
Chi: A Scalable and Programmable Control Plane for
Distributed Stream Processing Systems

Luo Mai1, Kai Zeng2, Rahul Potharaju2, Le Xu3, Steve Suh2, Shivaram Venkataraman2, Paolo Costa1,2,

Terry Kim2, Saravanan Muthukrishnan2, Vamsi Kuppa2, Sudheer Dhulipalla2, Sriram Rao2

1Imperial College London, 2Microsoft, 3UIUC

1luo.mai11@imperial.ac.uk, 2{kaizeng, rapoth, stsuh, shivaram.venkataraman, pcosta, terryk, sarmut, vamsik, sudheerd,

sriramra}@microsoft.com, 3lexu1@illinois.edu

ABSTRACT
Stream-processing workloads and modern shared cluster environ-
ments exhibit high variability and unpredictability. Combined with
the large parameter space and the diverse set of user SLOs, this
makes modern streaming systems very challenging to statically con-
figure and tune. To address these issues, in this paper we investigate
a novel control-plane design, Chi, which supports continuous mon-
itoring and feedback, and enables dynamic re-configuration. Chi
leverages the key insight of embedding control-plane messages in
the data-plane channels to achieve a low-latency and flexible con-
trol plane for stream-processing systems.

Chi introduces a new reactive programming model and design
mechanisms to asynchronously execute control policies, thus avoid-
ing global synchronization. We show how this allows us to easily
implement a wide spectrum of control policies targeting different
use cases observed in production. Large-scale experiments using
production workloads from a popular cloud provider demonstrate
the flexibility and efficiency of our approach.

PVLDB Reference Format:
Luo Mai, Kai Zeng, Rahul Potharaju, Le Xu, Steve Suh, Shivaram Venkatara-
man, Paolo Costa, Terry Kim, Saravanan Muthukrishnan, Vamsi Kuppa,
Sudheer Dhulipalla, Sriram Rao. Chi: A Scalable and Programmable Con-
trol Plane for Distributed Stream Processing Systems. PVLDB, 11 (10):
xxxx-yyyy, 2018.
DOI: https://doi.org/10.14778/3231751.3231765

1. INTRODUCTION
Large-scale Internet-service providers such as Amazon, Facebook,

Google, and Microsoft generate tens of millions of data events per
second [5]. To handle such high throughput, they have traditionally
resorted to offline batch systems [22, 13, 4]. More recently, how-
ever, there has been an increasing trend towards using streaming
systems [3, 10, 28, 32] to ensure timely processing and avoid the
delays typically incurred by offline batch systems.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Articles from this volume were invited to present
their results at The 44th International Conference on Very Large Data Bases,
August 2018, Rio de Janeiro, Brazil.
Proceedings of the VLDB Endowment, Vol. 11, No. 10
Copyright 2018 VLDB Endowment 2150-8097/18/06.
DOI: https://doi.org/10.14778/3231751.3231765

Fully achieving the benefits promised by these online systems,
however, is particularly challenging. First, streaming workloads
exhibit high temporal and spatial variability, up to an order of mag-
nitude compared to the average load [28, 32]. Second, large shared
clusters exhibit high hardware heterogeneity and unpredictable con-
current usage. Third, modern streaming systems expose a large pa-
rameter space, which makes tuning hard, even for the most experi-
enced engineers. Further, different users and jobs have a diverse set
of Service Level Objectives (SLOs), leading to divergent configura-
tion settings. Addressing these issues requires introducing contin-
uous monitoring and feedback as well as dynamic re-configuration
into all aspects of streaming systems, ranging from query planning
and resource allocation/scheduling to parameter tuning. We call
the system layer in charge of such control mechanisms the control
plane, to distinguish it from the data plane (the layer in charge of
data processing).

Through our interaction with product teams and cloud operators,
we identified the following requirements that a control plane should
satisfy. First, it should be possible to define new custom control op-
erations, tailored to different scenarios [25]. Second, this should be
achieved with only minimal effort by the developers and through
a simple and intuitive API to minimize the chance of bugs, which
are particularly challenging to detect in a distributed environment.
Finally, the control overhead should be kept to a minimum, even
in the presence of high event throughput and large computation
graphs. This is particularly critical in today’s landscape with differ-
ent cloud providers competing hard to offer the best SLOs to their
customers. Ideally the control plane should match the data-plane
SLO (usually in the order of seconds or less).

Unfortunately, to the best of our knowledge, none of the existing
streaming systems can satisfy all these requirements. Heron [28]
and Flink [10] have a monolithic control plane that supports only a
limited set of predefined control policies (e.g., dynamic scaling and
back pressure), and lacks a clean API, which makes it hard for users
to define custom policies. Spark Streaming [42], adopts a Bulk-
Synchronous Parallel (BSP) model [39] in which a set of events is
buffered and processed as a batch. While this allows the system
to modify a dataflow between batches, it has limited flexibility due
to the hard batch boundaries and incurs high overhead due to the
synchronization and scheduling operations required.

To overcome the shortcomings of today’s systems and meet the
aforementioned requirements, we explore a novel control-plane de-
sign for stream processing systems. Inspired by the idea of punc-
tuations [38] being used for data operators, we propose embedding

control-plane messages into the data stream. By leveraging the ex-
isting data pipeline, control messages can be streamed at low la-
tency and in a scalable fashion, without requiring any ad-hoc mech-
anism (§7.2). This seemingly simple approach, however, requires
support from the underlying streaming infrastructure, to execute
distributed control operations with consistency requirements while
minimizing synchronization overhead and enabling an extensible
control programming model.

In this paper, we describe Chi, a control plane built on this idea of
embedding control messages in the dataflow to execute low-latency
control operations. We introduce a reactive programming model for
handling control messages that allows users to encode a number of
complex control policies. This hides the complex distributed na-
ture of the underlying system and provides developers an intuitive
model to understand the boundaries of data events to which the
control events are applied. We then design a mechanism to execute
these control policies in an asynchronous manner at each opera-
tor, avoiding synchronization and high runtime overhead. We show
that by using our programming model and execution mechanism
we can efficiently implement a number of control policies ranging
from basic functionalities such as checkpointing and replay, to ad-
vanced ones with strong global consistency requirements, such as
continuous monitoring, plan re-optimization, and parameter tuning
(§5). Finally, we also discuss how our control plane infrastructure
can be easily parallelized by having a separate control loop per op-
eration, making the control plane scalable.

To validate our claims and evaluate the runtime performance of
our new control-plane design, we implement Chi on top of Flare,
one of the internal stream processing systems used in our clusters.
Flare is built on top of Orleans [7], a highly efficient distributed
actor framework, and uses Trill [16] as the underlying stream pro-
cessing engine. While we choose to showcase our approach on top
of Flare for ease of implementation and deployment on our inter-
nal clusters, our design is not tied to a specific platform, and with
some additional engineering effort, it can be applied to existing
systems, including Heron and Flink. Our experimental evaluation,
based on production workloads and industry-standard benchmarks,
shows that Chi is able to perform reconfiguration for a large state-
ful dataflow in 5.8 seconds on a 32-server cluster. Real-world use
cases further show the effectiveness of Chi in helping developers
automatically tune critical system parameters and reduce latency
by 61%, reducing workload skew during runtime.

In summary, this paper makes the following contributions:
• An extensive study of today’s stream-processing workloads through
the logs collected from more than 200,000 production servers.
• A scalable and efficient control-plane that allows a streaming
system to efficiently adapt to changes in workloads or environment.
• A flexible control-plane API that enables developers to easily
implement custom control operations.
• Evaluation of our prototype implementation on a 32-server Azure
VM cluster using production workloads from a cloud service provider
and across a large set of control operations, including dynamic scal-
ing, failure recovery, auto-tuning, and data skew management.

2. MOTIVATION
We performed an extensive measurement study by analysing the

logs generated by more than 200,000 servers of a data-analytics
cluster of a popular cloud provider. These clusters generate a sig-
nificant amount of log data (10s PB/day), and queries on this data
are executed by developers for debugging, monitoring, etc. Given
the data size, we require a large cluster with adequate network and
compute resources to process data in real time. Our setup is con-
sistent with a recent analysis of Google production logs [20].

We begin by summarizing the main results of our analysis and
discuss the opportunities that arise.
Workload Unpredictability: The load on servers ingesting log
events is highly variable. Fig. 1(a) shows the heat-map of the nor-
malized number of tuples produced per minute across a random
subset of streams in our cluster. This shows two important phenom-
ena. First, as evidenced by the different color patterns across hori-
zontal lines, each stream exhibits a unique workload characteristic
(spatial variability). Second, while some streams are dark (high
volume) for most time, several streams exhibit burstiness (tempo-
ral variability), as shown by color spots the same horizontal line.

There are three main reasons for such variability in the log events:

• Heterogenous Workloads: The clusters generating these logs han-
dle a variety of workloads ranging from typical big data jobs
(e.g., filter, transform, join) to iterative machine learning work-
loads on behalf of hundreds of teams.
• Failures & Debugging: Failures are common at large scale. These

failures (e.g., networking issues, power issues etc.) generate a
large amount of error logs that lead to traffic bursts. In addition,
when ingestion data is not sufficient, developers temporarily ac-
tivate more verbose logs to perform in-depth debugging, which
results in a higher volume stream.
• Diverse Stream Semantics: The logs we ingest have diverse se-

mantics (e.g., info, verbose, debug, error, etc.) with various com-
ponents in the service emitting with different characteristics. A
service at the lowest level (e.g., storage layer) naturally produces
the most logs since most requests involve store I/O transactions.

To quantify the degree of variability, in Fig. 1(b) we show a box-
and-whiskers plot with the Y-axis representing the delta in terms
of event count per minute on a subset of incoming data streams.
The height of the box shows the difference in counts between the
25th and 75th percentiles. Beside the significant difference in the
behavior of each stream, it is worth noting the high range of change
observed within the same stream, denoted by the large number of
outliers (blue dots in the figure). For example, for certain event
streams, the event count can increase by up to tens of millions in
just one minute, indicating that a timely response is critical for sus-
taining load spikes.
Data Diversity Another key element in determining the optimal
query plan and resource allocation is the data distribution. To an-
alyze its dynamics, we focus on the key selectivity, defined as the
number of tuples that fall into a particular bucket. To analyze the
dynamics of this parameter, in Fig. 1(c) we plot the selectivity of
various grouping keys across time while in 1(d) we plot the selec-
tivity over time across multiple grouping keys. The wide skew in
the selectivity observed in both plots indicates that one-shot query
planning (e.g., traditional cardinality-based optimizer) either glob-
ally or on a per-key basis will likely be sub-optimal over time.
Multi-tenant control policies: In our production environment, the
same streaming system is used by many teams. Thus there is a
big diversity of SLOs across queries from different teams, or even
across different queries from the same team, leading to the need
for multiple control policies to be active at the same time. For
instance, we have many customers who are interested in consum-
ing verbose, info and error logs. While verbose and error logs are
used for debugging, info logs are often used to compute important
metrics (e.g., billing metrics). One popular request made by our
developers has been to provide stronger delivery semantics (e.g.,
exactly-once) for info logs and weaker delivery semantics (e.g.,
best-effort, at-least-once) for verbose/error logs. This highlights
the importance of supporting multiple control policies either on a
per-stream level or per-tenant level.

