-source shortest path) the
data structure needs to support fast scans [57]. Second, to efficiently
support gpm (e.g., triangle counting), the data needs to be sorted to
enable fast intersections [1, 22, 41]. Third, to support the ingestion
of high update rates, the data structure needs to be dynamically
adjustable. Finally, to ensure correct results for the concurrently
executing analytical queries in the presence of updates [39], the data
structure needs to support versioning (e.g., MVCC [43]). An avid
reader will notice that satisfying any 2 out of the 3 requirements is
relatively simple but the combination of all three is challenging.

As a result, most prior work has focused on static graphs [18, 22,
29, 52] or foregoes support for gpm when operating on dynamic
graphs [19, 30, 36, 57]. Furthermore, most dynamic graph data
structures do not provide transactional guarantees. Hence, many
of the graph algorithms that have been developed for static graphs
cannot be run concurrently with updates [19, 30, 36]. Livegraph was
the first system to propose a multi-versioned, transactional data
structure, by storing two timestamps per edge [57]. However, this
triples the memory consumption and hurts the scan performance.
To the best of our knowledge, only Teseo [34] provides concurrent
support for all three requirements, depicted in Figure 1. However,
Teseo imposes a significantly more complex design than us (CSR-
like), without demonstrating advantages in performance.

We first present a systematic analysis of memory access patterns
to support optimal performance, e.g., sequential vertex access or
sequential neighborhood access. Utilizing a framework composed of
different basic data structures, we isolate and quantify the effects
of access patterns.
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Based on our insights, we propose Sortledton – an adjacency list-
like universal data structure that can ingest millions of transactional
updates per second while supporting the high performance exe-
cution of heterogeneous graph workloads. Sortledton uses a sorted
set data structure to store neighborhoods, which can be scanned
as fast as a contiguous region of memory, while supporting fast
intersections for gpm computations and up to 5 million transac-
tional edge updates. We show that Sortledton can outperform all
competitors for update throughput. At the same time, we are either
faster or on par even with the highly specialized systems for all
graph workloads on dynamic datasets and on average only 1.2x
slower than running the computations on a static graph stored in
csr [49] format.

2 BACKGROUND AND MOTIVATION

To better motivate the problem, we start by detailing what we
mean by heterogeneous graph workloads. Three graph workloads
categories exist in the literature: graph analytics, graph pattern
matching (gpm), and graph traversals [8]. Notable example algo-
rithms for each category are PageRank, triangle count, and single-
source-shortest path. The survey by Sahu et al. finds that all three
workload categories are frequent use-cases in graph databases com-
putations [50]. For example, Alibaba uses a combination of graph
analytics (finding big bicliques) and interactive graph traversals
for fraud detection [17] and Twitter recommends tweets based on
gpm as well as traversals [25, 51]. Both companies describe these
workloads as highly dynamic [17, 51]. Despite the increasing neces-
sity for efficient support of diverse dynamic graph workloads, most
graph processing systems target only a single workload category
or static graph computations [18, 22, 29, 52, 57].

2.1 Understanding the Problem

There are two key challenges when designing a universal graph
data structure for all aforementioned workload categories on dy-
namic graphs. The first one is to support a wide range of operations:
(1) all workloads require fast scanning of neighborhoods, (2) high
throughput of new edges requires fast insertions, and (3) gpm needs
intersection [12, 22, 41]. It is relatively easy to achieve a combi-
nation of any two of these operations. Scans and inserts can be
supported by a vector – with an amortized push_back operation.
However, intersections are slow because they run in O(𝑁 × 𝑀),
with 𝑁 and𝑀 being the cardinalities of the participating vectors.
Scans and intersections can be supported by a sorted array but this
is a static data structure and individual insertions are very slow. Fast
intersections and inserts can be supported with a hash set. How-
ever, hash sets have empty slots which require the evaluation of a
predicate for each scanned element. Hence, supporting all three op-
erations requires a trade-off and we address this with a systematic
study in Section 3 and a data structure design in Section 4.

The second challenge is to run updates concurrently alongside
computations while maintaining the correct semantics [39, 54].
Most graph algorithms are developed for static graphs. Therefore,
they require a static view of the graphs. In dynamic environments,
this can be provided by concurrency control systems. In particular,
multi-version concurrency control allows us to write to the newest
version of the graph and read older static versions. We address

this by first identifying the specific transactional requirements
in Section 3.5 before describing a graph-optimized concurrency
control system in Section 5.

2.2 Memory Access Patterns

Graph workloads are known to be memory access bound [7, 20].
Hence, optimizing for their memory access patterns is most impor-
tant. We identify four common memory access patterns:

(1) sequential access to the neighborhoods of all vertices
(2) sequential access to the edges within a neighborhood
(3) random access to algorithm-specific properties, e.g., scores

for PageRank or distances for bfs
(4) random access to the neighborhoods of all vertices
The PageRank (pr) algorithm in Listing 1 exhibits all access pat-

terns except the second. It accesses all neighborhoods and edges
sequentially in the order of the vertices (line 3) and reads the contri-
butions array at random locations (line 4). The random vertex access
pattern typically arises within traversal algorithms.

Data: contrib: V-sized array, contributions per vertex this
round, scores: V-sized array, scores next round

1 for v ∈ V do

2 incoming← 0
3 for e ∈ v.neighbors do
4 incoming← incoming + contrib[𝑒]
5 scores[𝑣] ← incoming
Algorithm 1: An example for sequential vertex access: the
main loop of a PageRank algorithm.

2.3 Graphalytics Benchmark

To quantify the effects of optimizing for different memory access
patterns, we use the kernels specified by the LDBC Graphalytics
Benchmark [11]. These cover all three graph workload categories
and all four access patterns. The benchmark includes 5 kernels:
weakly connected component (wcc), PageRank (pr), community
detection via label propagation (cdlp), breadth-first search (bfs),
weighted single-source shortest path (sssp), and local clustering co-
efficient (lcc). The first three are examples of analytical algorithms.
The next two are graph traversals and the last one is dominated by
triangle counting – a typical gpm algorithm. All algorithms exhibit
the sequential neighborhood access and algorithm-specific property
access patterns. The analytical algorithms show sequential vertex ac-
cess, while sssp and lcc access the neighborhoods in random order.
The direction-optimized bfs exhibits both vertex access patterns,
but is dominated by sequential vertex access.

