
Meta-Dataflows: Efficient Exploratory Dataflow Jobs
Raul Castro Fernandez

MIT

raulcf@csail.mit.edu

William Culhane

Imperial College London

w.culhane@imperial.ac.uk

Pijika Watcharapichat

Imperial College London

pw610@imperial.ac.uk

Matthias Weidlich

Humboldt-Universität zu Berlin

matthias.weidlich@hu-berlin.de

Victoria Lopez Morales

Imperial College London

v.lopez-morales@imperial.ac.uk

Peter Pietzuch

Imperial College London

prp@imperial.ac.uk

ABSTRACT
Distributed dataflow systems such as Apache Spark and Apache

Flink are used to derive new insights from large datasets.While they

efficiently execute concrete data processing workflows, expressed
as dataflow graphs, they lack generic support for exploratory work-
flows: if a user is uncertain about the correct processing pipeline,

e.g. in terms of data cleaning strategy or choice of model parame-

ters, they must repeatedly submit modified jobs to the system. This,

however, misses out on optimisation opportunities for exploratory

workflows, both in terms of scheduling and memory allocation.

We describe meta-dataflows (MDFs), a new model to effectively

express exploratory workflows and efficiently execute them on

compute clusters. With MDFs, users specify a family of dataflows

using two primitives: (a) an explore operator automatically con-

siders choices in a dataflow; and (b) a choose operator assesses the

result quality of explored dataflow branches and selects a subset of

the results. We propose optimisations to execute MDFs: a system

can (i) avoid redundant computation when exploring branches by

reusing intermediate results and discarding results from underper-

forming branches; and (ii) consider future data access patterns in

the MDF when allocating cluster memory. Our evaluation shows

that MDFs improve the runtime of exploratory workflows by up to

90% compared to sequential execution.

ACM Reference Format:
Raul Castro Fernandez, William Culhane, Pijika Watcharapichat, Matthias

Weidlich, Victoria Lopez Morales, and Peter Pietzuch. 2018. Meta-Dataflows:

Efficient Exploratory Dataflow Jobs. In Proceedings of SIGMOD (SIGMOD’18).
ACM,NewYork, NY, USA, 16 pages. https://doi.org/10.1145/3183713.3183760

1 INTRODUCTION
Analysts use increasingly sophisticated algorithmic techniques to

derive value from data. Today, data processing pipelines routinely

include complex cleaning strategies, apply advanced data mining al-

gorithms, and train large machine learning (ML) models. To do this

at scale, distributed dataflow systems such asHadoop [4], Spark [40],

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

SIGMOD’18, June 10–15, 2018, Houston, TX, USA
© 2018 Association for Computing Machinery.

ACM ISBN 978-1-4503-4703-7/18/06. . . $15.00

https://doi.org/10.1145/3183713.3183760

Flink [3], SEEP [7] and TensorFlow [1] express data processing

pipelines as dataflow graphs to be executed in parallel on clusters.

In many data processing pipelines users must configure data

processing pipelines manually, with little support by distributed

dataflow systems. Users choose which algorithms to use and how

to tune configuration parameters: an outlier detection algorithm

may rely on a threshold to classify input values as outliers; machine

learning jobs may include hyper-parameters, such as the initial

model weights [34] or the learning rate of a classifier [42]; data

cleaning pipelines may use different error detection algorithms.

Consider a data profiling workflow to learn the underlying dis-

tribution of a terabyte-sized dataset using a kernel density estima-

tor (KDE) [26]. In Spark, a user would write a dataflow graph to

implement the technique and, after careful consideration, choose

a handful of parameter configurations for the kernel function (e.g.

Gaussian or Top-Hat) and the bandwidth (e.g. {0.1, 0.5, 2}). They

would then submitmultiple jobs to the cluster, one per configuration.
We refer to a family of such related dataflow jobs as an exploratory
workflow. Finally, the users would compare the results, and identify

the configuration that yields the best result, e.g. in terms of mean

integrated squared error (MISE). Even in this simple example, the

manual parameter exploration requires the independent execution

of many dataflow jobs that constitute the exploratory workflow.

