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Abstract
Parallel applications are typically implemented using multi-
threading (with shared memory, e.g., OpenMP) or multi-
processing (with message passing, e.g., MPI). While it seems
attractive to deploy such applications in cloud virtual ma-
chines (VMs), existing cloud schedulers fail to manage such
applications efficiently: they cannot scale multi-threaded ap-
plications dynamically when more CPU cores in a VM be-
come available, and they cause fragmentation over time due
to the static allocation of multi-process applications to VMs.

We describe GRANNY, a new distributed runtime that en-
ables the fine-granular management of multi-threaded/process
applications in cloud environments. GRANNY supports the
vertical scaling of multi-threaded applications within a VM
and the horizontal migration of multi-process applications
between VMs. GRANNY achieves both through a single
WebAssembly-based execution abstraction: Granules can ex-
ecute application code with thread or process semantics and
allow for efficient snapshotting. GRANNY scales up appli-
cations by adding more Granules, and de-fragments applica-
tions by migrating Granules between VMs. In both cases, it
launches new Granules from snapshots efficiently. We eval-
uate GRANNY with dynamic scheduling policies and show
that, compared to current schedulers, it reduces the makespan
for OpenMP workloads by up to 60% and the fragmentation
for MPI workloads by up to 25%.

1 Introduction
Compute-intensive parallel applications are common in many
domains including machine learning [23], weather forecast-
ing [44], hydrodynamics [35], genomics [5], simulation, and
modeling [43]. These applications exploit massive parallelism
and are built using multi-threaded or multi-process program-
ming models, such as OpenMP [36] and MPI [33] that utilize
the CPU cores within a node and across nodes.

To satisfy their resource needs, such applications are in-
creasingly deployed on cloud-hosted clusters with a high
total virtual CPU (vCPU) core count made up of virtual ma-
chines (VMs). These cloud clusters are managed by cloud

resource schedulers, e.g., Slurm [48] or Azure/AWS/Google
Batch [2, 16, 27], which monitor a queue of submitted appli-
cations and allocate them to VMs and vCPUs.

Existing cloud resource schedulers, however, cannot
change an application’s resource allocation after it has started
executing. This lack of elasticity prevents multi-threaded
applications from leveraging new cloud resources as they
become available, e.g., when other applications have re-
leased vCPUs. This reduces utilization: our experiments show
that, when deploying multi-threaded (OpenMP) applications,
Azure Batch and Slurm consistently leave 60% and 40% of
vCPUs idle, respectively, even when there are pending ap-
plications to be scheduled (§6.3). No matter how effective a
resource manager’s bin-packing approach is, it cannot com-
pletely avoid idle resources.

For multi-process applications, high utilization can be
achieved by allocating resources at a fine granularity (e.g., al-
locating vCPUs to applications as soon as they become
available), but this leads to resource fragmentation. If multi-
process applications become fragmented across many VMs, it
increases their network communication, thus reducing overall
application performance.

Cloud resource schedulers handle this tension between
utilisation and compute/data locality differently: when ex-
ecuting distributed multi-process applications, the Azure
Batch [27] scheduler allocates resources at a VM granularity.
This achieves good locality at the cost of resource utilization,
because idle vCPUs in VMs cannot be used to execute other
applications; in contrast, Slurm [48], another popular sched-
uler, allocates resources at vCPU granularity. It exhibits high
utilization, but incurs fragmentation.

While high utilization is desirable for cloud providers, low
fragmentation improves application performance. We observe
that an ideal cloud resource scheduler for parallel applica-
tions must navigate this trade-off by elastically scaling and
migrating applications at a fine granularity (i.e., individual
vCPUs) at runtime. Existing runtimes for multi-threaded and
multi-process applications in cloud environments, however,
do not support such fine-granular management.



We describe GRANNY, a distributed runtime for executing
unmodified multi-threaded/multi-processing (OpenMP/MPI)
applications in cloud environments, which supports verti-
cal scaling of multi-threaded application and horizontal mi-
gration of distributed multi-process applications. GRANNY
achieves both with the help of a new execution abstraction
called Granules. It makes the following contributions:

(1) Granules for thread/process execution. GRANNY exe-
cutes each application as a set of Granules (§3.2). Each Gran-
ule contains application code with a single execution thread,
capable of executing with thread (i.e., for multi-threaded ap-
plications) or process (i.e., for multi-process applications) se-
mantics. A Granule executes a sandboxed WebAssembly [17]
module, so that all Granules on a VM execute safely within
a single host process. This allows Granules to implement an
efficient snapshotting operation, share memory directly by
mapping pages, and exchange messages with low overhead.

A Granule’s execution state can be captured completely
as part of a snapshot (§3.3). A Granule’s snapshot contains
its WebAssembly linear memory, with its static data sections,
stack and heap, as well as other execution state, such as stack
pointers, function tables, messaging queues, and file descrip-
tors. Since their execution state is self-contained, Granules,
unlike processes or containers [60], can be snapshotted and
migrated robustly and with low performance impact.

(2) Granule elasticity and migration. GRANNY leverages
Granules to perform management actions: it can (a) spawn a
new Granule with thread semantics to scale a multi-threaded
application (§4.2); or (b) change the distribution of a multi-
process application by migrating the snapshot of a Granule
with process semantics to a different VM (§4.3).

When performing the above management actions, GRAN-
NY must not break the consistency of a multi-threaded/process
application. GRANNY therefore only controls Granules when
their execution reaches well-defined control points (§4.1),
such as certain system calls or OpenMP/MPI calls. At these
control points, a Granule is guaranteed to have a consistent
state with respect to its shared data and messages, and it is
safe to spawn new Granules, or snapshot and migrate them.

(3) Granule-aware scheduling policies. Using Granule’s
support for vertical scaling and horizontal migration, GRAN-
NY implements dynamic scheduling policies for fine-
granular management of compute-intensive applications in
the cloud (§5). The policies enable (i) multi-process (MPI)
applications to migrate processes between VMs to reduce
inter-VM communication and thus improve application per-
formance (§5.1); (ii) multi-threaded (OpenMP) applications
to launch extra threads, increasing their parallelism when fur-
ther vCPUs become available at runtime on a VM (§5.2); and
(iii) checkpoint applications on spot VMs [7] before they are
evicted and migrate them to replacement VMs (§5.3).