Forwcc, pr, bfs, and sssp, we used the reference implementation
of the Graph Algorithm Platform Benchmark Suite (gap bs) [6]. lcc
and cdlp are implemented as in Teseo [34].

The Graphalytics Benchmark also provides the graph dataset (Ta-
ble 1). The Graph500-x datasets are synthetic power-law graphs.
The scale factor x describes the number of edges and vertices in
the graph; each increment doubles the number of vertices and
edges. Uniform-x datasets are like Graph500-x but they have a uni-
form degree distribution. dota-league, com-friendster, yahoo-songs,
and edit-wiki are real-world graphs. The latter two are from the
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Table 1: Graph datasets with number of edges and ver-

tices, average degree and size in memory when stored as an

undirected graph with 8 Bytes per vertex and 16 Bytes per

weighted edge.

Graph #V #E 𝐷 Size [𝐺𝐵]
dota-league 61K 51K 836 1.6
graph500-22, uniform-22 2M 64M 26 2.0
yahoo-songs 1.6M 256M 315 7.6
edit-wiki 51M 255M 22 7.6
graph500-24, uniform-24 9M 260M 29 8.3
graph500-26, uniform-26 33M 1B 33 33.9
com-friendster 29M 2B 72 67.0

Table 2: Operations for a universal graph data structure.

Operation Complexity Required for

Basic

get_neighbors O(1) all workloads
scan_neighbors O(𝐷) all workloads
insert_edge O(log𝐷) all dynamic workloads
insert_vertex O(log𝑉 ) all dynamic workloads
delete_edge O(log𝐷) some dynamic workloads
delete_vertex O(𝐷)1 some dynamic workloads

Set functionality

find_edge O(log𝐷) updates, consistency checks
intersect_neighbors O(𝐷) gpm

KONECT project [31] and are bipartite networks with edge creation
timestamps.

3 REQUIREMENTS AND DESIGN GOALS

Now that we understand the key challenges for building a universal
graph data structure for dynamic graphs, we discuss our systematic
approach to designing one. To address the heterogeneity challenge
of Section 2.1, we begin by outlining the requirements for a graph
data structure in general, i.e., the necessary operations. They are
listed in Table 2. We categorize them into basic and set function-
ality. The first category is supported by most former graph data
structures [19, 30, 36, 57]. However, the second category is not cap-
tured by them as they store neighborhoods in list data structures.
Hence, their intersect_neighbors operation has the complexity of
O(𝑁 ×𝑀) with 𝑁 and𝑀 being the size of the participating neigh-
borhoods. Similarly, their find_edge operation completes in O(𝐷)
(𝐷 defined as the average degree of the graph). Efficient support
of these operations is critical for gpm and dynamic workloads that
update or delete edges. Hence, a universal graph data structure
should store neighborhoods in set data structures. In the next sub-
sections, we show how the memory access patterns from Section 2.2
influence the design of graph data structures by running multiple
microbenchmarks.

Figure 2: Example graph with hub vertex, 𝐻 , and vertices (𝐴,

𝐵, 𝐶) with their neighbors.

Figure 3: Classical graph data structure designs 1○ CSR, 2○
Vector-based adjacency list for example graph fromFigure 2.

3.1 Sequential Vertex Access

The first memory access pattern is (1) sequential vertex access, e.g.,
the outer loop of pr (see Listing 1). Ideally, one should store the
neighborhoods of all vertices contiguously in memory. The csr
data structure, depicted in Figure 3, is specifically optimized for
this access pattern. It is a static structure and it stores all neighbors
in a large array in the order of the vertices they belong to.

We analyze the effects of suchmemory layout optimizations with
a simple microbenchmark. We compare the runtimes of the algo-
rithms from the Graphalytics benchmark (c.f. Section 2.3) executed
on csr and a simple sorted vector-based adjacency list, as presented
in Figure 3. Such an adjacency list implementation stores the neigh-
borhoods in random memory places with no relationship to each
other, thereby representing the other end of the spectrum. Even
when using the adjacency list, one can add software prefetching
instructions to optimize for the predictable vertex access pattern.

1The delete_vertex operations cannot be supported in O(log V) due to the fact that all
edges which reference this vertex need to be deleted.
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(a) sequential vertex access: vector ad-
jacency list vs csr.

(b) sequential adjacency access: vary-
ing edge block sizes vs vectors.

(c) algorithmic-specific properties:
Teseo sparse vs dense domain.

Figure 4: Effects of optimizing for different access patterns (cf. Section 2.2.)

We do so only for the bfs algorithm by adding a single prefetch
instruction to fetch the neighborhood three vertices ahead.

The normalized runtimes are shown in Figure 4a, where a ratio
above 1 means the csr is faster. We observe that even though pr
and wcc heavily rely on sequential vertex access, an adjacency
list mostly stays within 40% of the runtime of a csr. Only wcc
on com-friendster has a slowdown of over 1.4. lcc and sssp show
speedups of 20% for graph500-24. They have a dominant random
vertex access pattern and we suspect that csr results in a higher
false sharing of the cache lines.

We conclude that while optimizing for the sequential vertex ac-
cess is beneficial, it is not strictly necessary for good analytical
performance because optimizing for sequential vertex access only
addresses a small fraction of all memory accesses, i.e., the first mem-
ory access to a new neighborhood. These are in the order of |𝑉 |
while patterns (3) and (4) can occur in the order of |𝐸 | accesses,
where 𝐸 can be at least 10x larger than 𝑉 [31, 35].

3.2 Sequential Neighbourhoods Access

Next, we analyze the effects of optimizing for the sequential neigh-
borhood access pattern. Ideally, one would use a contiguous memory
region for each neighborhood, as done by Livegraph [57]. However,
no dynamic set data structure with such properties supports inter-
sections. Therefore, we check how well the access pattern can be
supported by sorted sets that maintain blocks of elements (e.g., B+
trees [13] or unrolled skip lists [45]).

To do that, we compare the runtimes of the Graphalytics algo-
rithms on: (1) vector-based adjacency list where neighborhoods are
completely continuous to (2) the adjacency sets in sorted blocks that
are linked together via pointers. We vary the block size. Intuitively,
a larger block size would lead to lower run times.