Executing exploratory workflows as independent dataflow jobs

is inefficient for multiple reasons: (i) each submitted job is executed

to completion by the distributed dataflow system, even if a given

configuration is inferior compared to others, because its result

quality is only assessed after job completion. A better approach

would be to terminate underperforming jobs early, and instead use

the freed cluster resources for other, more promising configurations;

and (ii) the jobs that constitute an exploratory workflow typically

have substantial overlap in their intermediate results. Intermediate

datasets should be reused across jobs instead of being recomputed.

We observe that current distributed dataflow systems pass up on

optimisation opportunities by executing exploratory workflows as

independent sequences of jobs. Taking all the jobs of an exploratory

workflow into account allows the system to employ more effective

scheduling and resource allocations policies.

We describe meta-dataflows (MDFs), a new approach for ef-

fectively expressing exploratory workflows and executing them in

a distributed dataflow system. An MDF specifies a complete family
of traditional dataflow graphs and executes them more efficiently

because the system can avoid redundant computation through its

scheduling policy and perform better memory management for

intermediate datasets. In more detail, we make three contributions:

https://doi.org/10.1145/3183713.3183760
https://doi.org/10.1145/3183713.3183760

SIGMOD’18, June 10–15, 2018, Houston, TX, USA R. Castro Fernandez et al.

(1) MDF model. We introduce a novel meta-dataflow model that
defines an exploratory workflow as a single job by extending a

classical dataflow model with two new dataflow primitives: (a) an

explore operator permits the exploration of different options in the

dataflow graph in the form of separate branches, each representing a
particular algorithmic or parameter configuration; and (b) a choose

operator assesses the explored branches, discarding results that

yield low utility. It assesses the utility of a branch result by an

evaluator function and uses a selection function to pick a subset

of the results for further computation. This requires an on-the-fly

modification of the topology of the executed dataflow graph, which

is not supported by most existing distributed dataflow systems.

(2) Branch-aware scheduling (BAS). We describe an efficient

scheduling algorithm for MDFs, which saves cluster resources

and shortens job completion times. The high-level strategy of the

branch-aware scheduling algorithm is to traverse the MDF breadth-

first, but to execute the parallel branches of an explore depth-first

to obtain the intermediate results required for a choose decision.

As a result, choose operators are executed as early as possible and

in an incremental fashion. The dataflow system can discard unnec-

essary intermediate datasets quickly and, in some cases, avoid the

execution of branches altogether. BAS also increases the cases in

which datasets remain in memory and can be reused.

(3) Anticipatory memory management (AMM). We propose

an anticipatory memory management policy to evict intermediate

datasets from memory that minimises future reads from disk. AMM

considers the data access patterns of branches stipulated in theMDF,

the sizes of datasets, and the cost of loading data from disk. AMM

addresses pressure on cluster memory created by intermediate

datasets generated by branches that compete for memory with

each other when explore operators have large fan-outs.

We implement MDFs in the SEEP distributed dataflow system [7]

and report performance benefits for different exploratory work-

flows: a deep learning job for training a multi-layer neural network,

a data profiling job for distribution estimation, and an analysis job

for time series data. Our experiments show the MDF reduces run-

time of the deep learning job by 60% compared to separate jobs; for

the time series analysis job the MDF yields a runtime improvement

of up to 90% by ignoring underperforming branches.

The rest of the paper is organised as follows: §2 gives back-

ground on distributed dataflow systems and motivates the need for

exploratory workflows; §3 describes our model for meta-dataflows

and how it can be applied to exploratory jobs; §4 explains the

branch-aware scheduling algorithm and the anticipatory memory

management policy; §5 gives implementation details for MDFs

as part of distributed dataflow systems; the paper finishes with

evaluation results (§6), related work (§7), and conclusions (§8).