In our experiments on a 32-VM cluster, we execute a work-
load of existing OpenMP/MPI applications based on a 100 job

trace. We compare GRANNY’s execution to that with Azure
Batch [27] and Slurm [48]. Azure Batch and Slurm use the
OpenMPI [39] and LLVM OpenMP (libomp) [26] runtimes
to execute MPI and OpenMP jobs, respectively.

We show that, by defragmenting multi-process applica-
tions using horizontal migration, GRANNY reduces end-to-
end execution time (makespan) by 20% and fragmentation by
25% (§6.2). By elastically scaling multi-threaded applications
to use idle CPU cores, GRANNY reduces makespan by 60%
and the tail job completion time by 50% (§6.3). Finally, when
using spot VMs, GRANNY reduces makespan by 50% (§6.4).

2 Compute-Intensive Workloads in Cloud
Next, we discuss compute-intensive parallel applica-
tions (§2.1), their runtime support (§2.2), describe associated
schedulers (§2.3), and explain why existing schedulers fail to
manage these applications efficiently in cloud settings (§2.4).

2.1 Compute-intensive applications
Compute-intensive applications include large-scale data an-
alytics [61], video processing [4], and deep learning train-
ing [52], and also typical high performance computing (HPC)
workloads, such as fluid dynamics [35], molecular simula-
tion [47], and weather forecasting [44]. These applications
require plentiful hardware resources, because they parallelize
computation by distributing it across many CPU cores, both
within nodes and across nodes.

To handle large problem sizes without increasing execution
time or exhausting memory, compute-intensive applications
make use of vertical scale-up and horizontal scale-out pat-
terns. These are typically implemented using multi-threading
(with shared memory among threads) and/or multi-processing
(with distributed message passing between processes located
on different nodes), as offered by programming models such
as OpenMP [36] and MPI [33]. In this work, we focus on
OpenMP and MPI, as representative examples of APIs and
runtimes for parallel applications. They also benefit from
long-standing popularity and widespread adoption.

2.2 Runtimes for multi-threading/processing
Multi-threaded/process applications typically require runtime
support. Multi-threaded runtimes such as LLVM’s OpenMP
runtime (libomp) [26] manage threads, coordinate access
to shared memory, and provide synchronization primitives;
multi-processing runtimes such as OpenMPI [39] provide
APIs for inter-node message passing, message synchroniza-
tion, and data partitioning.

Internally, these runtimes use OS primitives to implement
their APIs. In Linux, most OpenMP implementations use
POSIX threads and standard synchronization primitives, such
as mutexes and locks. MPI implementations use the OS ker-
nel’s TCP/IP stack to send and receive messages between
processes reliably. Runtimes typically do not restrict other OS
system calls e.g., for file system access. In this case, however,



it becomes the responsibility of the developer to access the
underlying resources in a race-free manner, as the runtime’s
coordination and synchronization guarantees do not apply.

Depending on whether an application uses multi-threading
or multi-processing, application state is handled differently.
For multi-threaded applications, application state resides in
the process’ address space, but may be divided in different
thread’s stacks and local storage (TLS). The state associated
with synchronization primitives, e.g., mutexes and locks, re-
sides in the OS kernel. For multi-process application, the state
is partitioned across all processes. In addition, the state of
the network stack is spread across all VMs involved in the
distributed computation.

2.3 Resource scheduling for applications
Compute-intensive applications are deployed on large shared
clusters (either on-premise or in the cloud) with high CPU
core and node counts. Users submit applications as jobs to a
work queue managed by a resource scheduler. The scheduler
allocates applications to compute resources (i.e., CPU cores)
according to an application’s demand for parallelism. Multi-
threaded/process applications specify their resource needs
at deployment time, e.g., using mpirun’s np flag [40], or the
OMP_NUM_THREADS environment variable [37].

Cloud providers use a range of resource schedulers to ex-
ecute compute-intensive parallel applications, such as AWS
Batch [2], Azure Batch [27], and Google Batch [16]. These
schedulers control a pool of cloud VMs that can be scaled
up or down on-demand. They schedule jobs once sufficient
VMs are available, and idle vCPU cores in VMs cannot be
allocated to other pending jobs.

In addition, some cloud providers also support general-
purpose schedulers such as Slurm [48], KubeBatch [21], or
Volcano [53], which are often used for on-premise clusters.
These schedulers support more fine-grained policies in which
they allocate applications to individual vCPU cores.

2.4 Challenges in cloud scheduling
While cloud providers strive for high utilization, cloud users
want to combine high parallelism with locality, as this reduces
avoidable inter-VM communication. Cloud schedulers thus
try to optimize both for resource utilization and compute/data
locality [20, 49], but they struggle to achieve this goal: the
allocation of a multi-threaded application to a VM determines
its parallelism based on the number of available vCPUs. If
the scheduler cannot perfectly bin-pack multi-threaded appli-
cations to VMs, vCPUs remain idle, decreasing utilization.

Similarly, a scheduler must allocate the processes of a dis-
tributed multi-process application to sufficiently many VMs
that offer the required total number of vCPUs. This poten-
tially reduces locality, as it may spread the allocation across
multiple VMs, depending on their vCPU availability.

Ideally, the scheduler should be able to change this initial
allocation of a parallel application at the granularity of indi-
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Figure 1: GRANNY executes applications as sets of Granules
(GRANNY supports elasticity by vertically scaling multi-threaded
applications, adding more Granules, or horizontally migrating Gran-
ules of multi-process applications to consolidate them across VMs.)

vidual vCPUs. In particular, it should (a) add more threads
to a multi-threaded application when vCPUs become avail-
able, increasing utilization; and (b) move processes to VMs
that already contains other processes of the same application,
reducing fragmentation and improving locality.

Such fine granular resource management, however, is not
possible due to the limitations of today’s runtimes for multi-
threaded/process applications: elastically scaling threads re-
quires runtime support, otherwise it may violate consistency
with concurrent memory accesses by threads. For example,
threads may have shared variables pending synchronization;
similarly, migrating processes between VMs requires sup-
port for process-level checkpointing, e.g., CRIU [11], which
incurs significant overheads [18, 60]. Without runtime sup-
port, it also cannot ensure consistent checkpoints across all
distributed processes when messages are in-flight. Applying
existing migration techniques [54] thus would require changes
to applications, runtimes, and OS kernels.

