
NetAgg: Using Middleboxes for Application-specific
On-path Aggregation in Data Centres

Luo Mai† Lukas Rupprecht† Abdul Alim†

Paolo Costa‡ Matteo Migliavacca∗ Peter Pietzuch† Alexander L. Wolf†

†Imperial College London ‡Microsoft Research ∗University of Kent

Abstract
Data centre applications for batch processing (e.g. map/reduce
frameworks) and online services (e.g. search engines) scale by dis-
tributing data and computation across many servers. They typically
follow a partition/aggregation pattern: tasks are first partitioned
across servers that process data locally, and then those partial re-
sults are aggregated. This data aggregation step, however, shifts the
performance bottleneck to the network, which typically struggles to
support many-to-few, high-bandwidth traffic between servers.

Instead of performing data aggregation at edge servers, we show
that it can be done more efficiently along network paths. We de-
scribe NETAGG, a software platform that supports on-path aggre-
gation for network-bound partition/aggregation applications. NET-
AGG exploits a middlebox-like design, in which dedicated servers
(agg boxes) are connected by high-bandwidth links to network swi-
tches. Agg boxes execute aggregation functions provided by ap-
plications, which alleviates network hotspots because only a frac-
tion of the incoming traffic is forwarded at each hop. NETAGG
requires only minimal application changes: it uses shim layers
on edge servers to redirect application traffic transparently to the
agg boxes. Our experimental results show that NETAGG improves
substantially the throughput of two sample applications, the Solr
distributed search engine and the Hadoop batch processing frame-
work. Its design allows for incremental deployment in existing data
centres and incurs only a modest investment cost.
Categories and Subject Descriptors: C.2.1 [Network Architec-
ture and Design]: Network communications; Distributed Networks
General Terms: Design, Performance.
Keywords: Data Centres, Middleboxes, In-network Processing,
On-path Aggregation.

1. INTRODUCTION
Many applications in data centres (DCs) achieve horizontal scal-

ability by adopting a partition/aggregation pattern [4]. These in-
clude search [36] and query processing [44], dataflow comput-
ing [17, 25], graph [42] and stream processing [16, 54], and deep
learning frameworks [24]. In the partition step, a job or request is

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from Permissions@acm.org.
CoNEXT’14, December 02-05 2014, Sydney, Australia
Copyright 2014 ACM 978-1-4503-3279-8/14/12 ...$15.00
http://dx.doi.org/10.1145/2674005.2674996.

divided into independent subtasks, which are executed in parallel
by different work servers (“workers”). Each worker operates on a
subset of the data and locally generates partial results. In the aggre-
gation step, partial results are collected and aggregated to obtain a
final result.

These applications are challenging from a network perspective
because they rely on an aggregation step in which a large number
of workers cause many-to-few traffic patterns among servers. For
example, traces from Facebook’s DCs show that 46% of the overall
network traffic is generated in the aggregation phase [19]. This
creates network bottlenecks for the following two reasons: (i) the
scarce inbound bandwidth available at the edge servers (e.g. 1 Gbps
or 10 Gbps) caps the maximum transfer rate; and (ii) DC networks
typically exhibit some degree of bandwidth over-subscription [13,
29], limiting available inter-rack bandwidth.

As a result, the network is often cited as one of the main perfor-
mance bottlenecks for partition/aggregation applications [4,20,36].
Interactive applications such as search are significantly impacted
by network activity: the network, on average, contributes 12% of
latency in Microsoft’s Bing search engine, accounting for 34% of
outliers and 21% of timeouts [36]. In Facebook map/reduce jobs,
network transfers on average are responsible for 33% of the exe-
cution time of the jobs with a reduce phase, and in 16% of these
jobs network transfers account for more than 70% of the execution
time [20]; in Microsoft Scope jobs, the network is responsible for
a 62% median increase in the reduce and shuffle time [8].

Existing approaches attempt to counter this problem by over-
provisioning DC networks using full-bisection bandwidth topolo-
gies [2, 29, 30, 53], using specialised network technologies [31,
47, 61], or carefully scheduling data movements to avoid network
hotspots [3, 20]. Fundamentally, however, all these approaches
do not reduce the network traffic and, hence, ultimately their per-
formance is limited by the scarce bandwidth at the end hosts.
While many DCs are in the process of upgrading to 10 Gbps net-
works, cost-effective 40 Gbps networks without an increased over-
subscription ratio are still years away.

In contrast, we propose to reduce network traffic by aggregat-
ing data along the network paths in a distributed fashion. We de-
scribe NETAGG, a software middlebox platform that provides an
on-path aggregation service. Middleboxes have been used exten-
sively in DCs to enhance network functionality [37, 48]. A mid-
dlebox is a network appliance attached to a switch that provides
services such as firewalls, web proxies, SSL offloading, and load
balancing [51]. To maximise performance, middleboxes are often
implemented in hardware [45], and adopt a vertically integrated ar-
chitecture focusing on a narrow function, e.g. processing standard
packet headers or performing relatively simple payload inspection.

The need to reduce costs, shorten update cycles, and allow more
rapid innovation have instead motivated several proposals for soft-
ware middlebox platforms [9, 14, 50, 52], typically based on com-
modity server hardware. Advances in leveraging multi-core paral-
lelism and kernel engineering allow such middlebox platforms to
run competitively at or near line rate [43].

We leverage this trend by using middleboxes to execute
application-specific aggregation functions at each hop. This ex-
ploits the observation that often the aggregation phase exhibits high
data reduction [18,25]. By virtue of this aggregation performed by
middleboxes, the amount of network traffic is reduced at each hop,
thereby loosening network bottlenecks and, ultimately, increasing
application performance. This differs from traditional approaches
for traffic redundancy elimination [6], which operate only at the
network level and have only limited visibility (if any) into applica-
tion semantics.

To process data at the highest possible rate, NETAGG aggrega-
tion middleboxes (or agg boxes) decompose aggregation compu-
tation into cooperatively scheduled aggregation tasks, which are
executed in parallel across many CPU cores. Multiple agg boxes
can exist in a topology to cooperatively form an aggregation tree.
NETAGG uses shim layers at edge servers to intercept application
traffic and redirect it transparently to agg boxes. This minimises
the changes required to existing applications for benefitting from
on-path aggregation.

Multiple applications with different requirements can share a
NETAGG deployment because agg boxes manage the scheduling
of aggregation tasks: e.g. they can give priority to aggregation
computation on behalf of latency-sensitive online applications over
throughput-oriented batch applications.

We evaluate NETAGG both at scale, using simulation,
and on a 34-server testbed with two deployed applications:
Apache Solr [11], a distributed search engine, and the Apache Had-
oop map/reduce framework [10]. In simulation, we show that NET-
AGG reduces the flow completion time up to 88% compared to ex-
isting solutions. We also show that our NETAGG deployment im-
proves the performance of Solr search queries by up to 9.3× and
Hadoop jobs by up to 5.2×.

2. DISTRIBUTED DATA AGGREGATION
We now describe how application performance can become

network-bound due to a partition/aggregation communication pat-
tern in DCs (§2.1) and discuss previous attempts to solve this prob-
lem (§2.2). We then sketch how we make use of middleboxes to
perform on-path aggregation (§2.3) and present the results of a
simulation-based feasibility study that supports our claim of the
effectiveness of the approach, both in terms of performance and
cost (§2.4).

2.1 Partition/aggregation applications
The partition/aggregation pattern is at the core of many dis-

tributed DC applications. A partition/aggregation application has
a set of worker nodes (“workers”), deployed on edge servers. In
the partition step, a request or job is divided into independent sub-
tasks, which are executed in parallel by different workers. Each
worker operates on a subset of the data and locally generates par-
tial results. In the aggregation step, partial results are collected by
a master node, such as a frontend server, and aggregated into the
final result.

For example, online search queries are sent to multiple index
servers in parallel, each hosting a small portion of the web index.
Each index server processes the query locally and returns the top k

worker worker masterworker

responses congestion
ToR

(a) Rack-level aggregation

worker worker masterworker

ToRdownlink
consumption

(b) Chain aggregation

ToR

S

ToR ToR

S

congestion

(c) Cross-rack aggregation

ToR

SSAgg
middlebox
On-path

aggregation

ToR ToR

(d) On-path aggregation

Figure 1: Distributed data aggregation strategies

results best matching the query. These partial results are aggregated
to select the final set of results returned to the user.

Similarly, in map/reduce, the input data is partitioned into small
chunks (with a typical size of 64–128 MB) and processed by a num-
ber of parallel map tasks (the map phase). The intermediate results
are then sent to one or many reduce tasks (the shuffle phase), which
perform the final step of aggregation (the reduce phase). Other
frameworks, such as graph [42] or stream processing systems [16],
adopt a similar approach for scaling.

Typically, the aggregation functions used in these applications
exhibit two properties. First, they are associative and commuta-
tive [59], which implies that the aggregation step can be performed
through a sequence of partial aggregations without affecting the
correctness of the final result. Examples of aggregation functions
exhibiting this property include max, sum and top-k. While there
are some functions that do not satisfy this property, e.g. median, it
does hold for many aggregations, especially those used for analytic
queries [44] and graph processing [59].