2 EXPLORATORYWORKFLOWS
Nextwe describe amodel for distributed dataflow systems (§2.1).We

then introduce exploratory workflows (§2.2) and explain how they

are not well supported by existing approaches (§2.3). Based on this,

we derive a set of requirements for their efficient execution (§2.4).

2.1 Distributed dataflow systems
Modern distributed data processing systems, e.g. Spark [40] and

Flink [3], express jobs as dataflow graphs, and execute them with

data parallelism on a cluster of machines. Dataflow graphs are

connected directed graph, G = (V ,E), where vertices V are data

processing operators. Edges, E ⊆ V × V , are data dependencies

between them. We formally define our dataflow model in App. A.

Distributed dataflow systems execute dataflow graphs on a set

of cluster nodes𝒩 . Each node, n ∈ 𝒩 , has finite available memory,

denoted bymem(n) ∈ N0, and unbounded disk storage. Datasets

can be partitioned, with partitions stored on different nodes of the

cluster. A partition can be stored in main memory or on disk.

To execute a dataflow graph as a job, many instances of oper-

ators must run on nodes, working on different data partitions in

parallel. Systems such as Spark [40] and Flink [3] follow Dryad’s

execution model [20] and use a scheduler hosted at a master node.
The scheduler breaks down a job into compute tasks, which are

pairs of operators and a data partitions over which the operators

are applied. Tasks are executed by worker nodes. Stages group sets

of operators whose execution can be pipelined by the system.

Before a worker node executes a task, the respective data parti-

tion must be transferred to the worker and loaded into memory. If

the worker has insufficient memory available, the system makes an

eviction decision regarding which dataset to store on disk. Existing

systems [40] typically employ a least-recently used (LRU) policy [2],

i.e. they evict the dataset that has not been used for the longest.

2.2 Exploratory workflows
In data processing pipelines, users must choose appropriate algo-

rithms and parameters for individual steps, from data preparation,

such as cleaning and schema matching, to model training when

learning a classifier. While in some cases these choices are simple,

i.e. the problem is well understood or the user draws from previ-

ous experience, in other cases the decision involves an exploratory
process. We illustrate this process with the following scenario:

Example 2.1 (Dataflow for kernel-density estimation). We

consider an example from the domain of sensor-based management

of oil and gas fields [18]. Here, a user wants to detect malfunc-

tioning oil well components based on readings from pressure and

flow rate sensors, among others. To identify malfunction in the

measurements, a model of regular well operation is created first.

Common data processing pipelines to obtain such a model first

remove outliers from the raw sensor data. For example, a basic

outlier filter would remove values beyond x-times the standard

deviation. The next step is to estimate the distribution of sen-

sor measurements that reflects regular operation, e.g. using kernel
density estimation (KDE) [41]. KDE yields an estimator д(x) for
the unknown function that governs sensor measurements: д(x) =
1⇑nh∑

n
i=1K(x − xi ⇑h) where K is a kernel function (e.g. Gaussian

or Top-Hat), and h is a smoothing parameter called bandwidth.

To execute the above data processing pipeline, a user could ex-

press it as the dataflow graph shown in Fig. 1. A source operator

reads the input data. A second operator removes outliers beyond

o = 1.5× of the standard deviation. Then an operator executes the

Meta-Dataflows: Efficient Exploratory Dataflow Jobs SIGMOD’18, June 10–15, 2018, Houston, TX, USA

Outlier
Filter
1.5

Source
Sample.csv

Outlier
Filter
1.5

KDE
Gaussian

0.2

Sink
Results.csv

Source
Sample.csv

Outlier
Filter
1.5

KDE
Gaussian

0.2

Outlier
Filter
2.0

KDE
Gaussian

0.2

Outlier
Filter
1.5

KDE
Top-Hat

0.2

Outlier
Filter
2.0

KDE
Top-Hat

0.2

Explore
Choose

MISE
Min

Source
Sample.csv

Outlier
Filter
2.0

Explore
Choose
Count
<80%

Explore

KDE
Top-Hat

0.2

KDE
Gaussian

0.2

Choose
MISE
Min

A B

A B

A C

A D

A Explore

Traditional
Dataflow

Exploratory Workflow as
Family of Traditional Dataflows

Exploratory Workflow as
Meta-Dataflows

B

C

D

Choose

Source
Sample.csv

Outlier Filter
1.5

KDE
Gaussian, 0.2

Sink
Results.csv

Outlier Filter
1.5

Source
Sample.csv

Outlier Filter
2.0

Explore
Choose
Count
<80%

Outlier Filter
2.5

LOF Filter
2

LOF Filter
4

Explore

(a) Job shown as dataflow graph

1 val src = readFromFile("sample.csv")