(a) (b) (c) (d)

Figure 1: (a) Heatmap of a subset of data streams in our ingestion workload. Each horizontal band signifies a unique data stream being ingested, (b) Box plot
representing the variability of delta count (order of millions) per minute (Y-axis) for a subset of incoming data streams (X-axis). (c),(d) Box plot depicting the
selectivity properties of grouping keys used in a streaming join query from production traces. (c) shows selectivity of various grouping keys across time while
(d) shows selectivity variability across the grouping key space.

Multi-tenancy also introduces new opportunities in system man-
agement and optimization. In our production traces we observe
queries that share a significant overlap in terms of data sources and
operators (e.g., users parsing logs in an identical way). Thus control
policies could look at sharing computation across users or materi-
alizing intermediate data for later reuse. Further, with insight into
the data streams and workloads, control policies could be used to
automatically and transparently choose new data layouts (e.g., with
partitioning) and storage engines (e.g., in-memory, database) that
can improve execution efficiency. While all these optimizations
are well understood in isolation [34, 35, 41, 33], applying them in
an integrated manner to optimize the streaming workloads requires
flexibility and scalability in the control plane.
Takeaway: Our trace analysis uncovered several interesting char-
acteristics of our workloads – high volume (10s of PB/day), low la-
tency requirement (SLO of seconds), widely diverse (100s of data
streams) and dynamic (due to the nature of services producing these
logs). Based on this, we can derive the following list of require-
ments for the control plane:
1. Efficient and extensible feedback-loop controls: Because of
the diversity of our workloads, it is important to allow users or ap-
plications to make flexible late-binding decisions on their data pro-
cessing logic for optimizing performance. From an extensibility
standpoint, it should be possible to integrate with dedicated com-
ponents (e.g., policy controllers such as Dhalion [25]).
2. Easy control interface: Since we intend the control plane to
be used by application developers, having an easier programming
interface is critical to its adoption.
3. Minimal impact on the data plane: The control plane should
have limited or no impact on the latency and throughput of the data
plane and it should be able to seamlessly cope with high control
frequency and large dataflow graphs.

3. BACKGROUND
Chi is primarily designed for streaming systems that are based

on a streaming dataflow computation model. In this section we
provide the reader with the necessary background on the streaming
dataflow computation model.

Many existing streaming systems, such as Naiad [31], Stream-
Scope [29] and Apache Flink [10] adopt the streaming dataflow
computation model. In this model, a computation job is represented
as a directed acyclic graph (DAG) of stateful operators, where each
operator sends and receives logically timestamped events along di-
rected edges. Each operator maintains mutable local state. Upon
receiving events, an operator updates its local state, generates new
events, and sends them to downstream operators. Operators with-

out incoming channels are source operators; those without outgoing
channels are sink operators.

For instance, consider an example where the user is interested in
tokenizing sentences into words, and count the windowed accumu-
lated count (e.g., per hour) of each word across all sentences in a
data parallel way. This query can be expressed in a LINQ-style
language as below:

EXAMPLE 1 (WORD COUNT EXAMPLE).

stream.SelectMany(line => Tokenize(line))
.GroupByKey(word => word)
.TumblingWindow(OneHour).Count ()

An instance of a dataflow graph for Example 1 is shown in Stage
I of Fig 2. Note that operators {R1,R2} maintain the accumulated
counts for the words as their mutable local states. These states
cover a disjoint set of keys, and jointly represent the entire key
subspace, e.g., R1 maintains the accumulated count for all words
with the starting letter in the range [’a’-‘l’], while R2 maintains
those for the range [’m’-’z’].
Dataflow Computation Model: Formally, a dataflow computation
is represented as a DAG G(V,E), where V represents the set of op-
erators, and E, the set of edges connecting the operators, u→ v
represents a directed edge from operator u to v. We use {· → v}
to denote the input edges to v, and {v→ ·} the output edges from
v. An operator v ∈ V is described by a triple (sv, fv, pv), where sv
is the state of v; fv defines a function that captures the computa-
tion run on v, i.e., f : sv,mei∈{·→v} −→ s′v,{m′eo∈{v→·}}, meaning
a function takes a single input message m, from an input edge ei,
and based on the current state sv, it modifies the state of v to a
new state s′v, and generates one or more messages on a set of out-
put edges {m′eo∈{v→·}}. Operators without input edges are called
sources, and operators without output edges are called sinks. For
generality, we represent the properties associated with v that are not
part of state as pv, e.g., pv can define the maximum memory used
by v. An edge e does not have any state but can hold properties pe,
e.g., the token size of windows before triggering back-pressure.

4. DESIGN
The intuition behind embedding the control plane into the data

plane is that this enables re-using the existing, efficient data-plane
infrastructure and offers developers a familiar API to write con-
trol operations, i.e., the same used to handle data events. Further,
having control messages directly trailing data events provides a nat-
ural way to create custom boundaries between sequences of events.
This makes it easy to implement asynchronous control operations

because control messages can be used to capture causal dependen-
cies without requiring expensive global synchronization operations.

In this section, we show how we incorporate these principles into
our control-plane design and provide several examples to describe
how we can easily build different control operations on top. We
conclude the section by describing some of the more advanced fea-
tures of our design and discussing how Chi can be adapted to sup-
port BSP-style computations.

4.1 Overview
Chi relies on the following three functionalities. First, channels

between operators support exactly-once and FIFO delivery of mes-
sages. Back-pressure is used to stop the message propagation when
the buffer of the downstream operator fills up. Second, operators
process messages one at a time and in the order that they have
been received. Finally, the underlying engine provides basic op-
erator lifecycle management capabilities. Specifically it allows us
to start, stop and kill an operator. These functionalities are already
supported by Flare, our internal streaming system, but they can also
be found in other existing systems [10, 28, 40, 42].

Our system design uses dataflow controllers that are responsi-
ble for monitoring dataflow behavior and external environmental
changes, and triggering control operations whenever needed. Users
can define control operations, and submit them to the controllers.

A control operation is carried out through a control loop that is
comprised of a dataflow controller and the dataflow topology itself.
In general, a control loop consists of three phases: (Phase-I) The
controller makes a control decision and instantiates a control op-
eration with a unique identifier. A control operation is defined by
implementing a reactive API (Section §4.2.2), and has control con-
figurations for each operator (e.g., the new topology to scale out the
dataflow stream). The control operation is serialized into a control
message (Section §6). (Phase-II). The control message is broad-
casted by the controller to all source operators of the dataflow. The
control messages then propagate through the dataflow, interleaved
with normal data messages. During the propagation, upon receiv-
ing a control message, each operator triggers the corresponding
control actions—which can optionally attach additional data (e.g.,
the repartitioned state) to the control message—and broadcast the
control message to all downstream operators. See Section §4.2.2
and Section §6 for more implementation details. (Phase-III) In the
end, the sink operators propagate the control messages back to the
controller, and the controller carries out post-processing.

We use Fig. 2 to illustrate this process. We consider a case where
the controller wants to increase the throughput by modifying the
topology and adding a new reducer.

(I) At the beginning, there are two map operators {M1,M2} and
two reduce operators {R1,R2} that compute word counting
for ingested sentences. These operators are stateful. For ex-
ample, {R1,R2} hold the accumulated count for all words,
where R1 maintains the counts for all words starting with
[‘a’-‘l’], and R2 maintains those for [‘m’-‘z’]. The con-
troller C is responsible for monitoring the memory usage
of all operators and reconfiguring parallelism if needed. To
simplify we omit the control messages that collect memory
usage and focus on the parallelism reconfiguration process
in the following discussions.

(II) Once the controller C detects that the aggregated memory
usage of the reducers goes beyond a threshold, it makes
a reconfiguration decision to start a new reducer R3 to in-
crease memory provisioning. In the new topology, the states
of {R1,R2,R3} should be repartitioned so that R1 holds the

word counts for the range [‘a’-‘h’], R2 for [‘i’-‘p’], and R3
for [‘q’-‘z’]. This reconfiguration needs to maintain the
consistency of the states. It starts by broadcasting a con-
trol message with the new topology configuration to all the
source nodes (→{M1,M2}).

(III) When the source (mapper M1 or M2) receives this control
message, the mapper immediately blocks the input channel
while processing the message, updates its routing table with
the new topology and broadcasts the message downstream
(→{R1,R2,R3}).

(IV) When the reducer R1 (or R2) receives the control message, it
blocks the input channel on which the message has been re-
ceived. When the control messages from all input channels
have been received, it updates its routing table and check-
points its state. Next, it splits the state into two parts: the ac-
cumulated word counts for the range [‘a’-‘h’] and the range
[‘i’-‘l’] (or for the ranges [‘m’-‘p’] and [‘q’-‘z’]) and at-
taches the state that needs to be handled by R3, i.e., the word
counts for [‘i’-‘l’] (or for [‘m’-‘p’]) to the control message
and broadcasts along all output channels (→{R3,C}).

(V) When R3 receives a control message, it blocks that input
channel. If the control message originates from R1 (or R2),
it records the state from the control message. When it re-
ceives control messages from all input channels, it proceeds
to merge all the states received, generate the new state of the
accumulated word counts for the range [‘i’-‘p’], and install
a new function (from the control message) using the new
state. Finally, it broadcasts on the output channel (→C).

(VI) When C receives control messages from all the expected
sink nodes {R1,R2,R3}, the scale-out operation is completed.
The controller then keeps monitoring the memory usage of
these operators in the new topology and can decide to scale
out/in if needed. This forms a feedback-loop control.

4.2 Control Mechanism
Next, we describe the core mechanisms underpinning Chi. We

start by formally defining the dataflow computation model and ex-
plain how graph transformations occur. Then, we discuss the con-
troller and operator APIs and provide an example control operation
implementation. We provide a proof of correctness in §4.2.3.

4.2.1 Graph Transitions through Meta Topology
Formally, a user control operation C can be modeled as a trans-

formation that converts a dataflow execution graph G(V,E) to a
new graph G∗(V ∗,E∗). For an operator v, such a transformation
can change one or more entries in the triple (S, f ,P). For an edge
e, such a transformation can optionally change pe. In particular,
since the operator state S can capture state accumulated over a long
time period, special care is needed to capture the transformation of
states during reconfiguration (i.e., G→ G∗). That is, for v∗ ∈ V ∗,
Sv∗ is defined by a transformation function T on one or more nodes
{v} ⊆V , i.e., T ({Sv}) = Sv∗ . In cases without ambiguity, we relax
the notation and use T−1(v∗) to represent the set {v} ⊆ V whose
states Sv∗ depends on.