3 GRANNY Design
We describe the design of GRANNY, a distributed runtime
for multi-threaded/processing applications (§3.1). At its core
lies the abstraction of a Granule (§3.2), which is the building
block for the execution of both thread- and process-based
applications. The state of Granules can be captured efficiently
using snapshots (§3.3), thus enabling elasticity and migration.

3.1 Overview
GRANNY executes multi-threaded and multi-process appli-
cations as a set of Granules (shown as circles in Fig. 1). A
Granule represents a single thread of execution and has its
own mappings for code and data: a multi-threaded applica-
tion (OpenMP) is therefore a set of Granules with shared-
memory code and data mappings; a multi-process applica-
tion (MPI) is a set of Granules with non-shared data mappings.

Each Granule runs in a single WebAssembly [17] module
with its application code and executes on a vCPU in a VM.
The GRANNY runtime decouples Granule state from OS ker-
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Figure 2: GRANNY architecture (Application code, cross-compiled
to WebAssembly, can make calls, via control points, to different
backends. The GRANNY core maintains relevant runtime system
state and defers to OS system calls when necessary.)

nel state, which makes the snapshotting of Granules simpler
and faster than traditional process checkpoints [11]. It also al-
lows GRANNY to execute multiple Granules within the same
process (shown as different colors in Fig. 1), because WebAss-
embly modules are isolated from each other and the runtime.
Each VM runs a single instance of the GRANNY runtime, and
there is also one cluster-wide GRANNY scheduler.

GRANNY uses the Granule abstraction (§3.2) and snap-
shots (§3.3) to implement management actions (§4): it can
spawn Granules with thread semantics to vertically scale
multi-threaded applications (§4.2), and it can horizontally mi-
grate the snapshot of a Granule with process semantics (§4.3).
The GRANNY scheduler uses these management actions to
implement dynamic scheduling policies (§5): as shown in
Fig. 1, it can speed up App 1 with the newly released vC-
PUs of VM A, improving utilization, or consolidate App 3 to
VM C, improving locality.

3.2 Granule abstraction
Fig. 2 shows the GRANNY architecture. A Granule executes
as an OS thread inside the VM in which it is spawned. Appli-
cation code is deployed in an isolated WebAssembly module
that only has external access to pre-defined OpenMP, MPI,
and POSIX operations implemented by the GRANNY runtime
(the various backends in Fig. 2). The GRANNY backends are
built on top of a shared GRANNY runtime core that keeps the
per-Granule state and decouples backends from the OS.

Applications must be cross-compiled to WebAssem-
bly [17], a memory-safe and platform-independent binary
instruction format that supports a wide range of program-
ming languages. The use of WebAssembly allows Granules
to execute side-by-side within one virtual address space, to-
gether with the GRANNY runtime, while enforcing memory
safety [19] and reducing interaction with the privileged OS
kernel. In addition to the file system and network operations

necessary for multi-process applications, GRANNY only re-
lies on the OS kernel to schedule threads and guarantee re-
source (CPU and network) fairness.

WebAssembly code cannot, in general, interact with its host
environment. In GRANNY, application code can use control
points to interact with the runtime (§4.1). A control point is
triggered by a call to one of the supported APIs, POSIX, MPI,
and OpenMP, implemented in the backends. Control points
come at no cost for developers and at little cost for the runtime:
they are injected by leaving the corresponding API symbol
(e.g., MPI_Barrier) as undefined during cross-compilation and
marked as a function import [13]. The symbol is resolved at
runtime and triggers a WebAssembly context switch executed
in tenths of cycles, similar to a function call [34].
The GRANNY runtime makes, whenever necessary, system
calls to the underlying OS, e.g., to send cross-VM messages
or write to a file descriptor. It records these interactions to
ensure that Granule state can be encapsulated in a snapshot.

3.3 Granule implementation
Control points. Our GRANNY prototype has three backends:

The MPI backend implements the standard MPI_* APIs
(e.g., MPI_Reduce [33]) and provides reliable Granule-to-
Granule messaging. It uses in-memory message mailboxes
for message reception, and the host network stack for cross-
VM messaging. The GRANNY runtime maintains consistent
Granule addressing tables across Granule migrations.

The OpenMP (OMP) backend implements the interface ex-
posed by LLVM’s OpenMP runtime (libomp) after OpenMP
pragmas have been expanded (e.g., __kmpc_fork_call [26]).
For correct and safe OpenMP execution, the GRANNY run-
time must carefully manage the shared and private memory
regions of different Granules (see §3.3).

The POSIX backend implements WebAssembly’s standard
system interface (WASI) [55]. The use of WASI simplifies
the cross-compilation of large codebases, because it enables
the static linking of applications with WASI-aware libraries,
such as wasi-libc [57]. The backend only implements the
symbols needed by compute-intensive applications, which
are mostly filesystem APIs. To maintain a consistent Granule
state and facilitate snapshots and migration, the GRANNY run-
time maps the file descriptors used internally in WebAssembly
code, to the OS file descriptors used in practice.

Memory layout. Due to WebAssembly’s linear memory
model [17], Granules have a simple memory layout, shown in
Fig. 3, which facilitates spawning and snapshotting. A Gran-
ule occupies a contiguous region of virtual memory with the
code, data, a stack, and a heap. Spatial isolation comes from
a combination of WebAssembly’s memory safety and guard
pages, and is it enforced by the WebAssembly runtime [10].

The main difference between a Granule executing with pro-
cess semantics and with thread semantics is their memory lay-
out (red and blue Granules in Fig. 3, respectively): Granules



Process address space

TCP

kmpc_fork

Code & Data

Heap

Code & Data
int i = 0;
#pragma omp for
for (; i<10; i++)
   <body>

VM

Code & Data

     Stack
    Heap

Stack
Heap

cp

Stack
Heap

Stack

1

4

1

2

3

3

...
   <body>char* b = ...