The normalized runtimes are shown in Figure 4b. We note that
all algorithms show nearly equal performance on both data struc-
tures when (2) uses a block size larger than or equal to 256 edges.
We conclude that optimal sequential neighborhood access can be
supported by set data structures with at least 256 edges per block.

3.3 Random Access to Algorithm Properties

The third memory access pattern is reading the algorithm-specific
properties. Thus, it is not influenced by the memory layout of the
graph data structure itself. However, we can influence the data
structure that holds algorithmic-specific properties by choosing the

domain of the vertex identifiers. We hypothesize that it is the most
important access pattern because it happens in the innermost loop
of the computation and is random, e.g., pr line 4 of Listing 1.

To explore the effects, we test two options for the vertex identifier
domain: dense and sparse. Most data structures store the dense
domain ([0, . . . |𝑉 |]) [19, 30, 36, 57], and many graph algorithms
are implemented assuming this domain, i.e. they use arrays to store
algorithmic-specific properties. However, storing a dense domain
complicates the deletion of vertices and we cannot assume that
the vertex identifiers provided by the user to a graph database are
dense [11, 21]. Therefore, we explore storing the sparse domain.

Since, our framework for microbenchmarks does not support
sparse vertex identifier domains, we evaluate the effects of a sparse
domain vs dense domain using Teseo [34]. We show normalized
runtimes in Figure 4c. Running on a dense domain is very beneficial
for most algorithms, leading up to 6x performance improvements.
In the case of Teseo, the main overhead is from using a hash map
to translate edges from a sparse to a dense domain.

An alternative would be to rewrite all graph algorithms to use
concurrent hash maps to store algorithmic-specific properties, e.g.,
the contrib and scores array in Listing 1, so, they can run on the
sparse domain directly. This, however, would incur similar over-
heads. Furthermore, it complicates the parallelization of the algo-
rithm due to using concurrent hash maps instead of arrays.

In conclusion, any graph data structure for analytics needs to
store a dense vertex identifier domain. In the dynamic setting with
user-provided vertex IDs this requires translating a sparse domain
into a dense domain when inserting new vertices.

3.4 Random Vertex Access

Finally, the random vertex access pattern happens when neighbor-
hoods of vertices are accessed in an unpredictable order. This is
typical for graph traversals, e.g., sssp. Ideally, one aims to mini-
mize the latency for retrieving the neighborhood of a vertex. Given
the need for dense vertex identifiers, we can use the IDs as offsets
in a vector to store the mapping, as done in many existing data
structures [19, 30, 57]. This minimizes lookup latency compared
to other mapping data structures like trees and hash sets because
vectors need exactly one memory access per lookup. We measure
that using a std::sorted_map or a robin hood hashmap2 instead

2https://github.com/martinus/robin-hood-hashing
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of a vector for the mapping, resulting in slowdowns between 1.1x
and 3x, depending on the algorithm and graph.

In conclusion, we establish that a universal dynamic data struc-
ture for heterogeneous workloads needs to have:

(1) a set data structure for neighborhoods to run intersections
(2) a neighborhood data structure keeping large blocks of edges

for sequential neighborhood access (3.2)
(3) ability to expose a sparse and a dense vertex domain to the

user (3.3)
(4) a low-latency index for random vertex access (3.4)

Furthermore, we find that optimizing for sequential vertex access
can be beneficial, but is not as critical as for other access patterns.

3.5 Transaction on Graphs

The second challenge we address is the support for running updates
and analytics concurrently and in isolation using mvcc to reuse
static analytical and gpm solutions in dynamic settings. For this, we
identify the transactional requirements of graph workloads.

Concurrency Control: Graph workloads are read-heavy and
common read-write transactions are very simple [2, 4, 6, 11, 25, 46,
51]. While queries can take up to tens of seconds for analytics or
multiple minutes for gpm, the majority of write transactions add a
single edge with corresponding vertices and properties, which are
very fast operations. Furthermore, many of the read-write requests
are actually writes with a priori known write set [4, 21].

The design of the upcoming sql standard extension for graph
transactions (gql and sql/pgq [23, 28]) reveals further insights into
the type of graph transactions that need to be supported. While
sql/pgq is read-only, gql supports writes as described earlier as
well as graph construction [3]. The latter involves complex read-
write transactions that can touch large parts of the graph. We
summarize that graph transactions fall in the following categories
with a descending frequency of occurrence:

(1) long-running and complex read-only queries
(2) short and simple writes with known write set
(3) complex read-write requests with arbitrary large, unpre-

dictable read- and write sets

Hence, an ideal graph concurrency control system should:

(1) decouple read-only queries from write requests
(2) support high throughput writes with a known write set
(3) provide support for read-write transactionswith large read/write

sets

In this paper, we focus on the first two points. Small read/write sets
can be supported by htap protocols [43] but large read/write sets
combined with highly frequent updates require novel concurrency
control mechanisms and are out of scope for this paper.

Version Storage:All entities are small (e.g., an edge takes only 4
or 8 bytes). Thus, versioned storage should induce no overhead for
unversioned records and little overhead for versioned edges. Second,
vertices and edges have only two states: present or not. Multiple
versions can only occur if vertices/edges are inserted, updated, or
deleted multiple times before a version can be garbage collected
which is rare. Hence, an efficient system should optimize for the
case of one and two versions.

Consistency:Most graph systems assume the following consis-
tency guarantees:
• no dangling edge: ∀(𝑎, 𝑏) ∈ 𝐸 => 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉
• no duplicate edge
• reverse edge exists (for undirected graphs): ∀(𝑎, 𝑏) ∈ 𝐸 →
∃(𝑏, 𝑎) ∈ 𝐸

Enforcing these rules requires an implicit read set in write-only
transactions (e.g., an edge insertion also reads the edge and its
vertices to ensure non-existence of the edge and existence of the
vertices). These read sets can be determined from the write sets.
Concurrency control protocols used in relational databases are a
natural way to enforce that these consistency guarantees hold atom-
ically. Hence, transaction handling is also relevant for graph pro-
cessing and graph streaming systems. The outlined requirements
are addressed in Section 5.

4 DATA STRUCTURE DESIGN

Our design implements the operations from Table 2 and is opti-
mized for random vertex access, sequential neighborhood access, and
algorithm-specific property access. Supporting only these three ac-
cess patterns allows a simple design because neighborhoods can be
independent data structures.