Second, in most cases, the size of the aggregated results is a
small fraction of the intermediate data generated. For example, the
average final output data size in Google jobs is 40% of the interme-
diate data sizes [25]. In Facebook and Yahoo jobs, the reduction in
size is even more pronounced: in 82% of the Facebook jobs with
a reduce phase, the final output size is only 5% of the interme-
diate size, while for Yahoo jobs the number is 8% in 91% of the
jobs [18]. Similar trends also hold for traces collected in Microsoft
Scope, which show a reduction factor of up to two orders of mag-
nitude between the intermediate and final data [12].

These two properties are important because they show that, by
performing partial aggregation on-path, it is possible to reduce the
traffic at each hop significantly, thus alleviating network bottle-
necks as described below.

2.2 Edge-based aggregation
We are not the first to notice the benefits of partial aggregation

of intermediate data to reduce network traffic. Prior work on in-
teractive services [44] and dataflow frameworks [40, 59] proposes
strategies to reduce inter-rack traffic through rack-level aggrega-
tion: one server per rack acts as an aggregator and receives all
intermediate data from the workers in the same rack. The chosen
server aggregates the data and sends it to another server for final
aggregation (e.g. a map/reduce reducer).

The main drawback of rack-level aggregation is that its per-
formance is limited by the inbound bandwidth of the aggrega-

tor (Figure 1a). For example, assuming 40 servers per rack and
1 Gbps edge network links, the maximum transmission rate per
worker is only approximately 25 Mbps.

Rack-level aggregation can be extended to generalised edge-
based aggregation by forming a d-ary tree of servers that aggre-
gate data within a rack first and then progressively across racks.
Intuitively, a lower d (including the degenerate case of d =1, when
the tree becomes a chain), leads to a higher maximum transmission
rate per worker.

While d-ary trees eliminate some of the shortcomings of rack-
level aggregation, they introduce new challenges: (i) small val-
ues of d increase the depth of the tree, affecting the performance
of latency-sensitive applications; (ii) small values of d also in-
crease intra-rack bandwidth usage because the incoming links of
workers, as opposed to only outgoing links, are used to move data
(Figure 1b). As we show in §4, this can drastically reduce the per-
formance of other flows in the network that cannot be aggregated.
For example, in a map/reduce job, only the shuffle flows can be ag-
gregated, while other flows, e.g. used to read from the distributed
file system, cannot. By using more links, the bandwidth available
to these other flows is reduced.

More generally, a fundamental drawback of any edge-based ag-
gregation approach is that it only applies to intra-rack traffic and
not traffic in the core of the network. As shown in Figure 1c, if
aggregation computation spans multiple racks, the links between
aggregation switches can become a bottleneck, especially in the
presence of over-subscription.

2.3 On-path aggregation with middleboxes
In contrast to edge-based aggregation approaches, we propose

to use software middleboxes (“agg boxes”) to perform aggregation
along the network path. This allows us to minimise edge server
bandwidth usage as well as congestion in the core of the network.
While aggregation has been shown to increase efficiency in wire-
less sensor networks [41] and in overlay networks [15, 35, 58], its
potential to improve the performance of partition/aggregation ap-
plications in DC networks remains unexplored. Existing work on
data aggregation has either focused on per-packet aggregation, as
in sensor networks, which is not appropriate for application-layer
data flows in DCs, or on scalability issues for Internet system mon-
itoring rather than on throughput requirements.

We assume a set-up similar to the one depicted in Figure 1d, in
which middleboxes are directly attached to network switches and
perform on-path aggregation. We create a spanning tree (hereafter
referred to as the aggregation tree), in which the root is the final
master node, the leaves are the workers and the internal nodes are
the agg boxes. Each agg box aggregates the data coming from its
children and sends it downstream. To fully exploit the path diver-
sity available in most DC topologies, we use multiple aggregation
trees that balance the traffic between them. We detail the design of
our NETAGG middlebox platform in §3.

Due to its compatibility with existing middlebox deployments
in DCs, our approach based on application-specific middleboxes
can be deployed with low effort. It also allows for an incremental
roll-out in which the agg boxes are attached to only a subset of the
switches.

2.4 Feasibility study
A potential issue in using middleboxes based on commodity

servers for on-path aggregation is the lower processing rate that
they can achieve as compared to custom hardware solutions. To
understand the feasibility of a software-only approach, we conduct
a number of simulation experiments to understand (i) the minimum

 0

 0.1

 0.2

 0.3

 0.4

 0.5

1 2 4 6 8 10

9
9

th
 F

C
T

 r
e

la
ti
v
e

 t
o

 r

a
c
k
-l
e

v
e

l
a

g
g

re
g

a
ti
o

n

Agg box processing rate (Gbps)

Oversubscription 1:1
Oversubscription 1:4

Figure 2: Flow Completion Time (FCT) for different aggregation
processing rates R

processing rate R of an agg box required to achieve noticeable ben-
efits and (ii) the performance/cost trade-off involved. We describe
the simulation set-up and the full set of results in §4.1. Here we
highlight the main results, which led to the NETAGG design de-
scribed in the next section.
Simulation set-up. We consider a three-tier, multi-rooted net-
work topology, modelled after recently proposed scalable DC ar-
chitectures [2, 29]. Each server is connected through a 1 Gbps
link to a top-of-the-rack (ToR) switch. In this experiment, we as-
sume an over-subscription ratio of 1:4, which is consistent with
values reported in the literature [29]. We also show the results
for the non-oversubscribed case. We consider a mid-sized DC
with 1,024 servers and a synthetic workload modelled after Face-
book network traces [19], in which 46% of traffic is aggregat-
able (see §4.1 for more details).
Performance requirements. As our baseline, we consider rack-
level aggregation, as described above, and we assume ECMP [32]
as the routing protocol. We use flow completion time (FCT), i.e.
the time elapsed between the start and the end of a flow, as our
metric [27] and vary the maximum processing rate that can be sus-
tained by the agg boxes.

Figure 2 shows that relatively modest processing rates are suf-
ficient to achieve significant benefits. Interestingly, even a rate
of 1 Gbps per agg box reduces the total completion time by more
than 74% for the 1:4 oversubscribed scenario and 63% for the non-
oversubscribed one (88% and 90% for the rate of 8 Gbps, respec-
tively). This shows that, although the bandwidth per agg box is
identical to the one used by the rack-level aggregator, performing
aggregation at all network tiers (as opposed to just within a rack)
reduces the pressure placed on the over-subscribed network core.
Note that these results include all flows, not just the aggregation
flows, which means that even flows that cannot be aggregated ben-
efit from more efficient bandwidth usage.

In §4.2, we show that an agg box in our NETAGG prototype is
able to aggregate data at a rate of 9.2 Gbps. Based on the results
presented here, this is sufficient to obtain a significant reduction in
flow completion time.
Cost analysis. Next we perform a simple cost analysis to under-
stand the trade-off between deploying agg boxes versus increas-
ing the network bandwidth. We consider three alternative options
to NETAGG: a full-bisection network topology with 1 Gbps edge
links (FullBisec-1G); a 1:4 over-subscribed network with 10 Gbps
edge links (Oversub-10G); and a full-bisection network topology
with 10 Gbps edge links (FullBisec-10G).

 0

 0.2

 0.4

 0.6

 0.8

 1

 0

 1

 2

 3

 4

 5

 6

 7
9
9
th

 F
C

T
 r

e
la

ti
v
e
 t
o

 r
a
c
k
-l
e
v
e
l
a
g
g
re

g
a
ti
o
n

U
p

g
ra

d
e
 c

o
s
t
($

 1
M

)

NetAgg

Incremental
NetAgg

FullBisec-1G
Oversub-10G

FullBisec-10GFCT
Cost

Figure 3: Performance and cost of different DC configurations

We compare the performance and cost when using rack-level ag-
gregation in the three configurations above to deploying agg boxes
using our approach in the base set-up (1:4 over-subscription and
1 Gbps network). We use the same workload as in the previous
experiment, and we conservatively assume a configuration with
a processing rate R=9.2 Gbps because this is similar to the rate
achieved by our NETAGG prototype (§4.2). For NETAGG, we con-
sider two deployment options: NetAgg, in which we assume that
each switch is connected to an agg box, and Incremental-NetAgg,
in which only the middle tier of switches (corresponding to 20%
of all switches) is connected to agg boxes. We adopt the prices for
network equipment from a recently published study [46]. We as-
sume hardware specifications for servers and agg boxes as used in
our evaluation testbed (see §4.2).

Figure 3 shows the performance improvement and upgrade costs
with respect to the base set-up. As expected, upgrading to
a 10 Gbps full-bisection network (FullBisec-10G) provides the
largest benefit (92% reduction of FCT), but it also incurs the high-
est upgrade cost. FullBisec-1G has a much lower deployment cost
but does not result in the same benefit (only 24% reduction).

In contrast, deploying NetAgg achieves almost the same per-
formance improvement (88%) as FullBisec-10G and outperforms
Oversub-10G (87%), with only a fraction of the cost (18% and
22%, respectively). Incremental-NetAgg is also a practical de-
ployment option: it only incurs 4% of the cost of Oversub-10G but
reduces FCT by 75%.
Discussion. While we compare the performance of on-path
agg boxes against the performance of an upgraded network in-
frastructure, our solution remains complementary: even with more
available network bandwidth, on-path aggregation can reduce
bandwidth consumption and provide more bandwidth to other, non-
partition/aggregation traffic flows.

In an upgraded network infrastructure (e.g. with 10 Gbps edge
links), however, the performance of agg boxes should increase ac-
cordingly. As we describe in the next section, the aggregation
on agg boxes is embarrassingly parallelisable, which means that
agg boxes can exploit increasing numbers of CPU cores for higher
performance. In addition, given the nature of aggregation, it is
possible to scale out agg boxes by deploying multiple agg boxes
connected to one network switch. We evaluate the performance
implications of scaling out agg boxes in §4.