Most existing systems (e.g., [10, 40]) adopt a freeze-the-world
approach to perform the transformation i.e., stop G by appropriate
checkpointing mechanisms, start G∗, migrate the old checkpointed
state on G to G∗ and resume the dataflow. However, this would
likely trigger back-pressure, causing increased latency and loss of
throughput, and in turn limits the frequency of execution and ex-
pressivity of dataflow reconfigurations. Therefore, in the design of
Chi we opted for an asynchronous alternative: instead of affecting
the transformation directly (i.e., G→G∗), we introduce an interme-

M2

M1R1

R2

M1

M2

C

R1

R2

M1

M2

C

R1

R2

C

R3

M2

M1 R1

R2

C

R3
M2

M1 R1

R2

C

R3

M2

M1 R1

R2

C

R3

Controller
be: 2
not: 1

State

(I) Operator (II) (III) (IV) (V) (VI)

Controller
Mapper M1/M2

Reducer R1/R2
Reducer R3

Lifecycle (Configuration)

(Configuration)
(Configuration, State)

(Configuration)

Figure 2: Scaling-out control in action where the user is interested in changing the number of reducers in Example 1.

diate meta topology G′, which the control operation can temporar-
ily utilize in order to complete the transformation asynchronously.
That is, during propagation of the the control messages, each oper-
ator broadcasts messages to its downstream according to G′. The
operators in G′−G∗, after processing the control messages, will
shut down; while the operators in G′−G will only start processing
data messages after finishing the processing of control messages.
When the control message propagation finishes, the resulting topol-
ogy will be equivalent to G∗.

We derive the meta-topology G′ for a control operation C as fol-
lows. In the most general case, we set G′ = G∪G∗∪EV,V ∗ , where
EV,V ∗ = {(v,v∗)|∀v∗ ∈V ∗,∀v∈ T−1(v∗)}. In other words, the prop-
agation graph for C consists of all the operators and channels from
both the old and new execution graph, and channels that capture
the dependency relationship between states of the old and new op-
erators. While this approach can lead to doubling the size of the
dataflow execution graph during reconfiguration, in practice, we
can significantly reduce the propagation topology through appro-
priate pruning. For instance:
• State invariance. If a control operation does not change a node

v’s state Sv, we can collapse the corresponding new node v∗ ∈G∗

with v ∈ G, and merge the input and output channels adjacent to
v. For example, in Fig 3(a), M∗1 (M∗2) can be merged with M1
(M2) respectively.

• Acyclic invariance. Aggressively merge the old and new topol-
ogy as long as we can guarantee the graph acyclicity. For in-
stance, in Fig 3(a), we can further collapse R∗1 (R∗2) with R1 (R2)
without breaking the acyclicity. This is guaranteed by (i) the
functional query interface which ensures initial dataflow topol-
ogy is acyclic as well as (ii) the pruning algorithm which ensures
that no cycles is introduced during optimizing a meta topology.
For example, for scale-out/in reconfiguration, the pruning algo-
rithm uses consistent hashing as the state allocation scheme to
avoid introducing cycles when re-partitioning states.

By applying the above pruning rules repeatedly in Fig 3(a), we ob-
tain the graph shown in Stage (IV) in Fig 2.

4.2.2 Control API
We next describe features of our control API that enable devel-

opers to implement complex control operations. Chi’s API allows
expressing different behavior across the following dimensions: (1)
spatial, e.g., behavior of {M1,M2} being different than {R1,R2,R3},
and (2) temporal, e.g., behavior of R3 when receiving the first con-
trol message vs. the last in Fig 2.

To enable such a flexibility, we abstract control operations and
provide the following capabilities to users:
• Configuration injection: We allow the same control operation

to carry different configurations for different operators. The config-
urations instruct operators to take different control actions. Config-
urations are injected into a control message (see Fig. 6 for imple-
mentation). The runtime transparently instantiates the control oper-
ation appropriately with the correct configuration at each operator.
In the scaling-out example shown in Fig. 2, the injected configura-
tions need to instruct (1) mappers to reconnect output channels, (2)
the reducers R1 and R2 to migrate states, and (3) the new reducer
R3 to accept migrated states. Shown in Algorithm 1(L1-11), R1 is
injected with SplitState (L6) and LoadFunc (L9) instructions, and
R3 with MergeState (L8) and LoadFunc instructions.
• Reactive execution: Chi exposes a reactive (event-driven) pro-
gramming interface that users can leverage to define control oper-
ations. A control operation comprises two sets of event handlers:
those executed at the controller {OnInitAtController, OnBeginAt-
Controller, OnNextAtController, OnCompleteAtController, OnDis-
poseAtController}, and those executed at the operators { OnBegi-
nAtOperator, OnNextAtOperator, OnCompleteAtOperator, OnDis-
poseAtOperator}. These event handlers offer users great flexibili-
ties to collect metrics or modify configurations when the controller
and operators receive the first, next and last control messages. The
OnInitAtController is called when initializing the control operation
and allows users to inject configurations into the control message.
The OnDisposeAtController and OnDisposeAtOperator are called
when the control operations are disposed. They are usually used
for releasing resources. The runtime handles the correct invocation
of these handlers and state transition as shown in Fig. 3(b), thus
supporting expressing complex control logic in a safe manner.
Blocking behavior: In the example in Fig. 2, operators always
block the input channel upon receiving a control message from it.
We find that this is a fairly common pattern in many control scenar-
ios e.g., checkpointing and scale-in/out operations. To simplify im-
plementation of complex control, we provide a layer of abstraction
that allows the users to implement their control operations in both
blocking and non-blocking ways. We do this by classifying con-
trol messages into two categories: (1) blocking: where the operator
blocks the corresponding channel on which the control message is
received and subsequently unblocks it only when all the control ac-
tions are finished on that operator, and (2) non-blocking: where the
operator does not block the input channel and continues to receive
other data/control messages on that channel. We believe such ab-
straction is useful for users to express more advanced control oper-
ations. For instance, blocking control messages are usually useful
for control that affects states, while non-blocking control messages
are useful for the other cases, e.g., monitoring.

Example: We demonstrate usage of the control API using the
example shown in Fig. 2 where we want to scale-out from G into

R1

R2

M1

M2

R3

R1

R2

M1

M2

ʹG G*G → →

(1) Initial meta topology

R1

R2

M1

M2

R3

R2

R1

(2) State invariance pruning

R1

R2

M1

M2

R3

(3) Acyclic invariance pruning

(a)

Initialized Preparing Disposing

Make control decision
• Invoke OnInitAtController()
• Broadcast CMs to source nodes

Event
Action

Receive first CM
• Invoke OnBeginAtController()
• Invoke OnNextAtController()
• (Optional) Block input channel

Receive next CM
• Invoke OnNextAtController()
• (Optional) Block input channel

Receive all CMs
• Invoke OnCompleteAtController()

Complete global control
• Invoke OnDisposeAtController()

CM – Control Message

Controller

Operator
Preparing Disposing

Receive first CM
• Invoke OnBeginAtOperator()
• Invoke OnNextAtOperator()
• (Optional) Block input channel

Receive next CM
• Invoke OnNextAtOperator()
• (Optional) Block input channel

Receive all CMs
• Invoke OnCompleteAtOperator()

Complete global control
• Broadcast CMs to output channels
• Invoke OnDisposeAtOperator()

CM – Control Message

(b)

Figure 3: (a) Pruning the meta topology using state invariance and acyclic invariance. The final stage here is equivalent to Stage (IV) in Fig 2. (b) State
machine transitions for controller and operator

G∗ through G′ (shown in Fig. 3(b)). Algorithm 1 shows a pseudo
implementation of the dataflow reconfiguration control operation.
Once the reconfiguration decision is made, the developer creates a
blocking control message. In OnInitAtController, a blocking con-
trol message is created and injected with configurations for trigger-
ing control actions at different operators. Specifically, as explained
in §4.2.1, an edge (v,v∗) ∈ EV,V ∗ describes a dependency between
the states of v∗ and v, operator v needs to be configured to split its
states and ship the corresponding part of the state to v∗, while oper-
ator v∗ needs to be configured to load and merge the received states
(L5-8). For example, as in Fig. 2, R1 needs to split the state and
ship the accumulated counts for the range [’i’-’l’] to R3. Once the
topology or state is changed, the operators need to reset associated
computation functions (L9). Such a control message is broadcast
to source operators. It first initializes session variables that hold
migrated states and control actions (L15-16) in the OnBeginAtOp-
erator function. The migrated state is gradually accumulated until
all parts of the state are received by OnNextAtOperator (L18-19).
Once receiving all messages, the operator (shown in the OnCom-
pleteAtOperator function) performs control actions including move
away states that do not hold any more according to the new state
key range (L23-25), merges states given by others (L26-27), and
resets the function (L28-29). Once the controller receives the con-
trol messages from sink operators, the control operation is marked
completed in OnCompleteAtController (L12).

4.2.3 Correctness Properties
Chi provides correctness properties that can help users prove the

correctness of their control operations.

THEOREM 1. Consider a control operation that changes a graph
from G to G∗ using a control message and a state transformation
function T . The control operation has the following properties:

1. The control operation will terminate in finite time.
2. If a pair of operators v,v′ satisfies (a) v→ v′ is an edge in

G or G∗, or (b) v ∈ T−1(Sv′), then v will always invoke On-
CompleteAtOperator before v′.

Furthermore, we introduce safe blocking control operations—a
special type of blocking control operations whose control actions
at each operator only read/write the corresponding operator state
in OnCompleteAtOperator. Safe blocking control operations have
stronger properties—the semantics of safe blocking control oper-
ations is equivalent to the freeze-the-world approach—which can
facilitate users to understand the semantics and correctness of their

customized control operations. For detail explanation and proof of
Theorem 1 and the properties of safe blocking control operations,
please refer to Appendix B.

4.3 Advanced Functionalities
We discuss key advanced functionalities of Chi necessary to cope

with production workloads.
Multiple Controllers Thus far our description assumes a single
dataflow controller that enforces a control operation. Our design is
able to naturally scale out the controller by allowing multiple con-
current controllers for a single dataflow. For instance, users can
have one controller per desired functionality, e.g., one controller
takes care of monitoring the health of the dataflow execution, an-
other one periodically checkpoints operator states, while yet an-
other takes charge of reconfiguring dataflow execution graphs in
case of workload spikes. Multiple controllers can function at the
same time as long as the serializability of control messages for dif-
ferent control operations are guaranteed. In order to perform cross-
dataflow control operations, e.g., coordinating resource allocation
across multiple dataflows, we can introduce a global controller that
can interact with each dataflow’s controller.
Broadcast/aggregation trees. In practice, a dataflow graph usu-
ally has a large number of source operators (and sometimes, sink
operators). In such a topology, the controller can quickly become a
bottleneck due to the large fan-in/out. To mitigate this, we leverage
a simple technique such as inserting a spanning broadcast (aggre-
gation) tree before (after) the source (sink) operators.
Dealing with congestion/deadlock. When congestion arises, e.g.,
due to network or CPU bottlenecks, our back-pressure mechanism
is triggered and all messages, including control messages, are de-
layed. This could be particularly critical if these messages are part
of a control operation to alleviate congestion. One option might be
to have two separate queues and give control messages higher prior-
ity, so that in case of congestion they are delivered first. This, how-
ever, would break the ordering of control and data messages, thus
making it hard to maintain consistency. Therefore, we wait for fin-
ishing processing the message. This is similar to the approach taken
by other systems such as Flink [10] and Spark Streaming [42].
Fault tolerance One of the main benefits of integrating control and
data plane is that failures in the control plane are handled in the
same way as failures in the data plane. More specifically, if con-
trol messages are lost, the underlying data channel is responsible
to retransmit them until they are acknowledged by the other end.
In case of network partition, the controller will eventually time out
and will restart the control operation.