Finally, our data structure has no hidden costs like amortized
operations or background threads, runs analytics without the need
for any precomputation, and ingests updates into read-optimized
segments directly.

4.1 High-Level Design

There are two high-level designs for graph data structures. We
name them adjacency list-like and CSR-like because their main char-
acteristics stem from these classical data structures (Figure 3). The
adjacency list-like design has one adjacency index and an adjacency
list for each neighborhood. The neighborhoods are sets Set<ID>
of destinations, and the index is a map Map<ID, Set<ID>>. The
CSR-like design stores all neighborhoods in one data structure and
maintains an index of offsets for it. The formalization of the in-
dex is Map<ID, offset>. A strawman of the neighborhood data
structure is a set of edges: Set<pair<ID, ID>>. However, this is
neither performant for computation nor space-efficient because it
replicates the source of the edges many times. Ideally, we need a
set that stores sources and destinations clustered by source.

We compare both designs in terms of the memory access pat-
terns from Section 2.2. Both optimize for random vertex access with
their indices and neither influences the algorithm-specific access.
Furthermore, the CSR-like design optimizes for both sequential ver-
tex access and sequential neighborhood access, while the adjacency
list-like design only optimizes for sequential neighborhood access.

Given our insight that optimizing for sequential vertex access is
less beneficial than for any other pattern (Figure 4), we choose the
adjacency list-like design. This has three advantages.

First, an adjacency list-like data structure is embarrassingly paral-
lel at the granularity of vertices because its neighborhoods are inde-
pendent. Parallelization at this granularity is successfully utilised in
the vertex-centric computation model and many algorithms [6, 37].
Second, the maintenance of the index is simple and cheap because it
is independent of changes to the neighborhoods. This is opposed to
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Figure 5: Two-level vector.

the expensive maintenance in the CSR-like design where one edge
insertion leads to multiple index updates. This requires solutions
that impede random vertex access, e.g. lazy or amortized index up-
dates [34, 36]. Finally, the adjacency list-like design allows reusing
well-studied map and set data structures from prior research [27].
The CSR-like design requires a novel data structure that incorpo-
rates the factorization of edges into existing set designs [34]. The
key insight is to decompose the problem of building a graph data
structure into choosing a map and set type, and parallelizing them.
Next, we pick a suitable map and set candidate.

4.2 Data Structure

The adjacency index maps vertex IDs to vertex records. A record
contains multiple fields: a pointer to the neighborhood, its size and
a read-write latch for parallelization.

As described in Section 3.4, to minimize the latency of a map
lookup, we use a vector. To concurrently resize the vector without
locking it for updates, we use two levels (Figure 5). The first level
is small and has a fixed size. It holds pointers to the second-level
segments that contain the vector’s elements. When resizing the
vector, we allocate exponentially growing second-level segments
and add a corresponding pointer in the first level concurrently [14].

The adjacency sets store the neighborhood of each vertex. For
a universal graph data structure, they should support intersections
and sequential neighborhood access (Section 3) - sorted sets that
store blocks of edges are well-suited. Typical implementations of
such sets are B+ trees [13] and unrolled skip lists [45]. We choose
the second because it does not need global rebalancing [26]. In
contrast to the original unrolled skip list, we keep edges within
blocks sorted. We show this structure in Figure 6 3 . The elements
of the unrolled skip list are blocks of edges combined with the
header containing: the number of edges, the highest destination
within the block, and pointers for each level of the skip list.

The data structure supports standard set operations by combin-
ing ordinary skip list algorithms to find the correct block and then
a binary search within the block to find the correct position for
reading or writing. Blocks split into two when they fill up, and
merge into one when they are less than half full. Therefore, the fill
ratio of our block is between 50% and 100%. Both insertions and
deletions move at most block size elements. Hence, the operations
complete in O(max(log𝐷,𝑏𝑙𝑜𝑐𝑘𝑠𝑖𝑧𝑒)).

With such properties, an unrolled skip list is a good choice for
hub vertices. However, for vertices with neighborhoods smaller
than the block size, we use headerless, power of two-sized vectors
(Figure 6 2 ). This is space-efficient and follows the power-law
distribution [57]. Insertions and deletions respect the sorted order
and complete in O(𝑏𝑙𝑜𝑐𝑘𝑠𝑖𝑧𝑒).

The block size influences the performance of graph computations
(cf. Section 3.2) and edge insertion throughput which we analyze
in Figure 7 when loading Graph500-24 edge-by-edge (meps stands
for million edges per second). A block size of 128 leads to the highest
throughput. With smaller blocks, insertions suffer from random
memory access to find the correct block. For larger blocks, inser-
tions need to shift a larger number of edges within the blocks. We
expect similar results for other power-law graphs. For uniform
graphs, block sizes above the average degree show no influence on
performance because all neighborhoods are kept in single blocks.

Vertex identifier translation Analytical workloads require a
dense vertex identifier domain but in dynamic settings users usually
provide identifiers from sparse domains (Section 3.3). Therefore, we
provide a simple binary translation between the domains, and an
interface to access both. Performance critical computations should
use the dense domain and translate the inputs and outputs as de-
tailed in Section 6. Figure 6 1 shows these translations as logical-
to-physical and physical-to-logical indices (lp-index/pl-index). To
store the translation, we use a concurrent hash set [47] from sparse
to dense, and a concurrent two-level vector from dense to sparse
domains.

Edge Properties Edge properties are common in graph analyt-
ics, gpm, and traversals. Their storage should be governed by their
access patterns as detailed by Gupta et al. [24]. They are usually
accessed during scans and should follow the same order as the
edges. However, as many workloads do not access them, columnar
storage is preferred [24]. Hence, we store them at the end of each
edge block, in the same order as the edges (Figure 6).

4.3 Parallelization

We have one read-write latch per vertex to allow multi-threaded ac-
cess (see Figure 6 1 ). Before executing any operation on the vertex
or its edges, the latch needs to be locked. This locking mechanism
is simple. It scales because the number of latches in the system
grows with the number of vertices. It is dead-lock-free because
most operations require only a single latch, and we guarantee a
global locking order for intersections and multiple open scans.

Our locking model can lead to scalability bottlenecks when pro-
cessing hub vertices. To overcome this, one can parallelize the
unrolled skip list with one latch per block. That way, we can im-
plement all operations such that at most one block per skip list
level needs to be locked at any time [45]. Additionally, we propose
optimistic latches [9] for all read operations, but scans. However,
we choose the simple locking model because it has better scalability
than all competitors (Section 7.2), and leave the concurrent skip list
implementation for future work.