3. DESIGN AND IMPLEMENTATION
Next we describe the design of the NETAGG middlebox plat-

form. We explain how it performs aggregation (§3.1), and give
details on the implementation of aggregation boxes and shim lay-
ers (§3.2). We also report on two application case studies (§3.3).

3.1 Overview

worker worker master

Shim
layers

1

2

W W

Agg
box 1

Agg
box 2

...

...

ToR

requests

S

(a)

worker worker

3

Agg
box 1

Agg
box 2

W W ...

...

3

partial
results

ToR

S

(b)

master

Agg
box 1

Agg
box 2

...

4

5aggregated
results

ToR

S

(c)

Figure 4: NETAGG middlebox deployment with sample workflow
(numbers correspond to steps in workflow)

As shown in Figure 4, a deployment of NETAGG in a DC
consists of two main components, agg boxes and shim layers:
(i) agg boxes are connected to a subset of the switches in the DC
via high-bandwidth network links. They perform the on-path ag-
gregation of application data according to aggregation functions;
(ii) edge servers in the DC are fitted with shim layers that intercept
request and result data flows, interacting with the agg boxes.

The agg boxes cooperate to establish an on-path aggregation tree
that aggregates partial results from worker nodes before sending the
final result to the master node. As discussed in §2, an aggregation
tree permits NETAGG to exploit the larger core network bandwidth
for data aggregation. Its construction relies on the associativity and
commutativity of aggregation functions.

The workflow between agg boxes and shim layers for on-path
aggregation follows the steps shown in Figs. 4a–4c:
1. A client submits a request to a master node, which partitions it

into multiple sub-requests (Figure 4a).
2. The master node sends the sub-requests, which pass through the

shim layer of the master node without modification, to a set of
worker nodes.

3. The partial results generated by the workers are intercepted by
the shim layers of the worker nodes. The shim layers redirect
the data to the first agg box along the network path from the
worker to the master node (Figure 4b). For example, agg box 2,
connected to an aggregation switch, aggregates partial results
from workers in other parts of the DC.

4. Each agg box aggregates the partial results according to the ag-
gregation function (Figure 4c). It sends its partially aggregated
results to the next agg box that is along the network path to the
master node.

5. The agg box nearest to the master node (i.e. agg box 1 in the
example) sends the fully aggregated results to the master node.
The shim layer of the master node passes the results to the ap-
plication.

Multiple applications. Multiple applications may be executing ag-
gregation trees concurrently on agg boxes. Based on the knowledge
of its child and parent nodes, an agg box therefore always forwards
partial results to a chosen next-hop towards the master node along
a given aggregation tree belonging to that application. The next
agg box on-path is determined by hashing an application/request
identifier. This ensures that partial data for a given application re-
quest traverses the same agg boxes.

Multiple aggregation trees per application. With a single per-
application aggregation tree, it is not possible to exploit DC net-
work topologies that support multiple routing paths and thus have
higher core network bandwidth (see §2.3). NETAGG therefore
supports multiple aggregation trees that are used concurrently for
a given application, partitioning the aggregation load among the
trees. Each aggregation tree uses a disjoint set of agg boxes (except
for the agg box that is in the same rack as the master and the work-
ers), exploiting different routing paths in a multi-path topology.

With multiple aggregation trees per application, the shim layers
at the worker nodes partition partial results across the trees. Typi-
cally this can be achieved by hashing request identifiers (as in the
case of online services) or keys in the data (as in the case of batch
processing applications). When an application has multiple aggre-
gation trees, the master node must perform a final aggregation step
of the data returned by the roots of the trees.
Multiple agg boxes per switch. To increase the throughput of
an agg box connected to a switch, it is possible to scale out pro-
cessing by load-balancing aggregation computation across multiple
agg boxes connected to the same switch. In this case, aggregation
trees are assigned to agg boxes in a way that balances the load be-
tween them.
Handling failures. The NETAGG design uses a lightweight failure
detection service, running at both the agg boxes and the master
shim layer, that monitors the status of downstream agg boxes in the
distributed aggregation tree. When a node N (either an agg box or
the master node) detects that a downstream agg box F has failed,
it contacts the child nodes (either agg boxes or the worker nodes)
of F and instructs them to redirect future partial results to N.

To avoid duplicate results, when N contacts the downstream
nodes of F , it also sends the last result that has been correctly pro-
cessed, e.g. the last partial result received, so that already-processed
results are not resent.
Handling stragglers. NETAGG is designed to be compatible
with existing mechanisms used by applications to handle straggling
worker nodes. For example, Hadoop uses speculative execution of
backup tasks and reducers can start fetching data from completed
mappers while waiting for stragglers or backup tasks to finish [25].
In this case, the agg box just aggregates available results, while the
rest is sent directly to the reducer.

Since an aggregation tree involves multiple agg boxes, each
agg box itself can potentially become a straggler, delaying the com-
putation of the final result. To handle this scenario, NETAGG uses a
similar mechanism to the one for failures: if a node detects that the
downstream agg box S is too slow (based on an application-specific
threshold), it contacts the downstream nodes of S to redirect future
results. The difference with the failure protocol is that the redi-
rection is only applied to results of the same request because the
cause of straggling may be specific to it. However, if low perfor-
mance is observed repeatedly across different requests, the agg box
is considered permanently failed, and the failure recovery proce-
dure described above is employed.

3.2 Implementation
We implement a prototype version of NETAGG in Java, which

permits the agg boxes to execute unmodified aggregation functions
of partition/aggregation applications written in Java. Agg boxes
can host aggregation functions of multiple applications.

An important goal is for agg boxes to use available hardware re-
sources efficiently in order to process data with high throughput.
Their implementation is therefore data-parallel: they decompose
aggregation functions and parallelise their execution across CPU

Serialisation Thread
pool

Aggregation
task

Deserialisation

Task
scheduler

 Aggregation
trees

Network
layer

Thread
pool

Deserialisation

Network
layerSerialisation

Thread
pool

agg.
function

wrapper

Figure 5: Architecture of a NETAGG agg box with two deployed
applications (shading represents different aggregation functions)

cores using cooperative scheduling. In addition, we minimise the
application-specific functions that agg boxes execute: they only re-
ceive and process data traffic and do not participate in control in-
teractions of applications.

For multiple applications to share a NETAGG deployment, it is
necessary to schedule access to the limited CPU and bandwidth
resources of agg boxes. Agg boxes implement prioritised access
for certain classes of applications, such as latency-sensitive ones.
They schedule the execution of aggregation computation belonging
to different applications using adaptive weighted fair scheduling,
taking different priorities into account.

To make it easy for applications to benefit from on-path aggre-
gation, NETAGG transparently intercepts data flows and redirects
them to agg boxes. Traffic is intercepted at the level of Java net-
work sockets due to its well-defined interface across applications.

3.2.1 Agg boxes
We show the architecture of an agg box in Figure 5: (i) it ex-

ecutes aggregation tasks that wrap the applications’ aggregation
computations; (ii) the tasks are organised into a local aggregation
tree that parallelises the aggregation function; (iii) tasks are sched-
uled cooperatively across CPU cores by a task scheduler; and (iv) a
network layer serialises and deserialises data.
Aggregation tasks. An agg box represents computation as ag-
gregation tasks, which are fine-grained compute units that can be
scheduled in parallel on CPU cores.

Different applications require different interfaces for aggregation
functions. An aggregation task therefore wraps aggregation com-
putation using an aggregation wrapper. For example, a Hadoop
aggregation wrapper exposes the standard interface of combiner
functions, Combiner.reduce(Key k, List<Value> v), which enables
agg boxes to run such functions without modification.
Local aggregation trees. Similar to how aggregation computation
is decomposed across multiple agg boxes, the computation within
a single agg box forms a local aggregation tree of tasks. Local
aggregation trees have a large fan-in and are executed in a pipelined
fashion by streaming data across the aggregation tasks. This allows
for efficient and scalable aggregation, as aggregation executes in
parallel and little data is buffered.

As shown in Figure 5, the intermediate tree nodes are aggrega-
tion tasks, acting as producers and consumer of data. Leaf nodes
receive partial results from worker nodes or downstream agg boxes
and send them to their parent aggregation tasks. Tasks are sched-
uled by the task scheduler (see below) when new input data is avail-
able and there is sufficient buffer space at the parent task. They ex-

ecute the aggregation function on the data from their child nodes.
Partially aggregated results propagate up the tree until the root node
obtains the final result for that tree. If the computation in the local
aggregation tree is not fast enough to sustain the rate at which data
arrives from the network, a back-pressure mechanism ensures that
the workers reduce the rate at which they produce partial results.
Task scheduler. To reduce the overhead of thread synchronisation,
aggregation tasks are executed by a task scheduler using coopera-
tive scheduling: when aggregation is possible, a task is submitted to
a task queue and waits to be scheduled. The scheduler assigns tasks
to threads from a fixed-sized thread pool and runs the tasks to com-
pletion. We assume that aggregation functions are well-behaved
and terminate—we leave mechanisms for isolating faulty or mali-
cious aggregation tasks to future work.