Algorithm 1 Dataflow Reconfiguration Operation

Assumption: Each operator has a context (ctx). In the controller,
control operation can access G′ and G∗ as well as G′ and EV,V ∗

(See §4.2.1). Users can create session variables (names start with
the $ mark) that live through function scopes. A graph vertex has
properties including stage (stg), state key-range, and function
(func). A control message has properties including source (src),
destination (dest), configuration dictionary (confs) and control
payload. A configuration is assigned with a list of instructions.

1: function ONINITATCONTROLLER
2: msg := new BlockingControlMessage()
3: for v in G′ do
4: instructions = []
5: if v in Src(EV,V ∗) then
6: instructions.Add(new SplitState(v.keyrange))
7: if v in Dest(EV,V ∗) then
8: instructions.Add(new MergeState(v.keyrange))
9: instructions.Add(new LoadFunc(v.func))

10: msg.confs[v] := instructions
11: return msg
12: function ONCOMPLETEATCONTROLLER
13: ctx.CompleteOperation(this)
14: function ONBEGINATOPERATOR(msg)
15: $inState := new Dict<Key, State>()
16: $instructions := msg.confs[msg.dest]
17: function ONNEXTATOPERATOR(msg)
18: for key, state in ParseState(msg.payload) do
19: $inState[key] := state
20: function ONCOMPLETEATOPERATOR
21: outState := new Dict<Key, State>()
22: for i in $instructions do
23: if i is SplitState then
24: for key, state in ctx.state.Split(i.keyrange) do
25: outState[key] := state
26: if i is MergeState then
27: ctx.state.Merge($inState, i.keyrange)
28: if i is LoadFunc then
29: ctx.func.Load(i.func)
30: return outState

Chi allows developers to implement various policies to handle op-
erator failures. For ease of adoption, we implement a checkpoint-
replay policy on top of Chi for handling operator failures by default.
This policy will first rollback the data flow stream to the last check-
point and then it will re- insert the lost control messages. Failures
in the controllers are handled through checkpointing its own state
into a durable store and restoring the state upon launch of a new
instance of the failed controller (typically handled by a watchdog).

4.4 Compare Chi with Existing Models
We next compare Chi with existing control models for streaming

systems (Table 1 summaries the comparison). There is a variety
of control models being developed, tailored for different compu-
tation paradigms, i.e., BSP-based micro-batching versus record-at-
a-time. We compare the different models according to the consis-
tency, ease-of-use, overheads and scalability.
Consistency. Many useful control operations, e.g., scaling-out,
state repartitioning and checkpointing, do demand consistency. The

SGC Models ALC Models Chi
Consistency Barrier None Barrier/None
Semantic Simple Hard Simple
Latency High Low Low
Overhead High Implementation-

dependent
Low

Scalability Implementation-
dependent

Implementation-
dependent

High

Table 1: Comparing Chi with the Synchronous Global Control (SGC) and
Asynchronous Local Control (ALC) models.

First stage Second stage

Controller

(a)

Tuple (x, y)

Filter: x<A

Filter: y<B

Join Replicate

y<D

x<C

(b)

Figure 4: (a) Executing a two-stage dataflow using the BSP model imple-
mented by Chi. (b) A dataflow that needs to modify filters at once.

consistency can be easily realized in BSP systems through the uses
of the synchronous barriers between parallel computation (named
Synchronous Global Control). This kind of consistency can be
achieved by Chi too using blocking control messages, acting as a
barrier asynchronously moving inside a dataflow. If required, Chi
can replicate the BSP model. Specifically, the controller can act
as such a barrier node as shown in Fig. 4(a). When a stage starts,
it generates (1) a blocking control message (denoted by S) that in-
stalls tasks at operators, followed by (2) a data message (denoted
by D) that describes input data, and (3) a blocking control message
(demoted by E) that marks the completion of a stage. When receiv-
ing all completion messages, the controller starts the next stage by
repeating the same sequence of messages.

Consistency can also be realized in record-at-a-time systems by
freezing the entire dataflow during reconfiguration. This, however,
requires the system to halt (like BSP), and thus motivates systems
like SEEP [11] that reconfigure workers asynchronously (named
Asynchronous Local Control); but sacrificing the barrier seman-
tics. The asynchronous local control can be implemented using
Chi’s non-blocking control messages as well. The absence of bar-
riers makes it hard to implement many useful control operations.
Consider a dataflow that applies filters to a stream that has x and y
fields (shown in Fig. 4(b)), where the filter parameters are stored in
two data stores due to privacy regulation. Hence, the stream must
be replicated to be filtered in parallel. The filter results are joined in
the end. In a system that provides only asynchronous local controls,
it is unable to support control requests that request simple concur-
rent reconfigurations, such as changing filter selectivity from x < A
and y < B to x <C and y < D. This is because each replicated tuple
must be processed with all new configurations at once, rather than a
mixture of them. To ensure consistency, as shown by the Algorithm
3 in SEEP [11], the dataflow has to block ingestion, recover opera-
tor checkpoints, apply new configurations, replay the output of the
replicate operator since its last checkpoint, and unblock ingestion.
Ease-of-Use. In addition to consistency guarantees, Chi provides
a flexible control plane interface with comprehensive automation
support. Users declare control logics in a reactive manner, and rely
on a runtime to automatically manages the states of control oper-
ations, handles failures, and performs operations asynchronously.
In contrast, existing control models lack programmability and run-
time support. For example, Flink implements a distributed check-

point algorithm which is unable to support general control oper-
ations that, for example, require changing state. More recently,
Dhalion studied the high-level representation of a control policy,
with a particular focus on identifying symptoms and therapies of
detected anomalies. It relies on the underlying system, i.e., Heron,
to provide actual reconfiguration capability. Hence, Dhalion does
not has a control plane runtime as Chi which can be applied onto
general record-at-a-time streaming systems.
Overhead. When reconfiguring a BSP system, the entire dataflow
is halted. This is particularly detrimental for online streaming sys-
tems and affects both latency and throughput. Furthermore, the
BSP barriers severely constrain the frequency and timing of control
operations. To amortize the scheduling and communication cost, a
BSP barrier interval is often set to be no smaller than seconds [40].

As mentioned above, reconfiguring a record-at-a-time system re-
quires freeze-the-world as in Flink (Section §7), or re-computation
through data replays as in SEEP. On the one hand, freeze-the-world
incurs a similar overhead than the synchronous global barrier. On
the other hand, replaying data is expensive in production, despite
reconfigured operators being often already short of resources. Our
traces show that buffering all intermediate outputs in preparation
for replays require a significant amount of memory, several orders
of magnitude larger than the one consumed by the operator compu-
tation state. Replaying such a large buffer state not only consumes
significant bandwidth, but also blocks the operator for a long time.

In Chi, changes are applied on the asynchronous global barriers.
There is no need for freeze-the-world or data replay. Blocking be-
haviors are local to each operator. There is no global blocking that
freezes the entire dataflow, thus reducing data plane overheads.
Scalability. Existing streaming systems usually has a separate con-
trol plane. This duplicates resources for the control plane to deal
with typical distributed system issues such as fault tolerance and
scalability. Chi, however, embeds the control plane into the data
plane. As the data plane is optimized for handle high volume of
data, Chi benefits from the same optimization, e.g., zero-copy data
movement and broadcast/aggregation trees for large fan-in/out in
dataflows.

Furthermore, existing systems mostly adopt centralized controllers.
Reconfiguration requires a large number of control messages, thus
incurring single-point of failure and performance bottleneck. On
the contrary, Chi can naturally partitions workloads on a controller.
Dataflows are managed by parallel controllers. A dataflow con-
troller further splits to operate control operations in parallel. All
these controllers run on multiple servers and keep state on a dis-
tributed store, implying a high-scale architecture.

5. APPLICATION EXAMPLES
To demonstrate the flexibility of our approach, we illustrate three

control applications that we implemented using Chi.
Continuous Monitoring. Due to unpredictability of our work-
loads, unlike traditional batch processing systems where jobs can
be tuned offline to achieve optimal performance, streaming pipelines
have to be continuously monitored and optimized on-demand in or-
der to achieve high performance and robustness. We show an exam-
ple of using Chi to continually collect measurement data of all oper-
ators, a foundational block for detecting and acting upon interesting
characteristics of the system such as overload/underload, skew/-
drift in data distribution, intermittent environment-related bottle-
necks and mitigating stragglers. The monitoring control operation
implementation is shown in Appendix A.

Notice that the controller no longer needs to ping each individual
operator separately to collect statistics. Instead, the metrics are col-
lected and aggregated along in a scalable tree fashion. §7 shows the

R2 R1

B A

R2 R1

B A

R3 R4

(a)

Communication Layer

Dispatcher / Multiplexer

Control
Processor

Data
Processor

Binary data

Messages

Control Messages Data Messages

(b)

Figure 5: (a) Handling Skew (b) A Chi-enabled Flare operator architecture.

evaluation of using the monitoring control for collecting per-join-
key cardinality that helps in identifying skewness in the join space
(which can then be used for straggler-mitigation).
Dataflow Reconfiguration. Dataflow reconfiguration is important
for several interesting use-cases such as adding/removing operator
from a given query, increasing degree of parallelism of an operator
and exploiting computational reuse.

Besides scale-in/out, one can also carry out more complex re-
configurations including changing the query plan. For instance,
Fig. 5(a) demonstrates how we can change the query plan to alle-
viate stragglers when we find skew in a streaming join query. As-
sume originally streams A and B are joined using a shuffle join [27],
where mappers read data from A and B respectively, and partition
and route the data to the corresponding reducer based on the join
key; reducers on receiving the data, join the tuples with the same
key together. Due to skewed key space, reducer R1 receives much
more data than R2. At this point, we can change the query plan by
adding reducers {R3,R4} to share the load for R1. The idea is to let
A (assume A has a significantly higher workload than B) partition
R1’s load into {R1,R3,R4}; B broadcasts R1’s load to {R1,R3,R4}.
This reconfiguration requires R1 to replicate its internally main-
tained hash table of data from B to R3 and R4, while partitioning
and redistributing the hash table of data from A to R3 and R4.
Auto Parameter Tuning. Big data systems have many param-
eters that are very hard to tune even for very experienced engi-
neers. Chi can be used for automatic parameter tuning by lever-
aging both monitoring and dataflow reconfiguration in a tight con-
trol loop to simulate A/B testing of multiple instances of a single
query. For instance, many existing streaming systems use micro-
batching to tradeoff between latency and throughput. Whereas a
large batch size provides good throughput, it does so at an increased
latency. Tuning the right batch size is a tricky problem. One so-
lution through Chi would be to continuously monitor latency of
the data plane and adjust the batch size when we see considerable
fluctuations in the observed latency until we obtain the maximum
throughput with the desired latency.