5 CONCURRENCY CONTROL

Now, we describe the design of our graph-optimized transaction
support that addresses the second challenge of running updates con-
currently with computations (Section 3). In relational systems, this
is achieved by mvcc protocols [16, 43, 48]. However, in graph trans-
actions, the writes are simpler, and the versioned items (edges and
vertices) are at most 8 bytes. Therefore, we adapt prior work from
relational systems [43, 48] to these new characteristics with the
goal to minimize memory usage and computational overhead. For
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Figure 6: Sortledton’s data structure for vertices 𝐻 , 𝐴 and 𝐵 of the graph in Figure 2: 1○ Translation and Adjacency Index, 2○
Vectors for small neighborhoods, 3○ unrolled skip list for hub vertices, 4○ size and neighborhoods versioning.

Figure 7: Sortledton’s insertion throughput with varying

block sizes.

durability, we propose using group commits, command write-ahead
logging, and snapshotting as described thoroughly for relational
workloads [38, 42, 43, 53], which can be implemented with low over-
head [55]. However, we do not implement it because it is orthogonal
to the other aspects of our design.

Version Storage: The version store aims to keep the memory
overhead per edge as low as possible. An edge version records
the type of the operation (insertion, update, or deletion), a com-
mit timestamp, and the associated property. We store the version
records as a linked list directly behind the edge in the block. The list
is ordered from new to old versions. Versions of adjacency set sizes
and vertices are stored similarly. Figure 6 4 shows an example: the
user inserted (3, 0) with property 𝑅, updated the property to 𝑍 and
deleted it at timestamp 𝑇𝑥 and 𝑇𝑦 , respectively. The neighborhood
size 4 (a) of 3 has two versions: 4 at timestamp𝑇0 before (3, 0) was
deleted and 3 after the insertion at 𝑇𝑦 . A linked list stores the edge
versions for the deletion and the two property updates, the latest
property value is also stored directly in the edge block.

We optimize for the case of two edge versions or less (Section 3.5).
For a single version-edge, no version record is stored and the edge

is assigned the implicit timestamp first version (𝑇0) for all operations.
For two version-edges, we store the version record inline.

Concurrency Protocol: Our concurrency protocol handles the
first and second requirements that were outlined in Section 3.5. It
decouples reads from writes and optimizes for high throughput
on writes with a priori known write set. It adapts mvcc with read-
only optimization (romvcc) and two-phase locking. The read-write
transaction protocol has five steps:

(1) claim all locks in a global order
(2) complete all reads with the newest versions and abort if the

consistency guarantees are not fulfilled (Section 3.5)
(3) get a commit timestamp
(4) complete all writes using the commit timestamp
(5) release all locks
We leverage the a priori known read and write-sets to claim

all locks in a global order at the beginning of the transaction [48].
Furthermore, as the protocol cannot abort after finishing the read
step, no rollback logging is necessary.

For read-only transactions, we draw a commit timestamp. When
reading a value, we first acquire a read lock, read the latest version
before our commit-timestamp, and then release the read lock. De-
spite being pessimistic, the read locks are practically harmless as
they are only held for the duration of one read operation. Further-
more, using locks for read-only transactions, allows more scalable
implementations of read-write transactions. That is, it guarantees
atomic commit without the overheads of other protocols (e.g., an
atomic commit and a validation phase, or drawing two timestamps
for read-write transactions [34, 57]).

We give a proof sketch for the correctness of the protocol. Let
𝑡1 and 𝑡2 be transactions with commit timestamps 𝑥1 and 𝑥2. If
both are read-write transactions, they are serializable by 2PL. Let
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𝑡1 be read-only and 𝑡2 be read-write. If 𝑥1 < 𝑥2, 𝑡1 cannot read any
values written by 𝑡2 because 𝑡2 versions are written with timestamp
𝑥2. If 𝑥2 < 𝑥1, we can reason that 𝑡2 already holds all locks before
𝑡1 starts because the locking phase is completed before 𝑡2 gets
its timestamp. Since 𝑡2 releases its locks only after completing, 𝑡1
needs to wait for the commit or abort of 𝑡2, when it tries to read any
value written by 𝑡2. Hence, it reads all values of 𝑡2 after a commit
or none after an abort.

Garbage Collection: We address garbage collection in two
steps: (1) when can a version be collected, and (2) who collects
them? We collect a version once no transaction can access it any-
more. That is, we track the timestamps of all active transactions
and collect all versions which are invisible to all active transactions
as done in Hyper [10]. This is an important optimization to avoid
long version chains in the presence of long-running transactions.
Garbage is collected by the threads that execute write transactions.
This leads to good data locality, requires no background threads
and memory is freed where and when it is needed [16, 43].

6 IMPLEMENTATION

We implemented Sortledton by composing existing data struc-
tures. The adjacency index and the indices for translation use the
ConcurrentVector and ConcurrentHashMap from Intel’s Thread-
ing Building Blocks [47]. For our adjacency sets, we implemented
the unrolled skip list from Platz et al. [45] with slight modifications
as indicated in Section 4.2 and 4.3.

Our interface is similar to prior work [19, 34] with two excep-
tions. First, we allow the user to access both the sparse and the
dense vertex identifiers. We run graph computations by translating
inputs into the dense domain, then running the analytics, and fi-
nally translating the output back to the original sparse domain. We
show this process in Listing 2. The translation is fast because the
input to most computations is small while the output translation is
cheap and easy to parallelize. For example, a bfs receives its start
ID as input and outputs one distance value per vertex. So, we need
𝑉 +1 parallel translations, which take only a fraction of the runtime.

Data: tx: ReadOnlyTransaction, start_vertex: logical_id
Result: result: array of size V containing the hop distance

from start_vertex
1 start_vertex_dense← tx.dense_id(start_vertex)
2 distances← bfs(start_vertex_dense)
3 for i← 0 to V do

4 result[𝑖] ← pair(tx.sparse_id(i), distances[𝑖])
Algorithm 2: Running a bfs on a dense domain using

sparse identifiers externally.