2 val filtered = exploreOutlier.filter(src, 1.5)

3 val result = KDE.estimate(filtered, "gaussian", 0.2)

4 writeToFile("results . csv", result)

(b) Job expressed in Scala

Fig. 1: KDE job for cleaning and profiling sensor data

KDE algorithm using a specific kernel function (K = Gaussian) and
bandwidth (h = 0.2).

This dataflow graph involves a set of explorables, i.e. vertices in
for which there exists a choice of algorithm or parameter setting.

A user would want to compare the results obtained by different set-

tings for outlier detection, and different choices of kernel functions

(e.g. Gaussian, Top-Hat, linear, or cosine) and bandwidth values.

We refer to the process of exploring the choices introduced by

explorables in a dataflow graph as an exploratory workflow. In such

a workflow, a user alters the dataflow graph in terms of its vertices,

e.g. changing the operator functions. Using the model from §2.1, an

exploratory workflow executes as a set of related dataflow graphs.

When the execution time of the exploratory workflow permits

direct interactions, a motivated user can quickly narrow down

promising parameter choices by trial-and-error. However, a process

requiring users to engage in hours of submitting jobs, assessing their

results, and selecting the best job at the end is overly cumbersome.

2.3 Support for exploratory workflows
Work on support for exploratory workflows focused on three areas:

Domain-specific parameter exploration. For jobs in domains

with many explorables, such as machine learning, customised oper-

ators may support automated tuning of parameters [27, 30]. Exist-

ing support, however, is limited to certain domain-specific hyper-

parameters, such as the learning rate. Exporation automatically

searches for the best parameter setting using evaluation criteria

bespoke to machine learning algorithms such as the classification

error. We lack generic exploratory workflows across domains.

Workflow orchestration. A common approach is for users to cre-

ate their own orchestration scripts that coordinate the execution of

an exploratory workflow. Such scripts must compare the quality of

executed dataflow jobs and, based on this, make decisions about

the next job to submit for execution. Generic cluster workflow sys-

tems [11, 21, 33] assist with such orchestration tasks, but the lack

of integration with a dataflow model has severe drawbacks: the

scheduling logic must be expressed explicitly, which is error-prone

and incurs programming effort that could be avoided by suitable

abstractions for exploratory workflows; at the same time, optimisa-

tion opportunities among related dataflow jobs are neglected, as

job execution is independent of any orchestration script.

Dataset materialisation. To avoid re-computing datasets used

multiple times, datasets may be materialised. Dataflow systems em-

ploying lazy evaluation of processing pipelines thus provide means

to define explicit materialisation points. In Spark [40], cache and per-

sist primitives enforce the materialisation of a resilient distributed

dataset (RDD). Alternatively, materialisation can be handled outside

of the dataflow system by a generic caching layer [15, 23].

Beyond the obvious drawback of forcing users to decide on the

location of materialisation points and their types (memory, disk, or a

combination of both) in advance, the main limitation is that dataset

materialisation is not integrated with the scheduling of dataflow

tasks. Materialised datasets may still be evicted repeatedly from

memory (under an LRU policy)—preventing this requires a different

scheduling strategy. Fundamentally, existing materialisation and

caching policies assume independent jobs and fail to exploit the

high overlap in exploratory workflows.