6. IMPLEMENTATION & DISCUSSION
Distributed runtime. To showcase the performance and flexibility
of Chi, we implemented it on top of Flare, a streaming system used
internally by our team. Flare is built on top of Orleans [7]—a vir-
tual actor framework—as a runtime and Trill [16] as the operator-
level stream processing engine. By leveraging Orleans, Flare achieves
decentralized scalability, specifically: (1) nodes can join/leave the
cluster without notifying master nodes, and (2) the lifecycle of an
actor is automatically managed by the platform, which transcends
the lifetime of in-memory instantiation and particular servers.

An operator in Chi has a stacked architecture embedded into the
Flare operator which is a single-threaded environment, as shown

Metadata

Timestamp

Type (Data or Control)

Data Message Control Message

Sender

Version

Previous Sequence ID

Sequence ID

Control Payload

 <Empty>

Control ID

Control
Configurations

(Created by controller)

Data Payload

Processing Logic Customizable
Message Zone

(Modified by
operators)

Configuration Program Field

Control
Instruction

Logic

Op1 Configuration

Op2 Configuration …

Opn Configuration

Op1

…

Op1 Configuration Offset

Opn Configuration Offset

Op1 Configuration Length

Opn Configuration Length

…

Opn

…

Configurations Count

Control
Program

Configurations

Operator
IDs

Configuration
Offsets

Configuration
sizes

32bit
32bit
64bit
32bit

64bit

64bit

Data

Figure 6: Control message structure in Chi

in Fig. 5(b). (i) The communication layer provides FIFO exactly-
once data communication channels with back-pressure that mim-
ics the TCP. (ii) The message dispatcher/multiplexer invokes the
corresponding processing module based on the types of messages,
and multiplexes their outputs down to the communication layer.
(iii) The data processor applies a Trill pipeline onto data messages.
(iv) The control processor invokes a series of local control actions
based on received control messages. It loads the corresponding
control configuration, manages state machines, and invokes user-
defined control actions accordingly.

Flare further provides the following functionalities to simplify
control operations: (i) a user-friendly state management function-
ality which models operator states as a key-value map and can au-
tomatically split and merge states using a user-defined partition
scheme on the key, (ii) a query compiler (extensible with custom
optimization rules) similar to Spark’s catalyst [4] that converts LINQ
queries into a distributed dataflow, and (iii) file server that allows
runtime extensibility, where users can upload new control operation
dependencies and have them loaded at runtime.
Custom serialization. Control messages may carry/propagate large
payloads including configurations and states/metrics/etc. from each
operator. Since serialization and deserialization at each operator
may introduce unnecessary overhead, we implemented a zero-copy
operation that allows us to extract the necessary pieces (e.g., con-
figuration, payload of interest) from the byte buffers without dese-
rializing the entire message.

Fig 6 shows the structure of a control message. Each message
includes three basic components: 1. Metadata field that is used to
ensure FIFO exactly-once delivery; 2. Configuration payload field
to store configurations for different operators; and 3. Data payload
for an operator to insert any control-specific data e.g., re-partitioned
state while scaling-out. Control messages are generated either by a
controller (before control instructions are applied to any operators)
or by an operator (after a control operation has triggered but before
control message has been propagated to succeeding operators).
Portability. While we implemented our approach on top of Flare
for ease of implementation/deployment in our internal clusters, our
design is not tied to a specific platform. Chi can be applied to
other systems as long as the systems provides FIFO at-least-once
or exactly-once delivery semantics, and in-order message process-
ing. These modest requirements are offered by most contempo-
rary streaming systems such as Flink [10] and SEEP [11]. A typ-
ical porting plan includes (1) porting the communication layer if
the underlying system does not provide FIFO exactly-once mes-
sage delivery, (2) porting the message dispatcher/multiplexer and

 YSB IPQ1
0

100

200

300

Th
ro

ug
hp

ut
 (m

illi
on

/s
)

Flare
Flink
Drizzle

(a) Throughput
 YSB IPQ1

0

100

200

300

400

500

La
te

nc
y

(m
s)

Flare
Flink
Drizzle

(b) Latency

Figure 7: Flare’s throughput and latency against Flink and Drizzle for the
YSB and IPQ1 workload

the control processor, and (3) reusing the existing data processor.

7. EVALUATION
In this section, we evaluate the performance of Chi using a num-

ber of micro-benchmarks and two real-world benchmarks. The
first real-world benchmark focuses on dynamically scaling in/out
resources while the second assesses Chi’s ability to handle control
and data failures. These results demonstrate that Chi incurs negligi-
ble overhead, even under high data/control load and large dataflow
graphs, and it is able to quickly react to changes in the workload or
failures. To show the flexibility of our approach, we also report on
the experiments with two more advanced case studies, i.e., handling
a skewed key distribution and auto-tuning for meeting SLOs.

7.1 Experimental Setup
Our experimental cluster comprises 32 DS12v2 instances in Azure.

Each virtual machine has 4 vCPUs, 28 GB RAM and a 10 Gbps
network connection. We consider one public workload, the Yahoo!
Streaming Benchmark (YSB) [43], and one private workload based
on production traces, IPQ1, which consists of multi-stage queries
with complex window aggregations and streaming joins. YSB is
rather light-weight in terms of data handling (bytes/event) while
IPQ1 is computationally heavier (KB/event). As explained in §6,
we implemented Chi on top of Flare, a streaming engine built on
.NET CLR and is used internally by our team. When required, we
compare against Drizzle [40], a fork of Apache Spark v2.0.0 (a
BSP-style engine) with an optimized scheduler for streaming sce-
narios, and Apache Flink v1.3.2 [10] (a continuous dataflow en-
gine). For all our experiments, we warm up the JVM and CLR
before taking measurements to discount bootstrapping effects.
Flare performance To help understand whether the underlying en-
gine that we used for Chi is competitive with existing systems, we
compare the base performance of Flare against Flink and Drizzle.
In Fig. 7, we show the results in terms of throughput and latency for
the three systems when using the YSB and IPQ1. For the through-
put experiments (Fig. 7(a)), we set the latency SLO to 350 ms and
maximize the throughput while for the latency experiment we fix
the ingestion rate at 20 million tuples/s and minimize the latency.
Following a common practice [40], we define latency as the time it
takes all events in the window to be processed after the window has
ended. For instance, if a window ends at time a and the last event
from the window is processed at time b, the processing latency for
this window is calculated as b− a. The results obtained for Flink
and Drizzle are consistent with what previously reported in the lit-
erature [40, 26] and confirm that Flare’s performance is comparable
with these systems.

7.2 Micro-benchmarks
In this sub section, we study the interplay between the control

and data planes. Specifically, we are interested in the operational

 140 180 220
Throughput (million/s)

0
2
4
6
8

10
12
14

Av
er

ag
e

la
te

nc
y

in
cr

ea
se

 (%
)

1 NB-control/s
10 NB-controls/s
100 NB-controls/s

1 B-control/s
10 B-controls/s
100 B-controls/s

(a)

 20 40 60
Throughput (million/s)

0

5

10

15

20

Av
er

ag
e

la
te

nc
y

in
cr

ea
se

 (%
)

1 NB-control/s
10 NB-controls/s
100 NB-controls/s

1 B-control/s
10 B-controls/s
100 B-controls/s

(b)

 140 180 220
Throughput (million/s)

0

100

200

300

400

Ti
m

e
(m

s)

1 NB-control/s
10 NB-controls/s
100 NB-controls/s
1 B-control/s

10 B-controls/s
100 B-controls/s
data latency

(c)

 20 40 60
Throughput (million/s)

0

200

400

600

800

1000

Ti
m

e
(m

s)

1 NB-control/s
10 NB-controls/s
100 NB-controls/s
1 B-control/s

10 B-controls/s
100 B-controls/s
data latency

(d)

Figure 8: (a)(b) Control-plane overhead under different control load for YSB and IPQ1, (c)(d) completion time for control messages under different control
load for YSB and IPQ1.

 256 512 1024 2048 4096 8192
Dataflow size (# sources)

0

20

40

60

80

100

Ti
m

e
(m

s)

NB-Control
B-Control

Figure 9: Control messages completion time under different dataflow sizes.

overhead and scalability aspects of Chi. To this end, we vary the
data-plane load under three different CPU regimes (resp. 50%,
75%, and 90%) and set the ingestion rates for the two workloads
YSB and IPQ1 accordingly. For the computation-heavy IPQ1 this
results in 20, 40, and 60 million events/s (corresponding to 56%,
73% and 94% average CPU in our 32-server cluster) while for the
communication-heavy YSB, this leads to 140, 180, and 220 mil-
lion events/s (resp. 51%, 74%, and 89% average CPU). For the
control load, we consider two instances of the control message,
using blocking (B-Control) and non-blocking (NB-Control) mes-
sages. To accurately isolate the impact of Chi and avoid biasing the
result with custom control logic (e.g., CPU-intensive user code),
we use only NoOp control messages in our experiments.
Does control plane affect the data plane? We now assess the
overhead introduced by Chi. In Fig. 8(a) and 8(b), we show the
relative increase in latency for the two workloads when varying the
control-plane load from one control message/s (representative of
dataflow management tasks, e.g., checkpointing, and reconfigura-
tion ones, e.g., scale in/out) to 100 control messages/s (representa-
tive of monitoring tasks). This range covers all control scenarios
that we have observed in production and we believe that the same
should hold for the vast majority of use cases.

These results show that both non-blocking and blocking control
have low overhead. This is because neither of these controls re-
quires global synchronization — control events are propagated and
processed asynchronously just like data events. For example, at
the highest load of the computation-intensive IPQ1 workload (60
million events/s), Chi incurs lower than 20% latency penalty to the
data plane, even for high control load (100 messages/s). This is
important because the average CPU utilization was already at 94%
(the latency could be further reduced by scaling out). As expected,
blocking control messages are more expensive than non-blocking
ones. This is due to the fact that blocking control messages require
local synchronization which block the input channel temporarily.
Does a busy data plane limit the control plane? Next, we study
the impact of the data-plane load on the completion time of control
messages. The concern is that by merging control and data events,
high data-plane load might negatively affect the performance of the
control messages. To verify this, we repeat the experiment and

we measure the completion time of the blocking and non-blocking
messages (see Fig. 8(c) and 8(d)). As a reference point, we also
show the latency of the data plane (“data latency” bar in the graph).
The message latency is defined as the difference between the times-
tamps of the message M entering the system and the timestamp of
when the last message triggered by M leaves the system. In addi-
tion to queuing delays, the completion time of a data (resp. control)
message also depends on the complexity of the actual data process-
ing (resp. control logics). Hence, a control message can complete
faster than data messages if there is no backlog and messages are
processed immediately upon receiving.