Second, we optimize the interface that scans neighborhoods.
Prior works offer three different methods to access their neigh-
borhoods: (1) via an iterator interface [19, 57], (2) by providing a
lambda function executed for each edge [34, 52], or (3) by direct
memory access (e.g., for the CSR). However, using an iterator or
a lambda function executes two or one function(s) per edge, re-
spectively. To avoid this, we allow direct memory access to blocks
without any versions. In Figure 8, we present a comparison of graph
computations with and without this optimization. It can lead to
speedups of up to 2.3x.

Figure 8: Slowdownwhen using an iterator interface instead

of direct memory access.

7 EVALUATION

We run our experiments on a dual-socket machine with Intel Xeon
E5-2680v4 processors, which has 70 MiB of L3 cache, 14 hardware
threads, and 256 gb of memory. We compiled all systems with gcc
v10.2 and the O3 parameter. Further, we disabled Linux’s numa
aware page migration feature. Numbers reported are the median of
5 runs. For Graphalytics kernels, runtimes include translation costs
for inputs and outputs for all systems but Teseo on sparse identifiers.
We use a state-of-the-art kernel implementation (see Section 2.3)
and we disable disk-logging for all systems. For Sortledton, we set
the block size to 512 trading insertion for analytical performance
(cf . Figure 4b and Figure 7). We add software prefetching to bfs as
described in Section 3.2.

7.1 Qualitative Comparison to Related Work

We compare our work to a diverse range of state-of-the-art dynamic
graph data structures that support single edge updates: Stinger [19],
GraphOne [30], LLama [36], Livegraph [57], and Teseo [34]. We
relate the data structures used by all systems with the memory
access patterns (Section 2.2) and the high-level designs (Section 4.1).

Stinger, GraphOne, andLivegraph are adjacency list-like. Hence,
they have good support for random vertex access and are not opti-
mized for sequential vertex access. Livegraph uses one vector per
neighborhood for optimal sequential neighborhood access. Stinger
and GraphOne use one (14 edges) and two fixed block sizes (8 or
512 edges) for their neighborhoods, respectively. All of them use
neighborhood data structures that appent.he inserts. Hence, they
achieve good isolation of writing and reading threads for concur-
rency control of read-only queries. However, this does not allow
for efficient graph pattern matching.

LLama and Teseo have a CSR-like design and optimize for se-
quential vertex access. LLama’s read-store holds multiple snapshots.
A snapshot is a sorted array of new edges since the last snapshot.
Writes are buffered in a key-value store. We create a new snapshot
every 10 seconds as suggested by the authors [36]. The snapshot-
ting fragments neighborhoods. Hence, LLama does not optimize
for sequential neighborhood access. However, this is hidden due to
temporal locality when the computation follows the sequential ver-
tex access pattern. The combination of random vertex access and
sequential neighborhood access is most challenging for LLama.

Teseo stores its vertices and edges in a B+ tree with 2MB-sized
leaves containing packed memory arrays [33]. Packed memory
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Figure 9: Edge insertion throughput with random edge or-

dering. GraphOne upholds lower consistency guarantees.

arrays store blocks of elements interleaved with gaps to allow in-
sertions. Blocks contain multiple neighborhoods and up to 512
edges. Thus, Teseo has good support for sequential vertex access
and sequential neighborhood access. For random vertex access, Teseo
uses a hash map that is lazily updated. Teseo is designed to store
sparse vertex identifiers and needs to compute a dense mapping to
interface with existing graph algorithms. They need to translate
each edge read during analytics into the dense domain. Since this is
expensive, the authors provide a specialized version that can load
only graphs with dense identifiers. For graph computations, we
measure both versions.

7.2 Insertions Performance

The experiment evaluates the throughput of single edge insertions
in all systems. We add all edges of the input graph in random order,
one-by-one as undirected edges with no sleep time on the user side.
The addition of an edge checks if both vertices exist and inserts
them if not. The next step asserts that the edge does not exist
before inserting it. Livegraph, Teseo, and Sortledton perform all
operations for each edge insertion encapsulated in a transaction,
thereby ensuring atomicity and isolation. The other systems give no
guarantees and GraphOne cannot check if an edge already exists.

Figure 9 shows the throughput in million edges per second
(meps). Missing bars indicate that a system could not load the
graph due to memory restrictions. For power-law graphs (first 6),
Teseo and Sortledton are superior to the others because their neigh-
borhood sets allow for efficient checks if an edge exists. GraphOne
has similar performance, but as noted earlier does not perform the
check if an edge exists. If we introduce this check, its throughput
would drop to 5 edges per second [34]. Sorltedton’s processes up
to 1.6 million edges per second more than Teseo without using
background threads while using less memory (see Section 7.3) and
versioning adjacency set sizes.

For uniform graphs (first 2 from the right), Stinger demonstrates
the best performance – although, it cannot load uni-26 on our
system due to its high memory consumption. This reveals that for
uniform graphs, it is cheaper to linearly search for the existence of
an edge than paying the price of keeping them sorted.

Resilience to real-world update patterns:Until now, we load
all edges in random order to be comparable with past work [30,
34, 36]. However, the yahoo-songs and edit-wiki graphs show a

Figure 10: Edge insertion throughput with creation order.

strong temporal locality between updates to the same vertex. In
this experiment, we load these graphs in the order of their edge
creation timestamps with no sleep time as opposed to the actual
update frequency of a few edges per minute.

Figure 10 shows the throughput for both creation and random
order of applying the updates. Sortledton, Livegraph, and LLama,
have lower throughput when the graph is loaded in creation order
because they use one lock per vertex leading to higher contention
in bursty workloads. Although Teseo can split large neighborhoods
over multiple blocks, it suffers from higher contentionwhen loading
in sorted order. GraphOne and Stinger are not affected because they
batch updates or use lock-free synchronization, respectively. Stinger
and LLama cannot load edit-wiki in either order. It is a bipartite
graph with 5 times more vertices in one partition, a high edge to
vertex ratio of 5:1 and a high maximum degree of 5M edges.

We conclude that vertex-centric locking is a weak point for
bursty workloads and should be replaced by lock-free synchroniza-
tion. Furthermore, benchmarks should specify the loading order
of edges, because it can significantly influence the system perfor-
mance and they should cover the complete space of graph types, i.e.,
Graphalytics and GAPBS do not include a bipartite graph [6, 11].