If there are multiple applications using an agg box, resources
must be shared to achieve acceptable processing times for aggrega-
tion computation. For this purpose, an agg box maintains a separate
task queue for each application and adopts a weighted fair queu-
ing policy over these queues. This enforces weighted fair shares
among applications, similar to other cluster schedulers [60]. When
a thread becomes available, the scheduler offers that thread to a task
of application i with probability wi/∑

n
i=1 wi that is proportional to

its target allocation, where wi is application i’s weight and n is the
number of applications on the agg box.

Resource sharing must take the heterogeneity of aggregation
tasks into account: the computation and bandwidth requirements of
tasks vary depending on the application. To handle this, the sched-
uler periodically adapts the weights of application i according to
the task execution time t̄i measured at runtime. The intuition is that
if an application usually spends twice the time finishing tasks com-
pared to another, the scheduler needs to halve the weight of that
application to achieve the targeted proportional share. More for-
mally, given a target resource share si for application i, wi is set
to si

t̄i
/∑

n
i=1

si
t̄i

. Our implementation uses a moving average to repre-
sent the measured task execution time—the experiments in §4 show
that this is sufficient in practice.
Network layer. Instead of relying on a potentially wasteful
application-specific network protocol, such as HTTP or XML,
agg boxes transfer data with an efficient binary network protocol
using KryoNet [39], an NIO-based network communication and
serialisation library for Java. The shim layers also maintain persis-
tent TCP connections to the agg box and parallelise deserialisation
using a thread pool.

Since the network data must be deserialised before the aggrega-
tion wrapper can call the aggregation function, the network layer of
the agg box includes a serialiser/deserialiser taken from the applica-
tion. For example, to support the aggregation of Hadoop key/value
pairs, the agg box uses Hadoop’s SequenceFile reader and writer
classes for serialisation/deserialisation.

3.2.2 Shim layers
The shim layers control the redirection of application data and

manage the collection of partial results.
Network interception. A shim layer intercepts network traffic at
the level of network sockets by wrapping the actual Java network
socket class in a NETAGG socket. By using Java’s ability to change
the default socket implementation via the SocketImplFactory, ap-
plications transparently generate an instance of the custom NET-
AGG socket class when a new socket is created.
Partial result collection. A challenge is that agg boxes must know
when all partial results were received before executing the aggrega-
tion function but, for many applications including Apache Solr, it is

App.-specific NETAGG code Solr Hadoop

Agg box (serialisation) 8 93
Agg box (aggregation wrapper) 156 142
Shim layer 449 528

Total 613 763
Relative to NETAGG code base 13% 16%
Relative to application code base 0.19% 0.03%

Table 1: Lines of application-specific code in NETAGG

not known ahead of time how many partial results will be returned
by the worker nodes. We solve this problem by having the shim
layer of the master node maintain state about ongoing requests.
After intercepting an incoming request, the shim layer records in-
formation about the request, typically found in headers, such as the
number of partial results, and sends this information to agg boxes.
Empty partial results. The master node expects to receive partial
results from all worker nodes, but with NETAGG this is no longer
the case: since the partial results have already been aggregated,
only a single fully aggregated result is returned. This means that
the shim layer at the master node must emulate empty results from
all but one worker, which will include the fully aggregated results.
The aggregation logic in the master node is not be affected by the
empty results because we assume that aggregation functions are
commutative and associative.

3.3 Application deployments
To demonstrate the generality of NETAGG, we describe

its deployment with two partition/aggregation applications:
Apache Solr, a distributed full-text search engine [11], and
Apache Hadoop [10], a data-parallel map/reduce processing frame-
work. NETAGG can support both applications after provid-
ing application-specific serialiser/deserialiser, aggregation wrapper
and shim layer code. The required implementation effort is sum-
marised in Table 1.
Apache Solr performs full-text search across multiple backend
server nodes, acting as workers. Clients send small requests to a
frontend node, i.e. the master node, which dispatches sub-requests
to the backend nodes. The backends return partial search results to
the frontend node, which combines them into a ranked result using
an aggregation function.

To support Solr, NETAGG requires around 600 lines of code.
The aggregation wrapper wraps the custom QueryComponent class,
which allows user-defined aggregation of the result data. The de-
serialiser buffers all partial results before invoking the local aggre-
gation tree: this is feasible because results are only of the order of
hundreds of kilobytes.
Apache Hadoop uses worker nodes to execute mappers, which
produce partial results for partitions of the input data. Partial re-
sults are aggregated by reducers.

There are fewer than 800 lines of code needed to support Had-
oop. The aggregation wrapper implements the Hadoop interface for
combiner functions. The deserialiser for Hadoop is slightly more
complex than for Solr: as chunks of key/value pairs are processed
by agg boxes in a streaming fashion, the deserialiser must account
for incomplete pairs at the end of each received chunk.

4. EVALUATION
We begin our evaluation by extending the simulation study from

§2.4. In §4.2, we show the experimental results obtained by deploy-

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

C
D

F

Flow completion time (seconds)

max. 1.24

NetAgg
Binary

Chain
Rack

Figure 6: CDF of flow completion time of all
traffic

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

C
D

F

Flow completion time (seconds)

NetAgg
Binary

Chain
Rack

Figure 7: CDF of flow completion time of
non-aggregatable traffic

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2
 1.4

 0 20 40 60 80 100

R
e

la
ti
v
e

 9
9

th
 F

C
T

Output ratio (%)

NetAgg
Binary

Chain

Figure 8: Flow completion time relative to
baseline with varying output ratio α

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 10 100 1000

C
D

F

Link traffic (MB)

NetAgg
Binary

Chain
Rack

Figure 9: CDF of link traffic (α =10%)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

R
e

la
ti
v
e

 9
9

th
 F

C
T

Fraction of aggregatable flows

NetAgg
Binary

Chain

Figure 10: Flow completion time relative to
baseline with varying fraction of aggregat-
able traffic

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2 4 6 8 10

R
e

la
ti
v
e

 9
9

th
 F

C
T

Over-subscription 1:x

NetAgg
Binary

Chain

Figure 11: Flow completion time relative
to baseline with different over-subscription
(α =10%)

ing our NETAGG middlebox prototype with different applications
on a 34-server testbed.

4.1 Simulation results
We simulate a three-tier, multi-rooted network topology based

on recently proposed scalable DC architectures [2, 29]. The net-
work consists of 320 20-port switches that connect 1,024 servers
using 1 Gbps links, unless noted otherwise. As a default, we as-
sume a 1:4 over-subscription ratio at the ToR tier, varying it from
1:1 to 1:10 in one of the experiments. We use a packet-level simu-
lator (OMNeT++), which implements TCP max-min flow fairness
and uses standard Equal Cost Multi Path (ECMP) for routing.

Unless noted otherwise, we assume that each agg box is con-
nected to a switch through a 10 Gbps link, and we assume that it
can process network flows at 9.2 Gbps. As we show in §4.2, this
is representative of the performance of our current NETAGG proto-
type implementation.

We use a synthetic traffic workload, modelled after published
network traces from a cluster running large data mining jobs [29].
The sizes of flows follow a Pareto distribution with a mean of
100 KB and a shape parameter of 1.05. The number of flows is
chosen so that the load at the edge links is 15% [5]. Except when
simulating straggler nodes, all flows start at the same time, which
is a worst case for network contention. We also ran experiments
using dynamic workloads with various arrival patterns, obtaining
comparable results (between 1%–4% of the reported FCT values).

A typical partition/aggregation application generates a mix of
flows, of which only a fraction can be aggregated. For example,
some of the network flows in Hadoop contain HDFS data, which
cannot be aggregated. To account for this, we generate a mixed
workload in which only 46% of flows are aggregatable, while the
rest constitutes non-aggregatable background traffic. This split is
consistent with evidence reported by Facebook [19].

The number of workers generating flows follows a power-
law distribution where 61% of requests or jobs have fewer than
10 workers, consistent with a recent study on Microsoft and
Facebook production clusters [7]. Workers are deployed using a
locality-aware allocation algorithm that greedily assigns workers
to servers as close to each other as possible. Unless stated oth-
erwise, we use an aggregation output ratio α , defined as the ratio
between the output and the input data sizes, of 0.1 (in line with the
workloads presented in §2.1).
Baselines. We use the flow completion time (FCT) as our evalu-
ation metric because our goal is to improve network performance.
Since our focus is on network bottlenecks that increase FCTs for in-
dividual flows, we report the 99th percentile of FCT, unless stated
otherwise. We compare the performance of NETAGG against
the aggregation strategies described in §2.2: rack-level aggrega-
tion (rack), a binary aggregation tree (d =2; binary) and chain ag-
gregation (d =1; chain). Unless reporting absolute FCTs, we nor-
malise the performance of the other strategies against rack.
Distribution of flow completion times. We report the CDF of
the absolute FCTs for all flows in Figure 6. As explained in §2.2,
binary and chain increase link utilisation, which in turn reduces
the bandwidth available for other flows. This explains why they
reduce the FCT tail but worsen the median. In contrast, NETAGG
improves the performance for all flows by reducing the traffic of
the aggregatable flows.