MPI_Bcast(*b);

Code & Data

char* b = ...
MPI_Bcast(*b);

2

4

mmap

Granule 
(Process semantics)

Granule 
(Process semantics) (Thread semantics)

Granule Granule 
(Thread semantics)

Figure 3: Granules memory layout in a single GRANNY instance
(Granules execute side-by-side in an address space, and rely on
WebAssembly’s sandboxing for spatial isolation. Granules executing
with processes semantics execute in different sandboxes, whereas
Granules executing with thread semantics share the same sandbox.)

with processes semantics have separate linear memories, with
the same application mapped into them. To send messages,
the sender Granule indicates the buffer to be sent (Fig. 3, 1 ),
and the MPI backend in the GRANNY runtime decides if it is
a local or a remote message. For a local message, the runtime
can directly enqueue the message metadata ( 2 ) and copy the
buffer contents into the reception buffer ( 3 ). For a remote
message, the runtime will send the whole payload over TCP
to the appropriate GRANNY runtime instance ( 4 ).

Granules with thread semantics share a linear memory and
have separate stacks. When a Granule creates new threads,
such as with OpenMP #pragma omp for (Fig. 3, 1 ), the GRAN-
NY runtime spawns a new Granule mapped to the same linear
memory ( 2 ). To give each thread a separate execution context,
but maintain WebAssembly’s memory sandboxing, GRANNY
allocates an area in the parent’s heap for the child’s stack ( 3 ),
and sets the child’s code entrypoint to the corresponding
OpenMP task ( 4 ). Additional care goes into maintaining
shared variable visibility, as well as their consistency.

Snapshots. Granules thus have a simple memory layout,
which means that their execution state can be captured com-
bining the span of the linear memory, together with the Gran-
ule state in the GRANNY runtime (Fig. 2). The combined
linear memory and runtime state is what we call a Granule
snapshot. Having a concise snapshot representation for Gran-
ules is essential for migration. Since all state is contained in a
snapshot, GRANNY does not require host kernel modifications
to obtain a Granule’s full execution state. This is in contrast to
general process checkpointing [11], which must also extract
process state from the host kernel.

4 Granule Management
GRANNY performs management actions, vertical scal-
ing (§4.2), and horizontal migration (§4.3) by interrupting

application execution at well-defined control points (§4.1).
This ensures GRANNY always operates with a consistent
application state. The following sections describe these oper-
ations in more detail.

4.1 Interrupting Granules at control points
GRANNY takes control over Granule execution at control
points, i.e., at every call to one of the supported runtime back-
end APIs (see Fig. 2). GRANNY defines two types of control
points, regular and barrier control points, that enable the run-
time core to perform different operations. At regular control
points, such as calls to the POSIX API, the application state is
not guaranteed to be consistent, but this still allows GRANNY
to send point-to-point messages or operate on shared memory.
In contrast, barrier control points guarantee that the applica-
tion state is consistent, i.e., no messages are in-flight and no
modifications to shared variables are pending to be synchro-
nized. Therefore, GRANNY can only perform management
operations at barrier control points.

Differentiating between regular and barrier control points
requires semantic knowledge of the shared memory/mes-
sage passing API, as well as control over its implementation.
For example, GRANNY’s MPI backend implementation of
MPI_Barrier has a reduce phase in which all Granules send
messages to the Granule with the lowest MPI rank, and a
broadcast phase in which all Granules are notified that the
barrier has completed. After the reduce phase, the Granule
with the lowest MPI rank can rely on the fact that there are no
outstanding messages and has thus reached a consistent state.
A similar explanation, with shared memory synchronization
instead of messages, applies to GRANNY’s OpenMP backend
implementation of #pragma omp barrier.

As a consequence, vertical scaling and horizontal migra-
tion in GRANNY is a co-operative process. When a Granule
triggers a barrier control point, the runtime interacts with the
scheduler and adds, removes, or migrates Granules as indi-
cated. In practice, barrier control points are frequent enough,
so that their co-operative nature does not hinder the benefits
in resource management, as we can see later in §6.

4.2 Vertical scaling
Implementing vertical scaling in GRANNY is straightforward
if we take into account the memory layout presented in Fig. 3.
To create a child Granule from a parent Granule, the runtime
allocates the child’s stack in the parent’s heap, and instanti-
ates a new Granule on top of the same WebAssembly linear
memory, changing only the stack pointer. The child’s entry-
point is indicated as an index in the WebAssembly module’s
function table. We also add guard pages around each child’s
stack to mitigate potential stack overflows (typical of various
threading implementations in WebAssembly [58]).

Since vertical scaling happens during barrier control points
in OpenMP, the runtime can easily distribute the work across
any Granules by simply setting the appropriate per-thread and
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global variables in the OpenMP specification. We design a
scheduling policy using vertical scaling in §5.2.

4.3 Horizontal migration
Fig. 4 illustrates horizontal migration. The MPI backend gives
each Granule a unique integer identifier, akin to the MPI rank,
and implements messaging as a three-step process: it captures
the send operation as a call to a backend operation such as
MPI_Send ( 1 ); it copies the message into the receiving Gran-
ule’s mailbox within the target GRANNY runtime core ( 2 );
and it delivers the message to the application by capturing ( 3 ),
and potentially blocking, calls to a receive operation (which
the MPI backend matches to the corresponding mailbox, ac-
cording to the MPI specification). Note that Granules may
also call other API backends, such as file writes via the POSIX
backend ( 4 ). As previously introduced, the POSIX backend
serves the request and keeps track of the mapping between
WebAssembly file descriptors and OS ones.

When Granules reach a barrier control point (such as
MPI_Barrier in Fig. 4b), the runtime can perform horizon-
tal migrations safely. For example, in the case of MPI_Barrier,
all Granules send a BARRIER_JOIN message ( 5 ) to the zero-th
MPI rank (Granule 0 in VM A in the example), and wait for a
BARRIER_DONE message before continuing. When the runtime
for Granule 0 has received all messages, it queries the sched-
uler for any horizontal migrations ( 6 ). The resource scheduler
then applies the scheduling policy and returns a migration

plan ( 7 ). After all migrations have been performed (if any),
the runtime broadcasts a BARRIER_DONE message so all blocked
Granules resume execution. In our example, Granule 1 must
be migrated from VM B to VM A.

To perform the migration, shown in Fig. 4c, the runtime
in VM A distributes the migration plan to the other runtimes
involved in the execution (in this case the runtime in VM B),
and all proceed to individually prepare for the migration. For
VM A, this means the runtime must create a new, empty Gran-
ule 1, setup its mailbox mappings, and update the entry for
Granule 1 on the mailbox of Granule 0 ( 8 ). For the runtime in
VM B, this means creating a snapshot of Granule 1, including
any runtime state, and terminating the old Granule 1 ( 9 ).