2.4 Requirements
When users prepare exploratory workflows with many explorables,

the number of dataflow jobs to be executed explodes. To reduce

overall completion time, we identify the following requirements:

(R1)Avoidance of unnecessary computation:Computationmust
not be performed for underperforming or superfluous choices of ex-
plorables. In an exploratory workflow, unnecessary computation

may occur for two reasons: (R1a) the quality of intermediate results

in a dataflow may already indicate a bad choice for an explorable;

and (R1b) particular choices of an explorable may become irrelevant

in the light of earlier results obtained for another explorable.

(R2) Reuse of intermediate results: Intermediate results must
be reused by different jobs.When considering different choices for

multiple explorables, many intermediate results can be reused. For

example, a data profiling task that is common to all jobs in an

exploratory workflow should only be executed once.

(R3) Early discarding of datasets: Intermediate datasets must be
discarded as soon as they are no longer needed. Distributed dataflow

systems maintain datasets in memory for efficient processing. To

reduce memory pressure during the execution of an exploratory

workflow, datasets that are not needed for further processing should

therefore be discarded as soon as possible.

(R4)Workflow-awarememorymanagement: Themanagement
of cluster memory must consider data access patterns in exploratory
workflows. Exploratory workflows access intermediate datasets in

a predictable manner. By taking access patterns into account when

deciding which datasets to maintain in memory and which to evict

to disk, a system can reduce the access cost to intermediate datasets.

The above requirements therefore call for the tighter integration

of the dataflow jobs in an exploratory workflow, together with

bespoke scheduling and memory management techniques. Next we

introduce a new dataflow model that achieves this goal.

3 META-DATAFLOWS
We now describe meta-dataflows (MDFs), a new abstraction for

exploratory workflows.

3.1 Meta-dataflow model
The main idea behind a meta-dataflow is to integrate a family of

related dataflow graphs with different settings for explorables into

a single dataflow graph. This enables the execution of exploratory

workflows by submitting a single dataflow job.

The meta-dataflow model extends the common dataflow model

from §2.1 with support for dataflow actions at the meta-level. As

SIGMOD’18, June 10–15, 2018, Houston, TX, USA R. Castro Fernandez et al.