In most cases control messages complete relatively quickly in
comparison to the data message delivery. Also, when the control
load is low (one or ten control messages/s), the completion time
is relatively unaffected by the increasing data-plane load. We ob-
serve, however, that at the highest load (resp. 220 million events/s
for YSB and 60 million events/s for IPQ1), the completion time
for a control message is similar or higher than the data latency.
This is particularly evident for the blocking messages. The rea-
son is that the latter introduces a local synchronization at each op-
erator and, at high load, there is a higher variability in latencies
along different paths in the dataflow (e.g., due to work imbalance).
As already discussed in §4.2.2, however, we observe that block-
ing and non-blocking control messages are semantically equivalent,
although they differ in both their implementation and execution
model. Thus, to reduce completion time, developers can always
convert the blocking control messages to a non-blocking version.
Is the control plane scalable? As discussed in §6, Chi can scale
to large dataflows with a large number of sources (sinks) by using
a broadcast (aggregation) tree to exchange control events between
the controller and the operators. To evaluate its effect, in Fig. 9
we show the completion time of a control message as we increase
the number of sources. The results show that the completion time
increases logarithmically and remains well below 100 ms even for
very large dataflow graphs (8,192 sources).

7.3 Adaptivity and Fault-Tolerance
The previous sections have shown that Chi incurs low overhead

and completion time, and can scale to large data-flow graphs. Here-
after, we study how Chi leverages these properties to improve the
adaptivity to workload changes (dynamic elasticity) and to failures
(fault recovery) of the data plane using the YSB workload.
Dynamic Elasticity. We set the ingestion rate of our 32-server
cluster to 30M tuples/sec. At time t = 40 s, we double the inges-
tion rate to emulate a workload spike. At the same time, we start the
scale-out process on all three streaming engines, using their respec-
tive strategies. For instance, in Apache Flink, when the scale-out
process begins, we immediately invoke a Savepoint [24] operation.

0 20 40 60 80 100 120
Time (s)

101

102

103

104

105

Pr
oc

es
sin

g
la

te
nc

y
(m

s) Chi
Flink
Drizzle

0 20 40 60 80 100 120
Time (s)

0
25
50
75

100
125
150

Th
ro

ug
hp

ut
 (m

illi
on

/s
) Chi

Flink
Drizzle

(a)
0 20 40 60 80 100 120

Time (s)

101

102

103

104

105

Pr
oc

es
sin

g
la

te
nc

y
(m

s) Chi
Flink
Drizzle

0 20 40 60 80 100 120
Time (s)

0
25
50
75

100
125
150

Th
ro

ug
hp

ut
 (m

illi
on

/s
) Chi

Flink
Drizzle

(b)

Figure 10: Latency and throughput changes under (a) dynamic scaling and (b) failure recovery

It externally stores a self-contained checkpoint that is useful for
stop-and-resume of Flink programs, and restarts the dataflow with
a larger topology. We plot the results in Fig. 10(a):
CHI. At the scale-out time (t = 40s), there is no noticeable drop
in throughput while latency temporarily spikes to 5.8s. However,
the system quickly recovers within 6s to a stable state.

APACHE FLINK. At t = 40s throughput drops to zero (due to freeze-
the-world initiated by Savepoints) for five seconds. Processing
latency, instead, spikes up to 35.6 s and it takes 31 s after restart
to return to a steady state.

DRIZZLE. At t = 40s, there is no visible drop in throughput be-
cause, since Drizzle uses a BSP model, it was not feasible to
measure throughput continuously. Similar to Flink, the process-
ing latency spikes to 6.1 s and it took an additional 10 s be-
fore stabilizing. Notably, Drizzle starts reacting to the workload
spike after 5 s. This is because the workload spike happened in
the middle of a scheduling group [40], where the system cannot
adjust the dataflow topology — the larger the scheduling group
size, the slower it reacts to workload changes.

Fault Tolerance: Next, we examine the default failure recovery
operation (Section §4.3) implemented on top of Chi. As in the
previous experiments, we set the ingestion rate to 30M tuples/sec.
We also enable checkpointing for all three streaming systems every
10 s. At time t = 40s, 5 s after the last checkpoint, we kill a vir-
tual machine to simulate a failure in the dataflow and we start the
recovery process on all three streaming engines (see Fig 10(b)):
CHI At failure time (t = 40s), there is no noticeable drop in through-
put while latency temporarily spikes to 4.3 s. However, the sys-
tem quickly recovers to a stable state within 5 s.

APACHE FLINK At t = 40s, throughput drops to zero for five
seconds (system downtime), as Flink’s recovery mechanism re-
deploys the entire distributed dataflow with the last completed
checkpoint [23]. The processing latency spikes up to 17.7 s. It
then takes 13 s after restart to return to a steady state.

DRIZZLE At t = 40s, we observe no drop in throughput due to
the reason described in the scale-out experiment. The processing
latency spikes to 9.1 s and it takes 11 s to restore the stable state.
There is a throughput drop (during recovery) around t = 50s due
to Spark’s recovery mechanism as Spark needs to re-run the lin-
eage of the failed batch.

7.4 Chi in Action
We conclude our evaluation by showing the performance of Chi

using two real-world complex control operations, one focusing on
parameter auto-tuning to meet SLOs and the other addressing work-
load skew.
Auto-Tuning for SLOs: Streaming systems include a number of
parameters that are used to tune the system behavior. This provides
great flexibility to the user but at the same time greatly complicate
her task due to the large size of the parameter space. As a represen-
tative example, we focus our attention on the batch size. Batching
is used by streaming system to amortize the per-tuple processing

cost. The batch size has a direct impact on system performance.
Identifying a priori the optimal value is often a non-trivial task as
we show in Fig. 11(a) in which we plot the relationship between
latency and batch size for the IPQ1 workload.

To show how Chi can help to correctly tune the batch size, we im-
plement a control operation consisting of a monitoring task, which
collects latency information, coupled with a reconfiguration task,
which updates the batch size to meet the desired trade-off between
latency. To illustrate how this works, we show an example run
in11(b) in which we set up the control operation to optimize the
batch size given an ingestion rate of 60 million events/s and an up-
per bound on latency of 500 ms. Every 30 s the controller collect
latency samples, updates the moving average of the processing la-
tency, and, if needed, executes an optimization step.

Initially (Phase-I) the controller opts for a conservative batch size
of 40K events while measuring the latency and throughput. It quickly
realizes that this batch size is not sufficient for meeting the in-
gestion rate — it overwhelms the system causing frequent back-
pressure, which is clear from the throughput fluctuations in the fig-
ure. Then, starting at the 30-second mark (Phase-II), the controller
doubles the batch size to 80K which leads to a more stable through-
put reducing the processing latency to ≈ 500ms. At the 60-second
mark (Phase-III), the controller attempts a second optimization step
by doubling the batch size to 160K but soon detects that by doing
so it will not be able to meet the latency SLO (500 ms). So finally
it reverts the batch size back to 80K (Phase-IV).
Detecting and Adapting to Workload Skew: As shown by the
analysis of our production workloads in Fig. 1(c) and Fig. 1(d), join
keys exhibit high temporal and spatial skewness in data distribu-
tion. This variance can cause imbalance, lead to stragglers, and
ultimately violate SLOs. To show the impact of this, we use an-
other production workload, IPQ2, which exhibits a high degree of
skewness. This workload is a streaming-join query that does a self-
join on an extremely large and high throughput live user-activity
log. The presence of a self-join magnifies key skewness.

As in the previous example, we implemented a control operation
consisting of a monitoring task and a reconfiguration one, which
behaves as described in Fig. 5(a). Fig. 11(d) and Fig. 11(e) show
the distribution of the key groups before and after the reconfigu-
ration respectively. Before the reconfiguration, a few tasks handle
most of the key space (as indicated by the peaks in the distribution)
while after the reconfiguration, the key space is evenly distributed
across tasks. This has a direct beneficial consequence on latency
and throughput: after the reconfiguration the throughput increases
by 26% while latency drops by 61% (Fig. 11(c)).

8. RELATED WORK
Stream processing has been well-studied both in single-node [16,

1, 31] and distributed settings [42, 14, 37, 10, 40, 32, 29, 3].
At the high level, we can divide the approaches underlying these
systems into three categories: continuous operator model [31, 16,
29, 10, 17, 37, 28] and BSP model [42, 14, 3]. While there has

100000 200000
Batch size (# events)

0

1000

2000

3000

4000

5000
Pr

oc
es

sin
g

la
te

nc
y

(m
s)

(a)

0 20 40 60 80 100 120
Time (s)

0
500

1000
1500
2000
2500
3000

Pr
oc

es
sin

g
la

te
nc

y
(m

s)

Phase I Phase II Phase III Phase IV

Latency
Throughput

0

20

40

60

Th
ro

ug
hp

ut
 (m

illi
on

/s
)

(b)

0 10 20 30 40 50 60
Time (s)

102

103

104

105

Pr
oc

es
sin

g
la

te
nc

y
(m

s) Latency
Throughput

0

10

20

30

40

Th
ro

ug
hp

ut
 (m

illi
on

/s
)

(c)

0 10 20 30 40 50 60
Task ID

0

20

40

60

Th
ro

ug
hp

ut
 (M

B/
s)

(d)

0 10 20 30 40 50 60
Task ID

0

20

40

60

Th
ro

ug
hp

ut
 (M

B/
s)

(e)
Figure 11: (a) The relationship between latency and batch size, (b) impact of batch size on latency and optimization phases, (c) temporal processing laten-
cy/throughput of IPQ2 before and after workload skew adaption, and (d)(e) work distribution across tasks of the streaming-join operator in IPQ2 before and
after workload skew adaptation

been significant effort in improving the data plane in both these ap-
proaches [16, 6, 5, 11], there has been relatively little work towards
improving the control plane [9, 11, 10]. The control plane is still
required to deal with common issues faced in distributed system
implementation such as fault tolerance, scalability, and adaptivity.
In contrast, in Chi, by leveraging the data plane to deliver control
messages, control operations can take advantage of the same opti-
mizations introduced for the data plane.

Existing work mostly focused on specific aspects of the control
plane in the continuous-operator-model-based streaming systems,
e.g., the asynchronous checkpointing algorithms [9]. Apache Flink [10]
uses a freeze-the-world approach to change the parallelism of stages
through savepoint and dataflow restart. Apache Storm [37] pro-
vides very limited dataflow re-balance capability — since the sys-
tem does not provide native stateful operator support, users have
to manage and migrate the operator states manually. This makes it
hard for users to correctly re-balance a stateful application.

There has been limited amount of work looking at programming
the control plane. SEEP [11] proposed an operator API that inte-
grates the implementations of dynamic scaling and failure recovery.
The SEEP API, which focuses on managing parallelism, is a subset
of what Chi provides in terms of functionality. Chi allows more
flexible control operations, e.g., addressing data skews and contin-
uous monitoring. In addition, Chi supports general control opera-
tions thanks to a wide spectrum of consistency models. SEEP, in-
stead, provides only a limited set of operations as its control signals
are not synchronized. Further, Chi simplifies control plane pro-
gramming through automating complex tasks. These tasks have to
be manually implemented and managed in SEEP. Recently, Dhalion [25]
proposed a control policy abstraction that describes the symptoms
and solutions of detected anomalies. As discussed in Section §4.4,
Dhalion’s policies can be implemented on top of Chi.