Once the migration has been prepared, the runtime in VM A
can resume execution of Granule 0, which broadcasts the
BARRIER_DONE message to the updated mailboxes ( 10 ). The
runtime in VM A can also restore Granule 1 from the re-
ceived snapshot, re-construct the file descriptor tables, and
resume execution where it left off, i.e., blocked waiting for
a BARRIER_DONE ( 11 ). Since the restored Granule 1 uses the
updated mailboxes, it has the message and resumes execu-
tion ( 12 ). We design two scheduling policies using horizontal
migration in §5.1 and §5.3.

5 Granular Management Policies
We implement three scheduling policies, described in the fol-
lowing sections, to improve the utilization and performance
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Figure 5: Dynamic scheduling policies implemented for their use with GRANNY (Different colors indicate different jobs.)

of cloud-based multi-process and multi-thread execution. The
policies use GRANNY’s support for vertical scaling and hori-
zontal migration, and treat scheduled the applications as black
boxes, i.e., without knowledge of future applications, their
distribution of sizes, or their expected duration.

5.1 Improving locality with compaction policy
When scheduling MPI applications, existing cloud schedulers
face a utilization/locality trade-off: they can either assign
available vCPUs to an MPI application to achieve high utiliza-
tion, or assign an entire VM to an MPI application to achieve
high locality at the expense of having unused vCPUs in those
VMs. The former reduces queue wait times for applications,
but it may increase execution time, because applications may
have to communicate across different VMs; the latter opti-
mizes execution time at the cost of increasing queuing time
due to the wait for an available VM of the required size.

Instead, we adopt a compaction policy (see Fig. 5a) that
uses GRANNY to combine the benefits of both approaches.
The scheduler first eagerly deploys MPI applications on any
available vCPUs, which results in the highly fragmented green
application in our example. When vCPUs are later released
(e.g., the blue application terminates), the scheduler performs
horizontal migration of Granules to increase the locality of
executing applications. This results in less cross-VM commu-
nication, which speeds up the green application.

We define our fragmentation metric as the total number of
Granule-to-Granule connections that cross a VM boundary
in an application. When the application reaches a barrier
control point, the scheduler checks if it can reduce its cross-
VM links by performing any set of horizontal migrations. We
show experimentally in §6.2 that, using this policy, GRANNY
maintains high cluster utilization while keeping fragmentation
low, thus improving performance.

5.2 Improving utilization with elastic policy
Even with a compaction policy, some cluster resources remain
idle due to the nature of bin-packing scheduling. VMs may
have some spare capacity that is insufficient to deploy the
next application in the queue. This is particularly true with
OpenMP applications that cannot be distributed across VMs.

In response, we introduce an elastic policy (see Fig. 5b).
When there is spare capacity in a VM (Fig. 5b-a) and an
OpenMP application reaches a barrier control point, the

scheduler triggers a vertical scale-up to utilize these idle re-
sources (Fig. 5b-b). This improves cluster utilization and
application performance by exploiting extra parallelism. Our
policy is careful to not mistake fork-join patterns of co-located
OpenMP application with truly available resources by keeping
track of the OMP_NUM_THREADS environment variable.

In §6.3, we show that the elastic policy reduces end-to-end
execution time while decreasing idle vCPUs.

5.3 Ephemeral VMs with spot policy
Compute-intensive applications may be deployed on a pool of
spot VMs [7] to benefit from lower costs. This introduces the
challenge of handling partial failures, because spot VMs are
withdrawn by the cloud provider after a short grace period.

Fig. 5c shows our spot policy. We follow a two-part horizon-
tal migration approach: (1) when the cloud provider notifies
the scheduler of an upcoming spot VM eviction (Fig. 5c-a),
the scheduler stops scheduling Granules to that VM; (2) when
a Granule running on the to-be-evicted VM reaches a bar-
rier control point (e.g., MPI_Barrier or #pragma omp barrier),
the resource manger tries to re-schedule it on the remaining
VMs (Fig. 5c-b). If there are insufficient resources, snapshots
are taken of all Granules in the application, and they are termi-
nated. Interrupted applications are then added to the beginning
of the scheduler’s queue.

We show experimentally in §6.4 that, using a spot policy,
GRANNY reduces end-to-end execution time when deploying
compute-intensive applications on spot VMs.

6 Evaluation
Our evaluation explores the benefits of using GRANNY to run
MPI and OpenMP applications. We show how, using GRAN-
NY’s dynamic scheduling polices (§5), we can: (i) improve
performance and locality of MPI applications while maintain-
ing a target utilization (§6.2); (ii) improve performance and
utilization of OpenMP applications by allocating extra CPU
cores (§6.3); and (iii) ensure efficient fault-tolerant execution
with ephemeral spot VMs (§6.4).

In our microbenchmarks (§6.5), we analyze the baseline
overheads of: (i) executing MPI applications with GRANNY
instead of OpenMPI (§6.5.1); (ii) executing OpenMP appli-
cations with GRANNY instead of LLVM’s libomp (§6.5.2);
(iii) the horizontal migration of Granules (§6.5.3); and (iv) the
vertical scale-up of Granules (§6.5.4).
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Figure 6: Improving locality with compaction policy (We compare with Azure Batch and Slurm’s default policies.)

6.1 Experimental setup

Implementation. GRANNY is implemented in 24,000 lines
of C++20 code (compiled with clang-17) on top of the Faasm
runtime [51]. GRANNY extends Faasm by implementing
the MPI/OpenMP backends, a centralized scheduler, and
migration/scale-up, but it re-uses the underlying sandbox ab-
straction (using WAMR [10] as the WebAssembly runtime).
GRANNY is available as open-source.1 We compile all de-
ployed applications and their library dependencies, such as
libc, to WebAssembly [17] using clang-18 [45], as part of
GRANNY’s CPP toolchain.

As baselines, we compare against two cloud resource sched-
ulers, batch and slurm, that mirror the behaviour of Azure
Batch [27] and Slurm [48], respectively. Unless otherwise
stated, batch and slurm execute MPI applications with Open-
MPI v4.1 [39] and OpenMP ones with libomp v4.5 [25].