Outlier
Filter
1.5

Source
Sample.csv

Outlier
Filter
1.5

KDE
Gaussian

0.2

Sink
Results.csv

Source
Sample.csv

Outlier
Filter
1.5

KDE
Gaussian

0.2

Outlier
Filter
2.0

KDE
Gaussian

0.2

Outlier
Filter
1.5

KDE
Top-Hat
0.2

Outlier
Filter
2.0

KDE
Top-Hat
0.2

Explore
Choose
MISE
Min

Source
Sample.csv

Outlier
Filter
2.0

Explore
Choose
Count
<80%

Explore

KDE
Top-Hat
0.2

KDE
Gaussian

0.2

Choose
MISE
Min

A B

A B

A C

A D

A Explore

Traditional
Dataflow

Exploratory Workflow as
Family of Traditional Dataflows

Exploratory Workflow as
Meta-Dataflows

B

C

D

Choose

(a) Traditional
dataflow

Outlier
Filter
1.5

Source
Sample.csv

Outlier
Filter
1.5

KDE
Gaussian

0.2

Sink
Results.csv

Source
Sample.csv

Outlier
Filter
1.5

KDE
Gaussian

0.2

Outlier
Filter
2.0

KDE
Gaussian

0.2

Outlier
Filter
1.5

KDE
Top-Hat
0.2

Outlier
Filter
2.0

KDE
Top-Hat
0.2

Explore
Choose
MISE
Min

Source
Sample.csv

Outlier
Filter
2.0

Explore
Choose
Count
<80%

Explore

KDE
Top-Hat
0.2

KDE
Gaussian

0.2

Choose
MISE
Min

A B

A B

A C

A D

A Explore

Traditional
Dataflow

Exploratory Workflow as
Family of Traditional Dataflows

Exploratory Workflow as
Meta-Dataflows

B

C

D

Choose

(b) Set of traditional
dataflows

Outlier
Filter
1.5

Source
Sample.csv

Outlier
Filter
1.5

KDE
Gaussian

0.2

Sink
Results.csv

Source
Sample.csv

Outlier
Filter
1.5

KDE
Gaussian

0.2

Outlier
Filter
2.0

KDE
Gaussian

0.2

Outlier
Filter
1.5

KDE
Top-Hat

0.2

Outlier
Filter
2.0

KDE
Top-Hat

0.2

Explore
Choose

MISE
Min

Source
Sample.csv

Outlier
Filter
2.0

Explore
Choose
Count
<80%

Explore

KDE
Top-Hat

0.2

KDE
Gaussian

0.2

Choose
MISE
Min

A B

A B

A C

A D

A Explore

Traditional
Dataflow

Exploratory Workflow as
Family of Traditional Dataflows

Exploratory Workflow as
Meta-Dataflows

B

C

D

Choose

Source
Sample.csv

Outlier Filter
1.5

KDE
Gaussian, 0.2

Sink
Results.csv

Outlier Filter
1.5

Source
Sample.csv

Outlier Filter
2.0

Explore
Choose
Count
<80%

Outlier Filter
2.5

LOF Filter
2

LOF Filter
4

Explore

Branch 1

Branch 3

(c) Meta-dataflow with three
branches

Fig. 2: Exploratory workflows and meta-dataflows

shown in Fig. 2, choices for explorables in an MDF are represented

through explore operators, which then converge through choose op-

erators. A path between an explore and a choose operator, referred

to as a branch, represents one setting for an explorable. Intuitively,

an explore represents the beginning of a branch, whereas a choose

controls which intermediate datasets from branches should be used

for further processing. Operating on dataflows at the meta-level is
inspired by previous work that has focused on adding control flow

primitives to a dataflow abstraction [24, 37].

Each explorable results in an explore operator in the MDF. The

operators succeeding the explore model the choices for an algo-

rithm or parameter setting; operators preceding the explore and

succeeding a choose represent computation that is independent of

the explorables. The MDF model thus addresses requirement (R2)

from §2.4: intermediate results are only generated once and reused,

instead of being generated multiple times in separate jobs.

A choose operator assesses the quality of the results produced by

each of the branches. It does this based on some predefined evalua-

tion measure and selects a subset of datasets for further processing.

This way, MDFs address the requirement to avoid unnecessary com-

putation due to underperforming branches (R1a), which is similar

in spirit to top-k plans in workflows [29].

The result quality of a branch can often be assessed indepen-

dently. Hence, a choose operator can execute incrementally as soon

as at least one of its branches has completed. It then evaluates and

potentially discards a dataset, even before other branches have exe-

cuted. This addresses the requirement to discard datasets early (R3).

Incremental execution of a choose operator may also indicate

that some branches no longer need to be executed. For example,

some choices of an explorable may lead to worse result quality

compared to already executed branches. If so, the MDF can avoid

this type of unnecessary computation (R1b). Crucially, this requires

support for dynamic changes to the dataflow—a feature unavailable

in mainstream distributed dataflow systems.

MDF definition.More formally, we define a meta-dataflow as:

Definition 3.1 (MDF). A meta-dataflow (MDF) is a dataflow

graph, G = (V ,E), where V< ⊆ V is a set of explore operators,

and V> ⊆ V is a set of choose operators, such that (i) for all v ∈ V<,
it holds that ⋃︀ ●v ⋃︀ = 1 and ⋃︀v ● ⋃︀ > 1; and (ii) for all v ∈ V>, it holds
that ⋃︀ ● v ⋃︀ > 1 and ⋃︀v ● ⋃︀ = 1.1 A path π(v,v′) between operators

v,v′ ∈ V is called branch if v ∈ V< and v
′
∈ V>.

The MDF model allows for hierarchical nesting of explore and

choose operators. A branch may contain further branches that are

defined through sequences of such operators. Execution semantics

of an MDF extends the standard execution semantics of dataflow

1●v and v● refers to the pre- and post-sets of operator v , respectively; see App. A.

graphs. An operatorv ∈ V ∖(V< ∪V>) can be executed if all preced-

ing operators v′ ∈ ●v have been executed. When executing v , its
operator function fv is applied to the input datasets (see App. A).