Punctuations have been widely adopted by streaming systems.
They were originally used [38] for partitioning continuous streams
in order to cap the states of unbound query operators, such as group-
by and join. However, punctuations lack a synchronization mecha-
nism that is critical to support any advanced control operations that
require global consistency guarantees. Aurora/Medusa [19] and the
successor Borealis [8] are seminal efforts that explore query adap-
tion in distributed stream processing. Borealis uses control lines to
modify stream queries but their synchronization needs to be care-
fully handled by developers, which is a non-trivial task in a dis-
tributed setting. Also, control lines are limited to managing query
parameters. Esmaili et al. [36] used punctuations to modify con-

tinuous queries too. However, punctuations are not synchronized,
and thus it can support only control operations applied onto a sin-
gle input and output stream. Recent streaming systems, such as
Flink [10], MillWheel [2] and GigaScope [21], mainly adopt punc-
tuations for limited maintenance tasks such as checkpoint barriers,
flushing early results and checking heartbeats. Their punctuation
algorithms cannot support general control operations as Chi.

It is natural for BSP streaming systems [39] to reconfigure a dataflow
at synchronization barriers. However, the notion of a barrier can be
detrimental for streaming workloads due to its negative impact on
latency and throughput. Therefore, several techniques have been
proposed to mitigate the overhead introduced by synchronization in
BSP [42, 40]. For instance, Drizzle [40] studied the scheduling as-
pect towards a fast adaptable BSP-based streaming system, how to
use group-scheduling and pre-scheduling to reduce latency but still
provide reasonable adaptivity for sudden environmental changes.
Since Chi’s primary focus is in embedding control into the data
plane, our work is complementary to these efforts.

Offline data systems also have strong demands for reconfiguration
during runtime. Chandramouli et al. [15] studied the optimal execu-
tion plans for checkpointing and recovering a continuous database
query. Recently, S-Store [12] added the streaming semantics on top
of a transactional database. Controls can be applied between trans-
actions; however, the system suffers from similar synchronization
overhead as in BSP systems.

To support emerging reinforcement learning algorithms, Project
Ray [30] developed a task scheduling framework for large dynamic
dataflow. In Chi, the task scheduling framework is provided by Or-
leans, and Chi is responsible for providing the API for customizing
control operations and distributed execution mechanisms. A pos-
sible future direction is to port Chi onto Ray. This would enhance
Ray with the continuous monitoring and reconfiguration capabili-
ties for its artificial intelligence and streaming jobs.

9. CONCLUSION
Chi takes a principled approach to control in data streaming. Rather

than using separate control plane channels, Chi propagates control
messages along with data message on the data plane. This enables
supporting important streaming requirements such as zero system
downtime and frequent reconfigurations without compromising on
ease of use. Chi’s implementation and verification on production
workloads not only provide the insights that validate the design
choices, but also offer valuable engineering experiences that are
key to the success of such a cloud-scale control plane.

10. REFERENCES
[1] D. J. Abadi, D. Carney, U. Çetintemel, M. Cherniack,

C. Convey, S. Lee, M. Stonebraker, N. Tatbul, and S. Zdonik.
Aurora: a new model and architecture for data stream
management. PVLDB, 12(2):120–139, 2003.

[2] T. Akidau, A. Balikov, K. Bekiroğlu, S. Chernyak,
J. Haberman, R. Lax, S. McVeety, D. Mills, P. Nordstrom,
and S. Whittle. Millwheel: fault-tolerant stream processing at
internet scale. PVLDB, 6(11):1033–1044, 2013.

[3] T. Akidau, R. Bradshaw, C. Chambers, S. Chernyak,
R. Fernández-Moctezuma, R. Lax, S. McVeety, D. Mills,
F. Perry, E. Schmidt, and S. Whittle. The dataflow model: A
practical approach to balancing correctness, latency, and cost
in massive-scale, unbounded, out-of-order data processing.
PVLDB, 8:1792–1803, 2015.

[4] M. Armbrust, R. S. Xin, C. Lian, Y. Huai, D. Liu, J. K.
Bradley, X. Meng, T. Kaftan, M. J. Franklin, A. Ghodsi,
et al. Spark sql: Relational data processing in spark. In
SIGMOD, pages 1383–1394. ACM, 2015.

[5] P. Bailis, E. Gan, K. Rong, and S. Suri. MacroBase, A Fast
Data Analysis Engine. In SIGMOD. ACM, 2017.

[6] T. Bingmann, M. Axtmann, E. Jöbstl, S. Lamm, H. C.
Nguyen, A. Noe, S. Schlag, M. Stumpp, T. Sturm, and
P. Sanders. Thrill: High-performance algorithmic distributed
batch data processing with c++. In IEEE International
Conference on Big Data, pages 172–183. IEEE, 2016.

[7] S. Bykov, A. Geller, G. Kliot, J. R. Larus, R. Pandya, and
J. Thelin. Orleans: cloud computing for everyone. In
Proceedings of the 2nd ACM Symposium on Cloud
Computing, page 16. ACM, 2011.

[8] F. J. Cangialosi, Y. Ahmad, M. Balazinska, U. Cetintemel,
M. Cherniack, J.-H. Hwang, W. Lindner, A. S. Maskey,
A. Rasin, E. Ryvkina, N. Tatbul, Y. Xing, and S. Zdonik. The
Design of the Borealis Stream Processing Engine. In Second
Biennial Conference on Innovative Data Systems Research
(CIDR 2005), Asilomar, CA, January 2005.

[9] P. Carbone, G. Fóra, S. Ewen, S. Haridi, and K. Tzoumas.
Lightweight asynchronous snapshots for distributed
dataflows. arXiv preprint arXiv:1506.08603, 2015.

[10] P. Carbone, A. Katsifodimos, S. Ewen, V. Markl, S. Haridi,
and K. Tzoumas. Apache flink: Stream and batch processing
in a single engine. Bulletin of the IEEE Computer Society
Technical Committee on Data Engineering, 36(4), 2015.

[11] R. Castro Fernandez, M. Migliavacca, E. Kalyvianaki, and
P. Pietzuch. Integrating scale out and fault tolerance in
stream processing using operator state management. In
SIGMOD, pages 725–736. ACM, 2013.

[12] U. Cetintemel, J. Du, T. Kraska, S. Madden, D. Maier,
J. Meehan, A. Pavlo, M. Stonebraker, E. Sutherland,
N. Tatbul, et al. S-store: a streaming newsql system for big
velocity applications. PVLDB, 7(13):1633–1636, 2014.

[13] R. Chaiken, B. Jenkins, P.-Å. Larson, B. Ramsey, D. Shakib,
S. Weaver, and J. Zhou. Scope: easy and efficient parallel
processing of massive data sets. PVLDB, 1(2):1265–1276,
2008.

[14] C. Chambers, A. Raniwala, F. Perry, S. Adams, R. R. Henry,
R. Bradshaw, and N. Weizenbaum. Flumejava: easy, efficient
data-parallel pipelines. ACM Sigplan Notices,
45(6):363–375, 2010.

[15] B. Chandramouli, C. N. Bond, S. Babu, and J. Yang. Query
suspend and resume. In SIGMOD, pages 557–568, New
York, NY, USA, 2007. ACM.

[16] B. Chandramouli, J. Goldstein, M. Barnett, R. DeLine,
D. Fisher, J. C. Platt, J. F. Terwilliger, and J. Wernsing. Trill:
A high-performance incremental query processor for diverse
analytics. PVLDB, 8(4):401–412, 2014.

[17] S. Chandrasekaran, O. Cooper, A. Deshpande, M. J.
Franklin, J. M. Hellerstein, W. Hong, S. Krishnamurthy,
S. R. Madden, F. Reiss, and M. A. Shah. Telegraphcq:
continuous dataflow processing. In SIGMOD, pages
668–668. ACM, 2003.

[18] K. M. Chandy and L. Lamport. Distributed snapshots:
Determining global states of distributed systems. ACM
Transactions on Computer Systems (TOCS), 3(1):63–75,
1985.

[19] M. Cherniack, H. Balakrishnan, M. Balazinska, D. Carney,
U. Cetintemel, Y. Xing, and S. Zdonik. Scalable Distributed
Stream Processing. In CIDR 2003 - First Biennial
Conference on Innovative Data Systems Research, Asilomar,
CA, January 2003.

[20] Z. Chothia, J. Liagouris, D. Dimitrova, and T. Roscoe.
Online reconstruction of structural information from
datacenter logs. In EuroSys, pages 344–358. ACM, 2017.

[21] C. Cranor, T. Johnson, O. Spataschek, and V. Shkapenyuk.
Gigascope: a stream database for network applications. In
SIGMOD, pages 647–651. ACM, 2003.

[22] J. Dean and S. Ghemawat. Mapreduce: simplified data
processing on large clusters. Communications of the ACM,
51(1):107–113, 2008.

[23] A. Flink. Recovery. https://goo.gl/AJHiFu, 2017.
[24] A. Flink. Savepoints. https://goo.gl/dT4zY2, 2017.
[25] A. Floratou, A. Agrawal, B. Graham, S. Rao, and

K. Ramasamy. Dhalion: Self-regulating stream processing in
heron. PVLDB, August 2017.

[26] J. Grier. Extending the yahoo! streaming benchmark. URL
http://data-artisans.com/extending-the-yahoo-streaming-
benchmark,
2016.

[27] C. Kim, T. Kaldewey, V. W. Lee, E. Sedlar, A. D. Nguyen,
N. Satish, J. Chhugani, A. Di Blas, and P. Dubey. Sort vs.
hash revisited: fast join implementation on modern
multi-core cpus. PVLDB, 2(2):1378–1389, 2009.

[28] S. Kulkarni, N. Bhagat, M. Fu, V. Kedigehalli, C. Kellogg,
S. Mittal, J. M. Patel, K. Ramasamy, and S. Taneja. Twitter
heron: Stream processing at scale. In SIGMOD, 2015.

[29] W. Lin, H. Fan, Z. Qian, J. Xu, S. Yang, J. Zhou, and
L. Zhou. Streamscope: Continuous reliable distributed
processing of big data streams. In NSDI, pages 439–453,
2016.

[30] P. Moritz, R. Nishihara, S. Wang, A. Tumanov, R. Liaw,
E. Liang, W. Paul, M. I. Jordan, and I. Stoica. Ray: A
distributed framework for emerging ai applications. arXiv
preprint arXiv:1712.05889, 2017.

[31] D. G. Murray, F. McSherry, R. Isaacs, M. Isard, P. Barham,
and M. Abadi. Naiad: a timely dataflow system. In
Proceedings of the Twenty-Fourth ACM Symposium on
Operating Systems Principles, pages 439–455. ACM, 2013.

[32] NetFlix. Stream-processing with mantis.
https://medium.com/netflix-techblog/

stream-processing-with-mantis-78af913f51a6,
2016.