Interestingly, NETAGG also improves the performance of non-
aggregatable flows, as shown in Figure 7. The reason is that by re-
ducing the traffic of aggregatable flows, more bandwidth becomes
available for other flows.
Aggregation output ratio. In Figure 8, we show the impact of the
output ratio α . We vary α from 0.05 (i.e. high data reduction that
emulates n-to-1 aggregation patterns such as top-k, max or count)

 0

 0.2

 0.4

 0.6

 0.8

 1

ToR Aggr Core Full

R
e

la
ti
v
e

 9
9

th
 F

C
T

NetAgg partial deployments

Figure 12: Flow completion time relative to
baseline with different partial NETAGG de-
ployments

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2 4 6 8 10

R
e

la
ti
v
e

 9
9

th
 F

C
T

Over-subscription 1:x

1x Aggbox
2x Aggbox

4x Aggbox

Figure 13: Flow completion time relative to
baseline in 10 Gbps network with varying
over-subscription

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.1 0.2 0.3 0.4 0.5

R
e

la
ti
v
e

 9
9

th
 F

C
T

Straggler ratio

NetAgg
Binary

Chain

Figure 14: Flow completion time relative to
baseline with varying stragglers

to 1 (i.e. no aggregation is possible). As expected, the benefits of
NETAGG decrease for high values of α . When α is small, NET-
AGG significantly reduces the FCT: for α =10%, NETAGG reduces
the 99th FCT compared to rack by 88% (by 80% and 52% for bi-
nary and chain, respectively).

For very high values of α , the performance of NETAGG is only
marginally better than rack. The reason is that, when there is
little or no aggregation, the use of NETAGG penalises through-
put because it forces the cross-rack traffic still to be processed
by the agg box (at a maximum rate of 9.2 Gbps in our experi-
ments), which constraints the overall throughput, without provid-
ing a benefit in terms of data reduction. However, since production
traces show that most applications exhibit an output ratio lower than
10% [12, 18], a small α is representative of typical workloads, and
we adopt α =10% in the rest of the experiments.

It is also worthwhile to analyse why chain is always outper-
formed by rack for α >70%. The reason of this counter-intuitive
behaviour is that, as explained in §2.2, chain utilises more link
bandwidth compared to rack. As shown in Figure 9, with α =10%,
the median link traffic for chain is 4× higher than for rack (2.5×
for binary, respectively). When the network is highly loaded and α

is large, this aspect dominates, thus lowering throughput.
Fraction of aggregatable flows. As described in §2.4, a typical
DC traffic workload contains a mix of flows, of which only a frac-
tion can be aggregated. We conduct a sensitivity analysis in which
we vary the fraction of aggregatable flows from 0.1 to 1 (i.e. all
flows can be aggregated).

Figure 10 shows the 99th percentile of FCT relative to rack. With
more aggregatable flows, the benefit of all three aggregation strate-
gies increases. With more than 60% of aggregatable flows, how-
ever, the effectiveness of binary and chain starts to decrease again
because their more wasteful usage of network bandwidth intro-
duces network bottlenecks. In contrast, NETAGG maintains the
lowest FCTs, all the way to a fully-aggregatable workload.
Over-subscription. We quantify the performance impact of the bi-
section bandwidth on NETAGG and our baselines in Figure 11. We
vary over-subscription from 1:1 (i.e. full-bisection bandwidth) to
1:10. As expected, NETAGG performs best when over-subscription
is high. By aggregating flows along the network paths, it reduces
congestion in the core, alleviating network bottlenecks.

However, the use of NETAGG is beneficial even for networks
with full-bisection bandwidth. In a full-bisection network, the in-
bound bandwidth of the rack and the master becomes the bottle-
neck. By aggregating the traffic along the network path, NETAGG
reduces the congestion at the master, thus decreasing the comple-
tion time.

Partial deployment. One important question is whether it would
be possible to achieve a performance close to NETAGG by simply
deploying a 10 Gbps server in each rack and use it for rack-level
aggregation. More generally, we want to understand what should be
the best deployment configuration if we had only a limited number
of agg boxes.

In Figure 12, we compare the performance of a full NETAGG
deployment against three configurations: (i) agg boxes only at the
ToR switches; (ii) only at the aggregation switches; and (iii) only at
the core switches. The results show that the biggest improvement is
achieved with agg boxes at the aggregation or core network tiers—
deploying them at the rack tier provides limited benefits, improving
the FCT by 38% against 83% and 75%, respectively.

This comparison, however, does not take into account that in
a DC topology the number of switches at each tier varies signifi-
cantly. For example, in our simulated topology, we have 128 ToR
switches, 128 aggregation and 64 core switches. Therefore, we fix
the number of agg boxes to 64, and we measure the performance
when deploying them (i) at the core tier only; (ii) uniformly dis-
tributed at the aggregation tier; and (iii) uniformly distributed at
the two tiers.

Interestingly, the first configuration achieves the largest improve-
ments (75%) while the other two achieve 29% and 43%, respec-
tively. The reason is that the core tier has the best opportunity for
aggregating data because it intercepts more flows originating from
the workers. This result is important because it shows the benefit
of aggregating in the network and not just at the edge. Furthermore
it also demonstrates that NETAGG can be deployed incrementally
while still yielding most of the benefits.
Upgrading to a 10 Gbps network. In our next simulation exper-
iment, we explore the performance of NETAGG when deployed in
a 10 Gbps network. We use the same topology and workload as
before but with 10 Gbps links connecting servers to ToR switches.

In Figure 13, we vary the over-subscription from 1:1 to 1:10. For
large over-subscription values, NETAGG provides significant ben-
efits compared to rack. Although edge servers have the same band-
width as agg boxes, the over-subscription creates high contention
in the core, which limits the throughput of rack. This shows the
benefits of aggregating flows at each network hop as opposed to
the edge servers only.

For smaller over-subscription values, the agg box processing rate
becomes the bottleneck, reducing benefit. To further increase per-
formance, we explore a scale out configuration in which we at-
tach 2 or 4 agg boxes to each switch. We use a strategy similar to
ECMP to assign flows of the same application to the same set of
agg boxes. As the results show, two agg boxes are sufficient to re-
duce the FCTs by up to 85% compared to rack. This demonstrates

 0
 5

 10
 15
 20
 25
 30
 35

 2 4 8 16 32 64

T
h

ro
u

g
h

p
u

t
(G

b
p

s
)

Leaf nodes

Threads=8
Threads=12

Threads=16
Threads=32

Figure 15: Processing rate of an in-memory
local aggregation tree on a 16-core server

 0

 2

 4

 6

 8

 10

 0 10 20 30 40 50 60 70

T
h

ro
u

g
h

p
u

t
(G

b
p

s
)

Clients

NetAgg Solr

Figure 16: Network throughput against num-
ber of clients (Solr)

 0.1

 1

 10

 0 10 20 30 40 50 60 70

9
9

th
 p

e
rc

.
la

te
n

c
y
 (

s
)

Clients

NetAgg Solr

Figure 17: Response latency against number
of clients (Solr)

the value of scaling out, making NETAGG compatible with future
network upgrades.
Stragglers. To quantify the impact of straggling workers on our
solution, we run an experiment in which we artificially delay the
starting time of some of the flows of a given request or job, fol-
lowing the distribution reported in the literature [8]. The results in
Figure 14 show that for reasonable ratios of stragglers, NETAGG
can still provide significant traffic reduction. As expected, how-
ever, with a higher number of stragglers, the benefits of NETAGG
decrease as there are fewer opportunities to aggregate data.

4.2 Testbed results
Next we describe the results of our testbed experiments designed

to evaluate the effectiveness of our NETAGG middlebox prototype.
To demonstrate the flexibility of NETAGG, we experiment with
an online application, the Apache Solr distributed text search en-
gine [11], and a batch-processing application, the Apache Hadoop
map/reduce framework [10]. The two applications set different ob-
jectives for NETAGG, namely increased request throughput (Solr)
and reduced job completion time (Hadoop).

We first evaluate the applications in isolation (§4.2.1 and §4.2.2)
and then, to demonstrate NETAGG’s ability to host multiple appli-
cations, run them simultaneously (§4.2.3).
Testbed set-up. The experiments are performed using a proto-
type NETAGG implementation deployed on a 34-server testbed
across two racks. Each rack contains one 16-core 2.9 Ghz In-
tel Xeon server with 32 GB of RAM, acting as a master node,
and ten 4-core 3.3 Ghz Intel Xeon servers with 8 GB of RAM, act-
ing as the workers. In addition, each rack has five 4-core 1.8 Ghz
AMD Opteron servers, generating the client queries in the Solr ex-
periments. All servers have 1 Gbps network links to their ToR swi-
tches. Agg boxes have the same hardware as the master nodes and
are attached to the ToR switches via 10 Gbps links.
Performance of local aggregation tree. We first conduct a
micro-benchmark that evaluates the processing performance of
differently-sized in-memory local aggregation trees. The experi-
ments use a 16-core 2.9 Ghz Intel Xeon server with 32 GB of RAM.
For an n-input binary tree, n worker threads feed deserialised data
to the tree. We use the Hadoop WordCount workload (see below)
with an output ratio of α =10%.

Figure 15 shows the processing throughput for different thread
pool sizes when varying the number of leaves in a tree (L). We only
consider binary trees and, hence, the number of internal nodes, i.e.
the aggregation tasks, is equal to L−1. We observe that 8 leaves are
sufficient to saturate a 10 Gbps link. When the number of leaves in-
creases, more aggregation tasks can be executed concurrently, and
the throughput increases accordingly.

4.2.1 Apache Solr
We begin our testbed evaluation with Apache Solr in a single-

rack scenario with 1 frontend, 10 backend and 5 client servers. We
load the Wikipedia dataset, a snapshot of all Wikipedia pages in
XML format from June 2012 [57], into the backends, and each
client continuously submits a query for three random words. To
generate different workloads, we vary the number of concurrent
clients generating requests. Unless stated differently, error bars in-
dicate the 5th and 95th percentiles.