7.3 Updates

We next evaluate how the data structures behave when running
a balanced mix of insertions and deletions with the same setup as
in Teseo [34] on an already large graph. The experiment has two
phases. The first 10% of all operations load Graph500-24. After, we
run a balanced mix 9x the operations as insertions and deletions
while keeping the graph size stable. We discuss throughput over
time, average throughput, and memory usage.

Average throughput (Figure 11a) allows us to compare how
the different data structures react to deletions by comparing their
throughput to the insertion-only experiment (Section 7.2). Liveg-
raph and Stinger show no significant difference because they treat
insertions and deletions in the same way. Sortledton’s throughput is
slightly lower due to the creation andmaintenance of version chains.
Teseo profits from deletions as they free space and lead to fewer re-
balances. LLama’s throughput halves compared to insertions-only
and GraphOne’s is 64 times lower.

Throughput over time (Figure 11b) shows how the systems
react to a growing workload and the effects of snapshotting in
LLama and GraphOne. The legend shows the completion time per
system. Teseo and Sortledton finish within 14 minutes while all
other systems take more than 2 hours.
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(a) Average throughput. (b) Average througput per second for g500-24. (c) Memory consumption for g500-24.

Figure 11: Throughput andmemory consumptions on amixture of insertions and deletions. Total execution time in the legend.

For Sorteldton, Teseo, and Livegraph, we observe smooth lines
as they perform updates individually and in place. They do not
depend on the current size of the dataset. Stinger loses perfor-
mance while the data structure grows, but has a stable throughput
afterwards. LLama’s throughput decreases over time because of
neighborhood fragmentation and the memory pressure by storing
multiple snapshots. Furthermore, their throughput oscillates due
to the need to digest edges from write to read-store. GraphOne
shows throughput between 0 and 1 million edges per second. The
system becomes unresponsive when applying edges to its read store
because it struggles to locate edges to delete.

Memory consumption in Figure 11c allows us to categorize the
systems into two classes. Livegraph, LLama, and GraphOne show
increasing memory consumption due to partial or missing garbage
collection implementations. Teseo’s, Stinger’s, and Sortledton’s
memory usage grow until the graph reaches its final size at 10%
of all operations. Then they show stable memory consumption.
They use 48 GB (Teseo), 27 GB (Stinger), and 18 GB (Sortledton),
respectively. For reference, storing graph500-24 statically in a csr
requires 8.3 GB. So, Sortledton’s overhead is 2.1x because our blocks
are 75% full on average, and we store the vertex ID translations
in 2 × |𝑉 |. The first overhead is inherent in many dynamic data
structures (e.g., B-trees, vectors, or hash sets). The second is needed
by systems that offer a sparse domain and a dense domain.

This experiment leads us to three conclusions. First, list-based
designs struggle with deletions. Second, batching updates in a write-
optimized store leads to high average throughput but comes at the
cost of unstable throughput and can lead to unresponsiveness. Third,
it is possible to store a dynamic graph in twice the memory needed
for a static graph.

7.4 Multicore Scalability

Figure 12 shows multicore scalability from 1 to 56 threads for all
systems on graph500-24. Teseo and Sortledton execute more than
3.1 and 4.8 million checked edge insertions per second, respectively.
Most other systems achieve less than 500 thousand. GraphOne
achieves 3.4 million unchecked insertions per second.

Both Teseo and Sortledton scale up to 56 threads. Sortledton
scales better because its concurrency control protocol is more light-
weight. One could achieve even better scalability with Sortledton by
using contention-free hash sets for translation between the vertex
domains or adding numa-awareness.

Figure 12: Edge insertion throughput andmulticore scalabil-

ity on graph500-24.

GraphOne does not scale beyond 14 threads because vertex
ID translation is sequential, and due to contention on its write
buffer [34]. However, it is twice as efficient with 14 threads as Teseo
and Sortledton. This is because (1) the different insertion semantics,
and (2) GraphOne batches updates in a circular buffer, then parti-
tions them per vertex and applies the partitions in parallel to the
main data structure. While this design enables high throughput, it
leads to higher update latencies and requires building a snapshot
before analytics. Therefore, it is not suited for Alibaba’s fraud detec-
tion workload with strict latency requirements and computations
per edge insertion [46, 56].

7.5 Analytics

We analyze the influence of the different data structures on the
runtime of analytics, traversals, and gpm queries. We run the Graph-
alytics benchmark kernels as defined in Section 2.3 after loading
the graph edge-by-edge. We normalize the runtimes against using a
csr, which is arguably the best general-purpose baseline for static
graphs. When beneficial, we use a numa optimized csr as baseline.

Figure 13 shows the slowdown of each system. We select dota-
league, Graph500-24, and com-friendster as a representative set of
graphs. Missing bars either indicate that the data structure could not
load the graph due to the memory constraints, or did not complete
the kernel computation within an hour.
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Figure 13: Graph kernel runtimes normalized to csr.

lcc, a gpm algorithm, shows no slowdown for Sortledton, a 3x
for Teseo and 11x to 106x or no completion for other systems. This
is due to Teseo’s and Sortledton’s set-based neighborhoods.

wcc and pr exhibit the sequential vertex access and sequential
neighborhood patterns. Sortledton, Teseo on dense vertices, and
LLama have runtimes close to the csr, confirming that support for
either pattern is effective. Teseo on sparse vertices takes up to 14x
longer because it translates each edge into the dense domain using
a hashmap lookup (Section 2.2). Stinger’s small, fixed-size neigh-
borhood blocks lead to pointer chasing (cf. Figure 4b). Livegraph
needs to scan 3x as much data and evaluates a predicate for each
scanned edge. GraphOne implements access to its neighborhood
by copying them into a user-provided vector.

sssp combines random vertex access with sequential neighbor-
hoods accesses. The runtime for all systems, apart from LLama, is
similar to wcc and pr. LLama does not optimize for sequential
neighborhood access in combination with random vertex access.

bfs shows the highest variance among all systems. We use the
direction-optimized variant by Scott Beamer [5]. It exhibits the
sequential vertex and the sequential neighborhood access patterns. It
differs from all other kernels, as it stops scanning early after finding
an edge that satisfies a predicate; often scanning less than 8 edges.
Hence, Livegraph and GraphOne have decreased performance due
to their overheads for accessing a few edges. On graph500-24, other
systems show similar performance as for pr and wcc. However,
slowdowns on com-friendster or dota-league show that bfs is hard
to optimize for. cdlp is dominated by building histograms of IDs.
Hence, it is not indicative for the graph data structure performance.