Testbed. We deploy GRANNY and any baselines on a Ku-
bernetes cluster [22] on Azure [28]. The cluster consists of
Standard_D8_v5 VMs [29] with 8 vCPU cores and 32 GB of
memory. We deploy the resource scheduler in a separate VM
in the same cluster.

Workloads. We evaluate GRANNY with unmodified applica-
tions that use OpenMP [36] for multi-threaded shared mem-
ory computation, and MPI [33] for multi-process message
passing. Applications require no changes to source code, just
re-compilation with the GRANNY toolchain.

6.2 Improving locality with compaction policy
This experiment explores the benefits of using a compaction
policy (§5.1) to navigate the utilization/locality trade-off: it
horizontally migrates Granules executing with process seman-
tics. We execute a trace of MPI applications as jobs, and each
application executes the LAMMPS [43] molecule dynamics
simulator, running the Lennard-Jones (LJ) benchmark with a
varying number of MPI processes. Applications are executed
in order and may wait in a queue until sufficient resources

1https://github.com/faasm/faasm/

become available in the cluster. To measure only the benefits
of the policy and not differences in the MPI implementa-
tion, we configure our two baselines, batch and slurm, to use
GRANNY’s MPI backend.

Fig. 6 shows various performance metrics, as we increase
the number of VMs and the number of applications in the
trace. Fig. 6a shows that the compaction policy improves
end-to-end execution time (makespan) by up to 20%. Using
compaction, GRANNY always improves makespan across all
baselines and cluster sizes.

To show the compaction policy in action, Fig. 6c and
Fig. 6d plot the time-series of idle vCPUs (as a proxy for
cluster utilization) and cross-VM network links (as a proxy
for locality) for the (32 VMs, 100 jobs) execution. We see that,
differently to Slurm, GRANNY deliberately leaves a percent-
age of vCPUs idle corresponding to a target utilization (5%
in this experiment). GRANNY can use these spare vCPUs to
defragment applications at runtime by performing horizontal
migrations, achieving consistently 25% less fragmentation
than Slurm. In fact, GRANNY, with only 5% idle vCPUs, is
closer in terms of fragmentation to Azure Batch, which be-
haves optimally with respect to this metric but leaves 30% of
vCPUs unused.

Fig. 6b shows that this reduction in fragmentation at high
cluster utilization has a direct impact on job completion
time (JCT). For the (32 VMs, 100 jobs) execution, GRANNY
improves median and tail JCT by up to 20%. We conclude
that the compaction policy enables GRANNY to exploit the uti-
lization/locality trade-off more effectively compared to Azure
Batch and Slurm.

6.3 Improving utilization with elastic policy
This experiment explores the benefits of using an elastic pol-
icy (§5.2) to vertically scale OpenMP applications by adding
Granules with thread semantics (§5.2). We execute a trace of
OpenMP applications as jobs, and each application executes
a large-scale version of the p2p ParRes OpenMP kernel [41],
which performs a compute-intensive pipelined parallel algo-
rithm on a large matrix, and requires a different number of

https://github.com/faasm/faasm/


8 VMs
(50 Jobs)

16 VMs
(100 Jobs)

24 VMs
(150 Jobs)

32 VMs
(200 Jobs)

0

100

200

300

400

500

600

700

800

M
ak

es
pa

n
[s

]

(a) Makespan

8 VMs
(50 Jobs)

16 VMs
(100 Jobs)

24 VMs
(150 Jobs)

32 VMs
(200 Jobs)

0

10

20

30

40

50

60

70

Id
le

C
PU

-s
ec

on
ds

To
ta

lC
PU

-s
ec

on
ds

[%
]

slurm
batch

granny-no-elastic
granny

(b) Aggregate idle vCPUs

200 400 600
Job Completion Time [s]

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

(c) JCT (32 VMs, 200 Jobs)

0 200 400 600
Time [s]

0

20

40

60

80

100

%
id

le
vC

PU
s

(d) Idle vCPUs (32 VMs, 200 Jobs)

Figure 7: Improving utilization with elastic policy (We compare to Azure Batch and Slurm with libomp as OpenMP runtime, and Slurm with
GRANNY’s OpenMP backend, granny-no-elastic.)

OpenMP threads. In this experiment, the baselines (batch and
slurm) execute applications using libomp [25]. We include
an additional baseline, granny-no-elastic, which corresponds
to slurm using GRANNY’ OpenMP backend.

Fig. 7a shows that GRANNY improves makespan by up to
60% compared to the native baselines and GRANNY without
the elastic policy (granny-no-elastic). This confirms that the
performance improvements come from the policy. Indeed, we
can assert that GRANNY reduces the idle CPU cores in the
cluster by up to 30% (Fig. 7b), and it uses these extra cores
to improve median and tail JCT by up to 50% (Fig. 7c).

This large performance gap can be understood when con-
sidering how many compute resources are left idle by the
native baselines. Fig. 7d shows a time series of the percentage
of idle vCPUs when running 200 jobs on a 32-VM cluster.
Azure Batch and Slurm, even when the job queue is not empty,
consistently leave 60% and 40% of vCPUs idle. This is due
to multiple reasons: (i) OpenMP applications have fixed par-
allelism; (ii) it is not possible to distribute them across VMs;
and (iii) in the case of Azure Batch, it is not possible to run
different applications on the same VM concurrently. By ver-
tically scaling-up, GRANNY maintains the fraction of idle
vCPUs at around 20% while there are still pending jobs.

GRANNY’s improvements in terms of JCT are partly due
to the fact that our OpenMP workload always benefits from
increasing its parallelism (§6.5.4). In a real deployment, an
elastic policy should be accompanied by runtime profiling to
determine when a workload exhausts its parallelism.

6.4 Ephemeral VMs with spot policy
This experiment explores the performance benefits of using a
spot policy (§5.3) to execute compute-intensive applications
on a cluster with ephemeral spot VMs. The submitted applica-
tions and the native baselines are the same as in §6.2. In this
experiment, the native baselines execute applications using
the OpenMPI [39] runtime. To emulate the behaviour of spot
VMs while making our findings reproducible, we withdraw
VMs at a pre-defined rate with a 1-min grace period.