We use two aggregation functions with different computational
costs, representing extremes for functions commonly used in search
engines. The first function, sample, has low computational cost: it
returns a randomly chosen subset of the documents to the user ac-
cording to a specified output ratio α , which therefore controls the
amount of data reduction: a lower value of α means more aggrega-
tion, i.e. less data is returned to the clients.

The second function, categorise, is CPU-intensive: it classifies
Wikipedia documents according to their base categories [56] and
returns the top-k results per category. Each base category contains
several sub-categories, and categorisation is performed by parsing
the document content for category strings and determining the base
category for the majority of strings.
Throughput. Figure 16 shows the median throughput with an in-
creasing number of clients for Solr deployed on NETAGG. To test
the capability of NETAGG to process at line rate, we use the sam-
ple function for aggregation with a fixed output ratio of α =5% to
prevent the link to the frontend from becoming a bottleneck. For
comparison, we also show the throughput of plain Solr.

For plain Solr, the throughput with 5 clients is limited by the
client workload. As the number of clients increases, the through-
put also increases until saturation. For 10 clients, packets from
the backends start to queue on the 1 Gbps link to the frontend un-
til the system completely saturates for 30 clients (processing at a
maximum rate of 987 Mbps). After that, adding clients results in
queuing at the frontend without improving the throughput.

With NETAGG, the throughput grows steadily up to 50 clients
and then starts to saturate, reaching a median throughput of
9.2 Gbps for 70 clients. This corresponds to a 9.3× increase com-
pared to Solr. After this, the throughput is bottlenecked by the
incoming link bandwidth of the agg box.
Latency. Besides improving the throughput, NETAGG also re-
duces the request latency. Figure 17 shows the 99th percentile of
the response times when varying the number of clients. For Solr, as
the throughput of the frontend is limited to 1 Gbps, response times
rise significantly when the workload increases. NETAGG can serve
a higher load with low response times: with 70 clients, the response
time for Solr is 5.1 s, while it only increases to 0.4 s for NETAGG.

 0

 2

 4

 6

 8

 10

 0 20 40 60 80 100

T
h

ro
u

g
h

p
u

t
(G

b
p

s
)

Output ratio (%)

NetAgg Solr

Figure 18: Network throughput against out-
going ratio (Solr)

 0

 4

 8

 12

 16

 1 2 3 4 5 6 7 8

T
h

ro
u

g
h

p
u

t
(G

b
p

s
)

Solr backends per rack

2 Racks 1 Rack

Figure 19: Throughput against number of
backend servers per rack (Solr)

 0

 2

 4

 6

 8

 10

 0 10 20 30 40 50 60 70 80 90 100

T
h

ro
u

g
h

p
u

t
(G

b
p

s
)

Clients

NetAgg 2x NetAgg

Figure 20: Agg box scale out for CPU-
intensive aggregation (Solr)

 0

 2

 4

 6

 8

 10

 0 2 4 6 8 10 12 14 16

T
h

ro
u

g
h

p
u

t
(G

b
p

s
)

CPU cores

Sample Categorise

Figure 21: Throughput against number of
CPU cores (Solr)

 0

 0.2

 0.4

 0.6

 0.8

 1

WC AP PR UV TS

 0
 1
 2
 3
 4
 5
 6
 7
 8

T
im

e
 v

s
 H

a
d

o
o

p

T
h

ro
u

g
h

p
u

t
(G

b
p

s
)

Shuf.+Red. Aggr. T.put

Figure 22: Performance of Hadoop bench-
marks

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 10 20 30 40 50 60 70 80 90 100

T
im

e
 v

s
 H

a
d

o
o

p

Output ratio (%)

Shuffle+Reduce Aggregation

Figure 23: Shuffle and reduce time against
output ratio (Hadoop)

This shows that NETAGG achieves low response times because it
removes congestion from the network link to the frontend.
Output ratio. Next we vary the output ratio α of Solr requests
with the sample aggregation for a fixed client population of 70.
Figure 18 shows the throughput for Solr and NETAGG. Since the
performance of Solr is network-bound, the throughput does not de-
pend on the output ratio. For NETAGG, a higher output ratio also
increases the utilisation of the network path between the agg box
and the frontend, which remains limited to 1 Gbps. Therefore the
effectiveness of NETAGG decreases. As described in §2.1, output
ratios in production environments typically range from 5% to at
most 40%, in which case NETAGG can offer significant benefit.
Two-rack deployment. To investigate the performance of NET-
AGG with multiple agg boxes, we extend our set-up to two racks,
each with one agg box. We also add a second Solr deployment to
generate a higher request load. We vary the number of backends
per Solr deployment, which are divided equally between the racks
to generate cross-rack traffic.

Figure 19 compares the throughput of a single agg box in one
rack to the aggregate throughput of two agg boxes in two racks.
For both configurations, throughput scales linearly with the num-
ber of backends. With two racks, the agg boxes serve twice as many
backends compared to one rack, and hence their aggregate through-
put doubles. This shows the ability of NETAGG to operate in larger
deployments.
Scale out. To show the feasibility of increasing the performance of
NETAGG by connecting multiple agg boxes to a single switch, we
conduct an experiment in which we compare the performance of
a single agg box with two agg boxes attached to the same switch.
Requests are split equally between the agg boxes by hashing re-
quest identifiers. We use the computationally-expensive categorise
aggregation function to ensure that the agg box is the bottleneck.

The results in Figure 20 confirm our expectation: they show that,
by adding a second agg box, the throughput increases until the
agg boxes become network-bound.
Scale up. To demonstrate the effectiveness of data-parallel process-
ing on agg boxes, we increase the number of active CPU cores on a
single agg box from 1 to 16 for both of our aggregation functions.
The results in Figure 21 show that, while the performance of the
computationally-inexpensive sample function is network bound,
the performance for the categorise function increases linearly with
more CPU cores due to increased parallelism.

4.2.2 Apache Hadoop
Next we investigate the performance of NETAGG when used

with a batch processing application (Apache Hadoop). We deploy
Hadoop in one rack with 8 mappers and 1 reducer, with a single
aggregation tree. The workload consists of a set of benchmarks:
(i) WordCount (WC), counting unique words in text; (ii) AdPredic-
tor (AP), a machine learning job for generating click-through pre-
dictions from search engine web logs [28,38]; (iii) PageRank (PR),
an implementation of the PageRank algorithm [33]; (iv) UserVis-
its (UV), a job for computing ad revenue per source IP address from
web logs [12]; and (v) TeraSort (TS), a sorting benchmark with an
identity reduce function [33].
Job completion time. We deploy each benchmark job on plain
Hadoop and on Hadoop with NETAGG. For each job, we mea-
sure (i) the total shuffle and reduce time (SRT) relative to Had-
oop, which includes the time spent at the agg box (AGG) and at
the reducer; and (ii) the corresponding processing throughput at
the agg box. We ignore the map phase because it is not affected
by NETAGG.

Figure 22 shows the shuffle and reduce times (normalised with
respect to plain Hadoop) and the agg box processing rate. NET-
AGG reduces SRT up to 4.5× compared to plain Hadoop. Only

 0

 2

 4

 6

 8

 10

 12

816 32 64 128

T
im

e
 (

1
0

0
0

 s
e

c
o

n
d

s
)

Intermediate data size (GB)

NetAgg Hadoop

Figure 24: Shuffle and reduce time against
intermediate data sizes (Hadoop)

 0

 25

 50

 75

 100

 0 25 50 75 100 125 150

C
P

U
s
 s

h
a

re
 (

%
)

Timestamp (seconds)

Solr Hadoop

Figure 25: CPU resource fair sharing on
NETAGG (Solr and Hadoop) achieved by a
no-adaptive scheduler.

 0

 25

 50

 75

 100

 0 25 50 75 100 125 150

C
P

U
s
 s

h
a

re
 (

%
)

Timestamp (seconds)

Solr Hadoop

Figure 26: CPU resource fair sharing on
NETAGG (Solr and Hadoop) achieved by an
adaptive scheduler

for TS, there is no benefit because sorting does not reduce data.
AP exhibits a speed-up of only 1.9× because the benchmark is
compute-intensive.

Notably, in all cases, the time spent at the agg box (AGG) is
a small fraction of the total SRT. This is due to the fact that the
reducer is unaware that the results received from the agg box are
already final and, regardless, reads them again. This is a con-
scious design decision because it makes agg boxes transparent to
applications—with more invasive modifications of the application,
the end-to-end SRT can be reduced to be closer to the AGG time.

The figure also shows that the agg box processes traffic at around
6 Gbps for almost all jobs—the processing rate for TS is lower due
to a bottleneck at the reducer.
Output ratio. Next we compare the performance of Hadoop and
Hadoop deployed with NETAGG for different output ratios α , ob-
tained by varying the repetition of words in the input for the WC
job. The size of the input data is 8 GB, and we measure SRT.

Figure 23 shows that relative SRT increases with higher output
ratios. This is due to the fact that, with higher ratios, there are
more results that are written to disk. A decrease in the output ratio,
however, does not alleviate the network bottleneck at the reducer,
which has to receive data from all the mappers over a 1 Gbps link.