7.6 Concurrent Read-Write Workload

Weevaluate the influence of concurrently executing updates from Sec-
tion 7.3 and bfs or pr from Section 7.5. Figure 14 shows the latency
of analytics and the throughput of updates when combining 1 to 32
analytical threads with 16 and 48 writers compared to running them
in isolation. The experiment can only be executed by transactional
systems. Teseo cannot execute the workload due to a bug.

When bfs is run concurrently with updates, the throughput is
at most 12% (Sortledton) and 22% (Livegraph) lower than updates
in isolation. When updates run alongside pr, the throughput drops
significantly (Figure 14c). There are two reasons for this: 1) pr
scans complete neighborhoods while bfs scans only parts of most
neighborhoods, 2) pr runs longer transactions. Consequently, pr

holds locks on neighborhoods longer and leads to a higher number
of versions in the system. In particular, a long pr query with 1
analytical thread strains the system with many versions [10]. The
latency of both bfs and pr is higher than in isolation (Figures 14a
and 14d), due to multi-versioned edges which disable our direct
access optimization (Figure 8) and instead follow version chains.

For Livegraph, the concurrent workloads affect each other less.
There are two reasons: 1) the use of a log-structured data struc-
ture that allows writers to append the inserts without affecting
the readers. 2) Livegraph always pays the overhead of having all
edges versioned which lowers efficiency. Despite the interference,
Sortledton is ahead for updates/analytics in all/most cases.

8 RELATEDWORK

We discuss graph data structures with support for single edge in-
serts [19, 30, 34, 36, 57]. Figure 1 relates them to the challenges
outlined in Section 2.1. Only, Teseo and Sortledton solve the first
challenge of supporting graph pattern matching by computing in-
tersections in linear time. The second challenge of allowing for
concurrent updates and computations is only addressed by Teseo,
Livegraph, and Sortledton. Livegraph’s concurrency control is based
on an oltp-optimized protocol [32], that causes overheads on ana-
lytical workloads and memory consumption. Teseo’s protocol is an
htap-optimized protocol [43] for general read-write transactions.
This comes at the cost of having a higher overhead on small trans-
actions with a known write set. In particular, they have a higher
abort rate, do rollback logging, need to draw two timestamps per
transaction, and have a sequential validation phase. As a result,
only Teseo and Sorltedton address both challenges, but they follow
fundamentally different designs. Sortledton has an adjacency list-
like design, while Teseo follows the csr-like design. We compared
these designs in Section 4.1. Only Sortledton and Livegraph could
execute analytics and updates concurrently. LLama, GraphOne and
Livegraph optionally support disk-based storage. We discuss three
other differentiators between Sortledton and related work. First,
GraphOne, LLama, and Teseo use read and write-optimized seg-
ments to handle inserts. This leads to lower read performance or
reduced freshness. In the case of LLama and GraphOne, this will
result in unstable throughput over time (cf. Figure 11b). Second, all
competitors rely on background threads to perform data structure
maintenance (e.g. Teseo uses one thread per core for rebalancing
and garbage collection [34]). In particular, in combination with
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(a) Sortledton bfs (b) Livegraph bfs (c) Sorltedton pr update throughput

(d) Sortledton pr (e) Livegraph pr (f) Livegraph pr update throughput

Figure 14: Mixed workload for Graph500-24.

compute-intensive gpm this leads to overprovisioning. Finally, most
systems run pre-computations before analytics after applying up-
dates [30, 34, 36]. LLama and GraphOne ingest all buffered writes
into read-optimized storage. Similarly, GraphOne and Teseo create
a snapshot in𝑂 (𝑉 ) steps before starting analytics. GraphOne stores
the sizes of the neighborhoods to guarantee isolation from new
updates. Teseo creates a translation from sparse to dense vertices.

Batched update graph data structures trade-off update la-
tency for higher throughput. Aspen and Terrace support fast scans
and intersections [15, 44]. Aspen is adjacency list-like and can run
coarse-grained transactions per update batch by a single-writer
copy-on-write scheme. It uses purely functional trees storing blocks
of edges and a functional tree for the adjacency index. Terrace mixes
a adjacency list-like and CSR-like design. It uses three different data
structures depending on the size of the neighborhoods: they inline
small neighborhoods in the index, use packed memory arrays for
medium-sized neighborhoods, and B-Trees for hub vertices.

GraphDatabases.Mature graph databases exist, e.g., Neo4J and
Virtuoso. They use a linked list of edges per vertex and a columnar
relational layout for storage. Neo4J’s concurrency control uses the
isolation level read-committed and Virtuoso uses single version
locking. Hence, both systems could profit by changing to Sortledton
as underlying storage because of its cache-friendly layout and low
neighborhood lookup latencies as well as the higher isolation level
and/or better decoupling of readers and writers, respectively.

Further graph workloads. So far, we have discussed analytics,
traversals, and graph pattern matching workloads because they
drive our design. However, Besta et al. list three further workloads:
local, neighborhood, and the ldbc interactive and business intel-
ligence benchmarks. These can be efficiently supported by our

low-latency index and ability to find existing edges. For the ldbc
workload, like other dynamic data structures, we do not support
labels. For static use cases, the issue is addressed by Mhedhbi et
al. [40].

9 CONCLUSIONS

Sortledton is a sorted, simple, transactional graph data structure
that executes up to 5 million edge updates per second, supports
analytical, gpm, and traversal workloads with runtimes within 1.2x
on average of csrwhile needing only ∼2x the space of csr. Further-
more, it runs analytics and a high number of updates concurrently.
We achieve this by reusing existing data structures.

We construct Sortledton based on two key principles. First, a uni-
versal graph data structure needs to store neighborhoods in sets to
support gpm, consistency, edge updates, and deletions. Second, we
identify four memory access patterns in graph workloads: sequen-
tial vertex, sequential neighborhood, algorithmic-specific property,
and random vertex access patterns. With a series of microbench-
marks, we show that it is more important to optimize for sequential
neighborhood access and algorithmic-specific property access because
they occur once per edge, rather than the other two access pat-
terns that occur once per vertex. Therefore, csr-like designs lose
their main advantage over adjacency list-based designs that are
significantly simpler to build.
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