The eviction rate for this experiment is 25% of the VMs,
selected at random, each minute. We choose this eviction
rate after measuring the eviction rate for Standard_D8_v5 spot
VMs using Azure’s Resource Graph Analyzer [8] (25% per
hour) and scaling it to our MPI applications’ length (minutes,
instead of hours, to make the experiments reproducible).

Fig. 8a shows the reduction in makespan when comparing
each baseline to itself without evictions. We see that, across
cluster and batch sizes, all native baselines experience a mini-
mum of a 50% slowdown, and a maximum of a 2× slowdown.
This is because batch and slurm are unaware of evictions and
must restart jobs each time they fail due to an evicted VM.
Instead, GRANNY uses the spot policy and, as a consequence,
its slowdown is at most 25%, consistent with the eviction rate.

The native slowdowns of 50%–100% can potentially thwart
the cost benefits of using spot VMs. Indeed, Fig. 8b shows the
normalized cost of each execution for the range of discounts
based on Azure’s spot VM price list [6]: 30%, 60%, and 90%.
We calculate the cost by assuming a unit price per VM-hour
and applying the corresponding discount. We also overlay the
cost of not using spot VMs.

We observe that, for the native baselines, the effectiveness
of spot VMs in terms of cost savings depends on the discount
rate at which they are offered. Counterintuitively, for many
discount ranges, it is not cost-effective to run applications
using OpenMPI on spot VMs, because the re-execution costs
outweigh the price discount. In contrast, with GRANNY, it is
always cost-effective to use spot VMs, because the eviction
slowdown is lower than the smallest cost discount.

Discussion. Our experiments are conducted on a 32-VM clus-
ter with job traces that contain one type of application and
do not capture inter-arrival times. Given the co-operative and
on-demand nature of vertical scale-up and horizontal migra-
tion, however, we expect our results to generalize to larger
cluster sizes. We also believe that GRANNY can improve per-
formance and utilization for other workloads, but this may
require the design of further scheduling policies.
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Figure 8: Ephemeral VMs with spot policy (We compare to Azure
Batch and Slurm with their default policies and native runtimes.)

6.5 Microbenchmarks
In this section, we isolate different components of GRANNY
and evaluate overheads. We evaluate GRANNY’s MPI back-
end (§6.5.1), OpenMP backend (§6.5.2), as well as horizontal
migration (§6.5.3) and vertical scale-up (§6.5.4).

6.5.1 MPI backend

This experiment investigates the overhead of GRANNY’s MPI
backend implementation compared to OpenMPI [39]. We
run the same MPI application as in §6.2. To stress GRAN-
NY’s communication layer, we update the benchmark and
increase the synchronisation steps, resulting in three orders
of magnitude more cross-VM messages. We refer to the un-
modified LJ benchmark as compute, and the modified one as
network. We also execute a subset of the ParRes kernels [41]
to evaluate specific parts of GRANNY’s MPI implementation.

Fig. 9a shows the slowdown in execution time of GRANNY
compared to OpenMPI when executing the two LAMMPS
simulations with different levels of parallelism on two VMs.
We observe that the overhead introduced by GRANNY is
within 10% and often negligible. GRANNY occasionally in-
troduces minor performance gains due to the benefits of intra-
process co-location of Granules.

Fig. 9b shows the slowdown when executing the ParRes
kernels with different levels of parallelism. For this workload,
the performance of GRANNY and OpenMPI varies more than
for LAMMPS, because these kernels execute MPI operations
in a tight-loop. As a consequence, the performance benefit of
intra-process co-location of Granules becomes more signifi-
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cant, leading to a performance benefit for GRANNY. In these
cases, GRANNY can replace the sending of messages (reduce)
with reducing shared memory variables.

6.5.2 OpenMP backend

Next, we investigate the overhead of GRANNY’s OpenMP
backend compared to LLVM’s libomp. We execute the Par-
Res kernels [41] in their OpenMP implementation. We exe-
cute each kernel with a varying number of threads and take
the average execution time over 5 runs.

Fig. 10 shows the slowdown in execution time of GRAN-
NY compared to libomp for a variety of kernels. We observe
that, for most kernels, GRANNY’s performance matches the
native baseline. This is because GRANNY’s OpenMP back-
end adds minimal book-keeping at runtime and relies on the
OS’ synchronization primitives. For the dgemm kernel, GRAN-
NY introduces an 80% slowdown. This kernel performs a
dense matrix multiplication, and the overheads come from
WebAssembly’s less efficient floating-point operations [51].
We expect future WebAssembly releases and compilers to
improve floating-point performance.
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Figure 11: Speedup when migrating Granules (We deploy 8 Gran-
ules with process semantics across two VMs, and migrate 4 at run-
time. We report the speedup over no migration.)

6.5.3 Granule migration

This experiment explores GRANNY’s performance overhead
when doing a horizontal migration of Granules at runtime,
and the benefits of improved co-location. As workloads, we
use the compute-bound LAMMPS simulation, and a network-
bound all-to-all kernel, which performs synchronisation over
a vector in a loop. For each experiment, we artificially frag-
ment the 8 Granules with process semantics across two VMs.
We then trigger a horizontal migration of half of them to the
other VM at 20%, 40%, 60%, or 80% of execution time.

Fig. 11a shows the speedup when migrating a network-
bound application compared to no migration. For such an ap-
plication, fragmentation has a high cost: the speedup for run-
ning in one VM (1 VM) is 7.7×. By migrating after 20%, 40%,
60%, and 80%, of execution, GRANNY achieves speedups of
3.5×, 2.2×, 1.5×, and 1.1×, respectively. For network-bound
applications, the overheads of horizontal migration are thus
outweighed by the benefits of co-location.

Fig. 11b shows the speedup when migrating a compute-
bound application. Here, fragmentation is less of an issue: the
speedup for running in one VM is 1.7×. By migrating after
20% and 40% of execution, we achieve speedups of 1.3× and
1.1×, respectively. We observe no benefit when migrating
later during execution. There exists a trade-off between the
frequency and cost of migration, however, GRANNY’s hori-
zontal migration mechanism introduces a negligible overhead,
thus enabling cloud providers to optimize for locality.