For all output ratios, NETAGG improves performance over plain
Hadoop, up to a factor of 3.7× for α =10%. The improvement
is highest for low output ratios for the same reason as in the case
of Solr: performance eventually becomes restricted by the limited
edge bandwidth.
Data size. We explore how the performance benefit of NETAGG is
affected by the amount of data processed by the reducer. For this
experiment, we fix the output ratio at 10%. Figure 24 shows the
absolute shuffle and reduce times for different intermediate data
sizes, ranging from 8 GB to 128 GB.

As we increase the amount of intermediate data, the effect of
the shuffle phase on the overall job completion time becomes more
pronounced because more data is sent across the network. Hence,
the benefit of NETAGG increases with more intermediate data, up
to a factor of 5.2× for 128 GB. In addition, the reducer receives
only a small fraction of the already reduced intermediate data. This
reduces processing time as well as CPU cycles and disk I/O.

4.2.3 Multiple applications
In our final experiment, we evaluate the behaviour of NET-

AGG in the presence of multiple deployed applications, focusing
on the fairness that the adaptive task scheduler of an agg box can
achieve (§3.2.1). For this, we execute a Hadoop job on NETAGG
while running a Solr deployment at the same time. We route all
aggregation traffic through a single agg box and measure the CPU

share of each application. As the resource consumption of a single
Solr task is significantly higher than that of a Hadoop one, the task
scheduler must be able to account for this heterogeneity.

Figure 25 shows the CPU usage of the two applications when
the task scheduler uses regular weighted fair queuing with
fixed weights, which are set according to application priori-
ties (see §3.2.1). Although each application is assigned a desired
utilisation of 50%, this is not reflected in the achieved CPU usage:
a Solr task takes, on average, 34 ms to run on the CPU, while a
Hadoop task runs only for 2 ms. Fixed weights therefore lead to a
starvation of the Hadoop tasks, which exhibit low performance.

In contrast, Figure 26 shows the same set-up using our adaptive
task scheduler, which adjusts weights based on the actual CPU con-
sumption by applications. As a result, CPU usage is split fairly
between the processing of aggregation tasks for Solr and Hadoop.

5. RELATED WORK
Middleboxes. Researchers have proposed efficient software mid-
dlebox platforms to process network flows using commodity hard-
ware [50, 52]. ClickOS [43], for example, improves the network
performance of Xen using netmap [49]. In contrast to NETAGG,
these platforms operate at the packet level, which makes them un-
suitable to aggregate payload data in application flows.

A flow-based middlebox platform is provided by xOMB [9],
which can process application protocols such as HTTP. Yet its focus
remains on a small set of network-level services, whereas NETAGG
can host a number of application-specific aggregation functions on
middleboxes to improve application performance. FlowOS [14]
runs in kernel space and provides zero-copy flow construction for
multiple, independent flows. However, FlowOS does not support
aggregation across multiple, dependent flows, as in NETAGG.

Recently, SDN-based techniques were used to manage the traffic
to and from middleboxes [48]. As part of NETAGG, we could use a
similar approach to relay traffic to agg boxes instead of employing
shim layers. However, shim layers selectively redirect traffic, not
only based on packet headers, but also depending on application
data semantics, which requires deserialising the application data.
Data aggregation. In map/reduce [25], aggregation of single map
tasks through combiner functions is a common technique to help
reduce network load and job execution time. To reduce the traffic
at the network core, additional aggregation steps at one of the rack
servers can be performed [40,44,59]. At scale, however, rack-level
aggregation provides only limited opportunities for data reduction
and is often bottlenecked by the lower edge bandwidth available at
the servers (see §2).

Tyson et al. [21] describe Hadoop Online, an extension to
map/reduce that allows reducers to start reducing intermediate re-
sults as soon as they become available. While this is orthogonal
to the goals of NETAGG, our agg boxes use a similar technique to
aggregate partial results with a streaming aggregation tree.

Camdoop [22] proposes an extreme solution to improve the per-
formance of map/reduce by adopting a direct-connect DC topol-
ogy. All traffic is forwarded between servers without switches,
which can therefore aggregate the traffic. This approach, however,
requires a custom network topology and redeveloped DC applica-
tions. In contrast, NETAGG is compatible with today’s DCs and
supports existing applications.

Aggregation was successfully applied in other domains, includ-
ing wireless sensor networks and Internet systems. In sensor
networks, packet-based aggregation is used to improve the effi-
ciency of data-collection protocols, primarily targeting energy sav-
ings [34, 41]. Internet-scale aggregation systems use overlay net-
works to collect data in a scalable fashion [15, 35, 58]. Neither use
of aggregation requires high throughput, a key design requirement
of NETAGG. For example, the design proposed by Yalagandula
and Dahlin [58] uses a DHT overlay in a WAN, which is a struc-
ture optimised for scale and churn, not throughput.
Multi-point flow scheduling. Recent work considered how to
schedule multi-point flows efficiently in DCs [19, 20]. While
we show an approach that improves network performance when
the flows can be aggregated (many-to-one), we also note that
application-specific middleboxes can implement efficient versions
of multicast or broadcast protocols (one-to-many). This would
enable further performance improvement of iterative applications
with a distributed broadcast phase, such as graph processing or lo-
gistic regression [20].
Traffic compression. There are a variety of techniques that have
been proposed to compress in-network traffic, mainly for the pur-
poses of reducing bandwidth usage: network coding [1], traf-
fic redundancy elimination [6], and even multicast [26, 55] are
prime examples. These techniques are therefore complementary
to our work, but do not address NETAGG’s goal of supporting
application-specific aggregation functions.

6. CONCLUSIONS
Many applications in today’s DCs operate in a parti-

tion/aggregation fashion. We observe that in typical workloads, the
aggregation functions are associative and commutative, and exhibit
high data reduction. This motivates us to explore a novel point in
the network design space in which data are aggregated on the net-
work path before reaching the end hosts.

We describe the design and implementation of NETAGG, an on-
path aggregation service that transparently intercepts aggregation
flows at edge servers using shim layers and redirects them to aggre-
gation nodes (agg boxes). NETAGG is designed to aggregate data
of multiple applications at high rate by decomposing aggregation
computation within and across agg boxes to exploit parallelism. We
evaluate the effectiveness of NETAGG using a combined approach
of simulations and a prototype implementation deployed with real-
world applications. Our results show that NETAGG outperforms
typical DC set-ups while incurring little extra deployment cost.

This work is part of a larger effort aimed at bridging the gap be-
tween networking and applications by enabling application-specific
in-network processing [23]. Our ultimate goal is to provide novel
expressive high-level abstractions coupled with efficient low-level
mechanisms that allow users to deploy application-specific code
within the network in a safe and efficient way.

Acknowledgements
The authors wish to thank the anonymous reviewers and our shep-
herd, Christian Kreibich, who provided valuable feedback and ad-
vice. This work was supported by grant EP/K032968 (“NaaS:
Network-as-a-Service in the Cloud”) from the UK Engineering and
Physical Sciences Research Council (EPSRC). Luo Mai is sup-
ported by a 2012 Google European Doctoral Fellowship in Cloud
Computing.

7. REFERENCES
[1] R. Ahlswede, N. Cai, S.-Y. Li, and R. W. Yeung. Network

Information Flow. IEEE Transactions on Information
Theory, 46(4), 2000.

[2] M. Al-Fares, A. Loukissas, and A. Vahdat. A Scalable,
Commodity Data Center Network Architecture. In
SIGCOMM, 2008.

[3] M. Al-Fares, S. Radhakrishnan, B. Raghavan, N. Huang, and
A. Vahdat. Hedera: Dynamic Flow Scheduling for Data
Center Networks. In NSDI, 2010.

[4] M. Alizadeh, A. Greenberg, D. A. Maltz, J. Padhye, P. Patel,
B. Prabhakar, S. Sengupta, and M. Sridharan. Data Center
TCP (DCTCP). In SIGCOMM, 2010.

[5] M. Alizadeh, A. Kabbani, T. Edsall, B. Prabhakar, A. Vahdat,
and M. Yasuda. Less is More: Trading a Little Bandwidth for
Ultra-low Latency in the Data Center. In NSDI, 2012.

[6] A. Anand, V. Sekar, and A. Akella. SmartRE: An
Architecture for Coordinated Network-Wide Redundancy
Elimination. In SIGCOMM, 2009.

[7] G. Ananthanarayanan, A. Ghodsi, S. Shenker, and I. Stoica.
Effective Straggler Mitigation: Attack of the Clones. In
NSDI, 2013.

[8] G. Ananthanarayanan, S. Kandula, A. G. Greenberg,
I. Stoica, Y. Lu, B. Saha, and E. Harris. Reining in the
Outliers in Map-Reduce Clusters Using Mantri.
In OSDI, 2010.

[9] J. W. Anderson, R. Braud, R. Kapoor, G. Porter, and
A. Vahdat. xOMB: Extensible Open Middleboxes with
Commodity Servers. In ANCS, 2012.

[10] Apache Hadoop. http://hadoop.apache.org.
[11] Apache Solr. http://lucene.apache.org/solr.
[12] R. Appuswamy, C. Gkantsidis, D. Narayanan, O. Hodson,

and A. Rowstron. Scale-up vs Scale-out for Hadoop: Time to
rethink? In SOCC, 2013.

[13] T. Benson, A. Akella, and D. A. Maltz. Network Traffic
Characteristics of Data Centers in the Wild. In IMC, 2010.

[14] M. Bezahaf, A. Alim, and L. Mathy. FlowOS: A Flow-based
Platform for Middleboxes. In HotMiddlebox, 2013.