[33] T. Nykiel, M. Potamias, C. Mishra, G. Kollios, and
N. Koudas. Mrshare: sharing across multiple queries in

https://medium.com/netflix-techblog/stream-processing-with-mantis-78af913f51a6
https://medium.com/netflix-techblog/stream-processing-with-mantis-78af913f51a6

mapreduce. PVLDB, 3(1-2):494–505, 2010.
[34] P. Roy, S. Seshadri, S. Sudarshan, and S. Bhobe. Efficient

and extensible algorithms for multi query optimization. In
SIGMOD, pages 249–260. ACM, 2000.

[35] T. K. Sellis. Multiple-query optimization. ACM Transactions
on Database Systems (TODS), 13(1):23–52, 1988.

[36] K. Sheykh Esmaili, T. Sanamrad, P. M. Fischer, and
N. Tatbul. Changing flights in mid-air: a model for safely
modifying continuous queries. In SIGMOD, pages 613–624.
ACM, 2011.

[37] A. Toshniwal, S. Taneja, A. Shukla, K. Ramasamy, J. M.
Patel, S. Kulkarni, J. Jackson, K. Gade, M. Fu, J. Donham,
et al. Storm@ twitter. pages 147–156. ACM, 2014.

[38] P. A. Tucker, D. Maier, T. Sheard, and L. Fegaras. Exploiting
punctuation semantics in continuous data streams. IEEE
Trans. Knowl. Data Eng., 15(3):555–568, 2003.

[39] L. G. Valiant. A bridging model for parallel computation.
Communications of the ACM, 33(8):103–111, 1990.

[40] S. Venkataraman, A. Panda, K. Ousterhout, A. Ghodsi, M. J.
Franklin, B. Recht, and I. Stoica. Drizzle: Fast and adaptable
stream processing at scale. Spark Summit, 2016.

[41] G. Wang and C.-Y. Chan. Multi-query optimization in
mapreduce framework. PVLDB, 7(3):145–156, 2013.

[42] M. Zaharia, T. Das, H. Li, T. Hunter, S. Shenker, and
I. Stoica. Discretized streams: Fault-tolerant streaming
computation at scale. In Proceedings of the Twenty-Fourth
ACM Symposium on Operating Systems Principles, pages
423–438. ACM, 2013.

[43] Yahoo! Streaming Benchmarks.
https://github.com/yahoo/streaming-benchmarks.

APPENDIX
A. CONTINUOUS MONITORING

In Algorithm 2, the monitor operation creates a non-blocking con-
trol message that is injected with a CPU metric collection collec-
tion action (L1-5). When this message pass through an operator, it
first create a summary dictionary that contains metrics per operator
(L15-17). It is then augmented it with upstream measurement data
(L18-21), and finally with local metrics (L23-25). The local sum-
mary is then returned to the runtime and packed into the control
payload, and keep propagating until reaching the controller (L26).
The controller repeats the similar steps to combine measurement
data from all sink operators (L6-11) and finally print the global
summary at the screen (L13). In fact, there are many more metrics
that can be collected, for example, per-path latency or per-operator
workload.

B. CORRECTNESS PROPERTIES
In this section, we provide the proof for Theorem 1 as well as a

detailed explanation and proof for safe blocking control operations.

PROOF THEOREM 1. 1o Proof of Property 1. Assume G is the
topology before the control operation starts, and G∗ is the topol-
ogy after a control operation finishes. Both G and G∗ are directed
acyclic graphs. Furthermore, given that E(V,V ∗) always directed
from V to V ∗, G∪G∗∪E(V,V ∗) is a directed acyclic graph.

Termination is guaranteed by the FIFO exactly-once delivery of
channels and the in-order generation of control messages. As chan-
nels are reliable, messages will eventually be received as long as the
operators are alive. Furthermore, an operator in G∪G∗∪E(V,V ∗)

Algorithm 2 Continuous Monitoring Operation

1: function ONINITATCONTROLLER
2: msg := new NonBlockingControlMessage()
3: for v in G′ do
4: msg.confs[v] := new CollectMetric(‘cpu’)
5: return msg
6: function ONBEGINATCONTROLLER(msg)
7: $summary := new Dict<Key, Metrics>()
8: function ONNEXTATCONTROLLER(msg)
9: for key, metrics in ParseMetrics(msg.payload) do

10: if key not in $summary.keys then
11: $summary[key] := metrics
12: function ONCOMPLETEATCONTROLLER
13: print $summary
14: ctx.CompleteOperation(this)
15: function ONBEGINATOPERATOR(msg)
16: $summary := new Dict<Key, Metrics>()
17: $action := msg.confs[msg.dest].Single()
18: function ONNEXTATOPERATOR(msg)
19: for key, metrics in ParseMetrics(msg.payload) do
20: if key not in $summary.keys then
21: $summary[key] := metrics
22: function ONCOMPLETEATOPERATOR
23: if $action.metrics not in ctx.metrics then
24: ctx.StartMeasure(action.metrics)
25: $summary[ctx.key] := ctx.CollectMetrics(action.metrics)
26: return $summary

is always reachable from some source operator, or it is a source
operator itself.

2o Proof of Property 2. If (a) v→ v′ is an edge in G or G∗, or
(b) v ∈ T−1(Sv′), then there is an edge v→ v′ in the meta topol-
ogy. v′ will invoke OnCompleteAtOperator only after it receives
control messages from all input channels, including v→ v′. And
v will only broadcast control messages along v→ v′ after the in-
vocation of OnCompleteAtOperator. Hence, v will always invoke
OnCompleteAtOperator before v′.

In the following, we prove the correctness of safe blocking con-
trol operations. We use a similar model as [18] to describe the
distributed system that executes a streaming dataflow: The exe-
cution process of a dataflow system is a sequence of events. An
event e is a five-element tuple 〈v,sv,s′v,mei ,{m′eo

}〉, describing an
atomic action that an operator v receives a message mei from an
input channel ei, updates its internal state from sv to s′v, and sends
zero or more messages {m′eo

} along some output channels {eo}
respectively. Note that the sequence of messages received along
a channel is an initial sequence of the sequence of messages sent
along the channel. Therefore, we do not explicitly model the chan-
nel state, as the state of a channel is always the sequence of mes-
sages sent along the channel excluding the messages received along
the channel. A global state of the dataflow, denoted by S, is the set
of all operator and channel states. The occurrence of an event can
change the global state. An event e can occur in a global state S if
and only if (1) the state of v in S is s in e, and (2) the head of the
state of ei in S is mei .

Let seq = (e,0 ≤ i < n) be a sequence of events, and the global
state before ei be S. We say seq is a computation of a system if and
only if event ei can occur in S.

Next we show that for safe blocking control operations, we can
have stronger properties that can facilitate users to understand the

https://github.com/yahoo/streaming-benchmarks

Control
events

Pre-control
events

Post-control
events

Figure 12: The relation between events and global states.

semantics and correctness of customized control operations. Con-
sider a control operation in a dataflow system that starts at state
S0, takes a computation sequence seq = (ei,0 ≤ i < n) and ends
at state Sn. To facilitate our discussion, we group {ei} in seq into
three types: (1) control events—the events where an operator when
the operator receives control messages, takes control actions and
optionally broadcasts control messages, (2) pre-control events—
the events that occur at an operator before the operator receives
any control message along the same channel, and (3) post-control
events—the events that occur at an operator after the operator re-
ceives a control message along the same channel.

Specifically, we want to prove a safe blocking control operation
can be permuted to an equivalent computation sequence where all
the pre-control events happen before all the control events, which in
turn happen before all the post-control events, as shown in Fig. 12.
Intuitively, the control events can be treated as if they happened
all at the global synchronization barrier as in a freeze-the-world
control approach. Formally,

THEOREM 2. Consider a safe blocking control operation of Chi
in a dataflow system that starts at state S0, takes a computation se-
quence seq = (ei,0 ≤ i < n) and ends at state Sn. There exists a
computation seq′ where

1. all pre-control events precede all control events, and
2. all control events precede all post-control events, and
3. all pre-control events precede all post-control events

PROOF. Assume that there is a control event e j−1 before a pre-
control event e j in seq. We shall show that the sequence obtained
by interchanging e j−1 and e j must also be a computation. Let Si be
the global state immediately before ei,0≤ i < n in seq.

Case 1o where e j and e j−1 occur on different operators. Let v
be the operator at which e j−1 occurs, and let v′ be the operator
at which e j occurs. First, there cannot be a message sent at e j−1
which is received at e j because e j−1 sends out control messages,
but e j receives a data message. Second, e j−1 can occur in global
state S j−1. This is because (a) the state of v′ is not altered by the
occurrence of e j−1 because e j−1 is in a different operator; (b) if e j
is an event in which v′ receives a message m along a channel e, then
m must have been the message at the head of e before e j−1 since
e j−1 and e j receives messages from different channels. Third, e j−1
can occur after e j since the state of v is not altered by the occurrence
of e j. Because of the above 3 arguments, the sequence obtained by
interchanging the e j and e j−1 is a computation.

Case 2o where e j and e j−1 occur on the same operator. First, e j−1
can occur in global state S j−1. This is because (a) e j−1 does not
alter the operator due to the safe blocking control operation con-
straint; (b) e j−1 and e j receives messages from different channels.
Second, e j−1 can occur after e j since e j−1 does not read the op-
erator state due to the safe blocking control operation constraint.
Because of the above 2 arguments, the sequence obtained by inter-
changing e j and e j−1 is a computation.

In conclusion, the sequence obtained by interchanging e j−1 and
e j must also be a computation.

Similarly, one can show that if there is a post-control event e j−1
before a pre-control/control event e j, the sequence obtained by in-
terchanging e j−1 and e j must also be a computation. The only dif-

ference is that e j and e j−1 cannot occur on the same operator due to
the fact that an operator can start processing post-control messages
only after it has received control messages from all input channels.
By repeatedly applying the above interchanges, one can easily see
that we can generate a computation seq′ that satisfies the 3 require-
ments as listed in Theorem 2.

In the end, we show how Theorem 1 and Theorem 2 can help Chi
users prove the correctness and semantics of their control opera-
tions. Take Algorithm 1 as an example. This algorithm is a safe
blocking control operation. According to Theorem 1, Algorithm 1
will always terminate in finite time. According to Theorem 2, Algo-
rithm 1 is equivalent to the freeze-the-world control approach: (1)
suspends the dataflow, (2) finishes processing all the messages on
the fly, (3) starts the control operation and waits for its completion,
and (4) resumes the dataflow. It is easy to see the correctness of the
freeze-the-world approach, and thus the correctness of Algorithm
1 follows.

	Introduction
	Motivation
	Background
	Design
	Overview
	Control Mechanism
	Graph Transitions through Meta Topology
	Control API
	Correctness Properties

	Advanced Functionalities
	Compare Chi with Existing Models

	Application Examples
	Implementation & Discussion
	Evaluation
	Experimental Setup
	Micro-benchmarks
	Adaptivity and Fault-Tolerance
	Chi in Action

	Related Work
	Conclusion
	References
	Continuous Monitoring
	Correctness Properties