Migration time is dominated by the time to transfer the
snapshot from one VM to another. For a 4 MB snapshot,
corresponding to the all-to-all kernel, Granule migration is
on the order of 30 ms. From this, only 3 ms correspond to
creating the snapshot, which is almost an order of magnitude
faster than a highly-optimized version of CRIU [60].

6.5.4 Elastic scale-up

Finally, we investigate GRANNY’s performance overhead
when doing vertical scaling of a multi-threaded application,
and the potential benefits of increased parallelism. As a work-
load, we deploy the same OpenMP application as in §6.3. We
initially use a varying number of Granules, and scale up to all
available CPU cores (8) after 50% of execution.
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Figure 12: Speedup when elastically scaling to more vCPUs (We
deploy a varying number of Granules with thread semantics, and
elastically scale up to all CPU cores after 50% of execution.)

Fig. 12 shows that, by scaling-up to use more CPU cores,
GRANNY achieves a speedup of up to 60% when scaling from
1 to 6 threads. With more than 7 initial threads, we do not
observe a benefit, because we have exhausted the application’s
parallelism. We conclude that elastically scaling-up does not
slow down execution, because elastic scaling naturally fits
with OpenMP’s fork-join semantics.

7 Discussion
We now discuss some of GRANNY’s design decisions and
how its insights could be transferred to other cloud systems.

WebAssembly. Despite offering an efficient sandboxed en-
vironment where Granules execute, WebAssembly is still an
evolving technology. The performance of some WebAssem-
bly operations, particularly floating point operations, still re-
mains below natively compiled code [14] and sandboxes that
exceed 4 GB incur a higher sandboxing overhead [56]. We
expect these issues to be addressed as compiler support for
WebAssembly matures.

Programming models. GRANNY supports OpenMP and MPI
and is therefore capable of running a large set of compute-
intensive applications. GRANNY’s design, however, is not tied
to any programming model, and other programming models
could be supported after identification of barrier control points
for elastic scaling and migration.

A limitation of GRANNY is that it offers a CPU execution
model only and cannot support GPU-based computation. This
is due to its reliance on WebAssembly as an execution format.
We plan on exploring GPU-based Granules with APIs such
wasi-nn [59] in future work.

Resource schedulers and policies. GRANNY can integrate
with other schedulers. For this, a resource scheduler needs
to expose an endpoint to receive notifications from running
applications and implement dynamic scheduling policies.

8 Related Work

Compute-intensive cloud applications. All major cloud
providers offer solutions to support compute-intensive appli-
cations in the cloud [5, 30, 31]. To execute such applications,
providers deploy batch scheduling solutions [2, 27] inspired



by HPC batch schedulers. Much previous work focuses on
making scheduling decisions more effective [24].

Complementary to this, our work demonstrates that ver-
tical scaling of multi-threaded applications and horizontal
migration of multi-process ones is a fundamental missing
piece for granular management of compute-intensive appli-
cations in cloud environments. GRANNY enables a number
of scheduling policies that can be implemented to jointly
optimize resource utilization and compute and data locality.

Checkpointing and migration. Nu [46] is a distributed com-
puting platform that supports resource fungibility through
migration. It uses multi-threaded Proclets, which can only
communicate with each other by sending messages. This
means that Nu’s execution model is not transparent to exist-
ing multi-threaded applications, but rather requires a complete
application re-write to partition shared application state and
use its C++ messaging API. In contrast, GRANNY transpar-
ently executes and migrates existing multi-threaded and multi-
process applications with no extra source code modifications
required (with only recompilation to WebAssembly).

CloudScale [50] automates fine-grained elastic resource
scaling in a shared cluster. It uses migration to handle schedul-
ing or scaling issues. GRANNY is complementary to Cloud-
Scale in that it focuses on fine granular (thread/process) re-
source management.

There are various approaches to migrate parts of running
applications transparently without violating integrity. Mi-
grOS [42] checkpoints the state of RDMA-enabled applica-
tions executing in containers, but requires expensive modifica-
tions to the underlying network protocol. Other work [54] has
performed live migration of MPI applications with process-
level migration, which incurs high bandwidth consumption
and necessitates OS kernel modifications. General-purpose
process (e.g., CRIU [11] or DMTCP [15]) or VM migration
techniques have been shown [18] to be poorly suited for effi-
cient shared memory and message passing applications.

In contrast, GRANNY executes entirely in user-space and
exploits lightweight sandboxing and traps using WebAssem-
bly. Through its semantic knowledge of shared memory and
message passing APIs, GRANNY achieves the same migration
support but at a lower performance cost, independently of the
employed VMs or host OS kernel.

Shared memory and message passing runtimes. Ho-
plite [62] uses collective communication primitives for build-
ing fault-tolerant task-based distributed applications. Ray [32]
unifies task-parallel and actor-based computation using a sin-
gle interface. It offers transparent state and message passing,
irrespective of distribution, together with transparent scaling.

GRANNY could be extended to support these programming
models. Our initial prototype implementation of GRANNY
focuses on two existing programming models, namely MPI
and OpenMP, which constitute opposite ends of the spectrum
when writing parallel applications.

GRANNY’s threading implementation is similar to that of
wasi-threads [58]: both rely on WebAssembly’s atomic
intrinsics and have similar memory layouts, but GRANNY del-
egates control of shared memory synchronization (e.g., mu-
texes and locks) to the host runtime, whereas wasi-threads
handles it in WebAssembly.

Elastic scaling. Elasticity for cloud-based execution has been
traditionally implemented at the programming model level.
MapReduce [12], actor-based models such as Akka [1] or
Orleans [9], or serverless system such as AWS Lambda [3] or
Faasm [51] implement elasticity at the worker/actor/function
levels. In this work, we enable elasticity at the finer granularity
of threads in multi-threaded applications. OpenMP has some
elasticity support via omp_set_dynamic, but such support is
only used to scale down in case of contention [38].

9 Conclusions
Existing resource schedulers fail to jointly optimize resource
utilization and application performance, because applica-
tion resource allocation cannot be modified after an appli-
cation begin execution. To address this issue, we presented
GRANNY, a new distributed runtime for unmodified multi-
threaded (OpenMP) and multi-processing (MPI) applications.
Through its Granule abstraction, GRANNY is able to spawn
and migrate Granules at run-time. With this mechanism, we
implement dynamic scheduling policies that improve both
resource utilization and application performance when com-
pared to existing cloud resource schedulers.
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