[15] J. Cappos and J. H. Hartman. San Fermın: Aggregating
Large Data Sets Using a Binomial Swap Forest.
In NSDI, 2008.

[16] R. Castro Fernandez, M. Migliavacca, E. Kalyvianaki, and
P. Pietzuch. Integrating Scale Out and Fault Tolerance in
Stream Processing Using Operator State Management. In
SIGMOD, 2013.

[17] R. Chaiken, B. Jenkins, P.-A. Larson, B. Ramsey, D. Shakib,
S. Weaver, and J. Zhou. SCOPE: Easy and Efficient Parallel
Processing of Massive Data Sets. In VLDB, 2008.

[18] Y. Chen, A. Ganapathi, R.Griffith, and R. Katz. The Case for
Evaluating MapReduce Performance Using Workload Suites.
In MASCOTS, 2011.

http://hadoop.apache.org
http://lucene.apache.org/solr

[19] M. Chowdhury, S. Kandula, and I. Stoica. Leveraging
Endpoint Flexibility in Data-Intensive Clusters. In
SIGCOMM, 2013.

[20] M. Chowdhury, M. Zaharia, J. Ma, M. I. Jordan, and
I. Stoica. Managing Data Transfers in Computer Clusters
with Orchestra. In SIGCOMM, 2011.

[21] T. Condie, N. Conway, P. Alvaro, J. M. Hellerstein,
K. Elmeleegy, and R. Sears. MapReduce Online.
In NSDI, 2010.

[22] P. Costa, A. Donnelly, A. Rowstron, and G. O’Shea.
Camdoop: Exploiting In-network Aggregation for Big Data
Applications. In NSDI, 2012.

[23] P. Costa, M. Migliavacca, P. Pietzuch, and A. L. Wolf. NaaS:
Network-as-a-Service in the Cloud. In Hot-ICE, 2012.

[24] J. Dean, G. S. Corrado, R. Monga, K. Chen, M. Devin, Q. V.
Le, M. Z. Mao, M. Ranzato, A. Senior, P. Tucker, K. Yang,
and A. Y. Ng. Large Scale Distributed Deep Networks. In
NIPS, 2012.

[25] J. Dean and S. Ghemawat. MapReduce: Simplified Data
Processing on Large Clusters. In OSDI, 2004.

[26] C. Diot, W. Dabbous, and J. Crowcroft. Multipoint
Communication: A Survey of Protocols, Functions, and
Mechanisms. J-SAC, 15(3), 1997.

[27] N. Dukkipati and N. McKeown. Why Flow-Completion
Time is the Right Metric for Congestion Control. CCR,
36(1), 2006.

[28] T. Graepel, J. Q. Candela, T. Borchert, and R. Herbrich.
Web-scale Bayesian Click-through Rate Prediction for
Sponsored Search Advertising in Microsoft’s Bing Search
Engine. In ICML, 2010.

[29] A. Greenberg, J. R. Hamilton, N. Jain, S. Kandula, C. Kim,
P. Lahiri, D. A. Maltz, P. Patel, and S. Sengupta. VL2: A
Scalable and Flexible Data Center Network.
In SIGCOMM, 2009.

[30] C. Guo, G. Lu, D. Li, H. Wu, X. Zhang, Y. Shi, C. Tian,
Y. Zhang, and S. Lu. BCube: A High Performance,
Server-centric Network Architecture for Modular Data
Centers. In SIGCOMM, 2009.

[31] D. Halperin, S. Kandula, J. Padhye, P. Bahl, and
D. Wetherall. Augmenting Data Center Networks with
Multi-Gigabit Wireless Links. In SIGCOMM, 2011.

[32] C. Hopps. Analysis of an Equal-Cost Multi-Path Algorithm,
2000. IETF RFC 2992.

[33] S. Huang, J. Huang, J. Dai, T. Xie, and B. Huang. The
HiBench Benchmark Suite: Characterization of the
MapReduce-Based Data Analysis. In ICDE
Workshops, 2010.

[34] C. Intanagonwiwat, R. Govindan, D. Estrin, J. Heidemann,
and F. Silva. Directed Diffusion for Wireless Sensor
Networking. ToN, 11(1), 2003.

[35] N. Jain, D. Kit, P. Mahajan, P. Yalagandula, M. Dahlin, and
Y. Zhang. STAR: Self-tuning Aggregation for Scalable
Monitoring. In VLDB, 2007.

[36] V. Jalaparti, P. Bodik, S. Kandula, I. Menache, M. Rybalkin,
and C. Yan. Speeding up Distributed Request-Response
Workflows. In SIGCOMM, 2013.

[37] D. A. Joseph, A. Tavakoli, and I. Stoica. A Policy-aware
Switching Layer for Data Centers. In SIGCOMM, 2008.

[38] KDD Cup 2012. http://www.kddcup2012.org/.

[39] Kryo library. http://code.google.com/p/kryonet/.
[40] D. Logothetis, C. Trezzo, K. C. Webb, and K. Yocum. In-situ

MapReduce for Log Processing. In USENIX ATC, 2011.
[41] S. Madden, M. J. Franklin, J. M. Hellerstein, and W. Hong.

TAG: A Tiny Aggregation Service for Ad-hoc Sensor
Networks. OSR, 36(SI), 2002.

[42] G. Malewicz, M. H. Austern, A. J. Bik, J. C. Dehnert,
I. Horn, N. Leiser, and G. Czajkowski. Pregel: A System for
Large-Scale Graph Processing. In SIGMOD, 2010.

[43] J. Martins, M. Ahmed, C. Raiciu, V. Olteanu, M. Honda,
R. Bifulco, and F. Huici. ClickOS and the Art of Network
Function Virtualization. In NSDI, 2014.

[44] S. Melnik, A. Gubarev, J. J. Long, G. Romer, S. Shivakumar,
M. Tolton, and T. Vassilakis. Dremel: Interactive Analysis of
Web-scale Datasets. In VLDB, 2010.

[45] Palo Alto Networks. http://www.paloaltonetworks.com.
[46] L. Popa, S. Ratnasamy, G. Iannaccone, A. Krishnamurthy,

and I. Stoica. A Cost Comparison of Data Center Network
Architectures. In CoNEXT, 2010.

[47] G. Porter, R. Strong, N. Farrington, A. Forencich,
P. Chen-Sun, T. Rosing, Y. Fainman, G. Papen, and
A. Vahdat. Integrating Microsecond Circuit Switching into
the Data Center. In SIGCOMM, 2013.

[48] Z. A. Qazi, C.-C. Tu, L. Chiang, R. Miao, V. Sekar, and
M. Yu. SIMPLE-fying Middlebox Policy Enforcement Using
SDN. In SIGCOMM, 2013.

[49] L. Rizzo. Netmap: A Novel Framework for Fast Packet I/O.
In USENIX ATC, 2012.

[50] V. Sekar, N. Egi, S. Ratnasamy, M. K. Reiter, and G. Shi.
Design and Implementation of a Consolidated Middlebox
Architecture. In NSDI, 2012.

[51] J. Sherry, S. Hasan, C. Scott, A. Krishnamurthy,
S. Ratnasamy, and V. Sekar. Making Middleboxes Someone
Else’s Problem. In SIGCOMM, 2012.

[52] A. Shieh, S. Kandula, and E. G. Sirer. SideCar: Building
Programmable Datacenter Networks without Programmable
Switches. In HotNets, 2010.

[53] A. Singla, C.-Y. Hong, L. Popa, and P. B. Godfrey. Jellyfish:
Networking Data Centers Randomly. In NSDI, 2012.

[54] Twitter Storm. http://goo.gl/Y1AcL.
[55] Y. Vigfusson, H. Abu-Libdeh, M. Balakrishnan, K. Birman,

R. Burgess, G. Chockler, H. Li, and Y. Tock. Dr. Multicast:
Rx for Data Center Communication Scalability.
In EuroSys, 2010.

[56] Wikipedia Categories. http://goo.gl/n60jg1.
[57] Wikimedia Downloads, June 2012. http://goo.gl/DQFJk.
[58] P. Yalagandula and M. Dahlin. A Scalable Distributed

Information Management System. In SIGCOMM, 2004.
[59] Y. Yu, P. K. Gunda, and M. Isard. Distributed Aggregation

for Data-Parallel Computing: Interfaces and
Implementations. In SOSP, 2009.

[60] M. Zaharia, D. Borthakur, J. Sen Sarma, K. Elmeleegy,
S. Shenker, and I. Stoica. Delay Scheduling: A Simple
Technique for Achieving Locality and Fairness in Cluster
Scheduling. In EuroSys, 2010.

[61] X. Zhou, Z. Zhang, Y. Zhu, Y. Li, S. Kumar, A. Vahdat, B. Y.
Zhao, and H. Zheng. Mirror Mirror on the Ceiling: Flexible
Wireless Links for Data Centers. In SIGCOMM, 2012.

http://www.kddcup2012.org/
http://code.google.com/p/kryonet/
http://www.paloaltonetworks.com
http://goo.gl/Y1AcL
http://goo.gl/n60jg1
http://goo.gl/DQFJk

	Introduction
	Distributed Data Aggregation
	Partition/aggregation applications
	Edge-based aggregation
	On-path aggregation with middleboxes
	Feasibility study

	Design and Implementation
	Overview
	Implementation
	Agg boxes
	Shim layers

	Application deployments

	Evaluation
	Simulation results
	Testbed results
	Apache Solr
	Apache Hadoop
	Multiple applications

	Related Work
	Conclusions
	References