Input datasets for an explore operator must be processed by each

branch. Hence, the execution semantics of explore is defined as:

Definition 3.2 (Explore semantics). LetG = (V ,E) be an MDF.

The semantics of an explore operator v ∈ V<, ●v = {v
′
} is defined

such that (i) its operator function fv ∶ 𝒟 → 𝒟
o
with o = ⋃︀v ● ⋃︀

fv(d)↦ do , i.e. explore simply forwards the datasets; (ii) v can be

executed if v′ has executed.

A choose operator selects among the datasets generated by its

branches. Intuitively, the semantics of choose is given by (i) an

evaluator function that calculates a score for the result dataset of

a branch; and (ii) a selection function that picks the datasets of a

subset of branches based on their scores, discarding the rest.

Definition 3.3 (Choose semantics). Let G = (V ,E) be an MDF.

The semantics of a choose operatorv ∈ V> is defined by its operator
function fv ∶ 𝒟

i
→ 𝒟 with i = ⋃︀ ● v ⋃︀, which is fv(d1, . . . ,di) ↦

ρv((d1,ϕv(d1)), . . . , (di ,ϕv(di))) where ϕv ∶ 𝒟 → R is an evalu-
ator function that calculates a score per branch; and ρv ∶ (𝒟×R)i →
𝒟 is a selection function that picks datasets from branches based

on scores and concatenates them for further processing.

MDFs support different types of evaluator and selection func-

tions. An evaluator function may compute a score over the values of

a result dataset or its metadata. For example, ϕv(d)↦ ⋃︀d ⋃︀ calculates
a score based on the dataset size, e.g. to detect erroneous interme-

diate results due to too aggressive filtering. A typical selection

function is top-k , which picks the datasets from k branches with the

highest scores (⊕ denotes concatenation of datasets, see App. A),

ρv ∶ ((d1, r1), . . . , (di , ri))↦ d ′ whered ′ = ⊕
1≤j≤i ∧⋃︀{l∈{1, . . .,i}⋃︀rl ≥rj }⋃︀≤k

dj .

Other common functions are min or max, and predicates that

check that the evaluation scores are above or below a threshold

(threshold) or fall within an interval (interval). Selection may also

refer to the first-k scores that satisfy thresholds (k-threshold) or
intervals (k-interval), or the most frequent value (mode).

Example 3.4 (MDF for KDE application). A user wants to ex-

plore the impact of different outlier thresholds (e.g. 2.5 instead of

1.5) and kernel functions (e.g. a Top-Hat kernel instead of Gaussian

kernel) in the KDE job from Fig. 1. Figs. 3a and 3b show an MDF

with four branches between the explore and choose operators. The

choose uses an evaluator function ϕ that calculates the mean inte-

grated squared error (MISE) as a score; the selection function ρ is

defined as the minimum, i.e. only the dataset for the branch with

the lowest MISE is returned as the result of the MDF.

MDF optimisations. Tab. 1 shows different optimisations possi-

ble during execution for combinations of evaluator and selection

functions with particular properties. An evaluator function may

be convex or monotone over the choices of an explorable. For ex-

ample, exploring the parameter range of the simple outlier filter

from Ex. 3.4 yields a monotone function. Selection functions are

often associative and sometimes also non-exhaustive, i.e. a subset of
results may be selected without insight into the remaining results.

Meta-Dataflows: Efficient Exploratory Dataflow Jobs SIGMOD’18, June 10–15, 2018, Houston, TX, USA

Outlier
Filter
1.5

Source
Sample.csv

Outlier
Filter
1.5

KDE
Gaussian

0.2

Sink
Results.csv

Source
Sample.csv

Outlier
Filter
1.5

KDE
Gaussian

0.2

Outlier
Filter
2.0

KDE
Gaussian

0.2

Outlier
Filter
1.5

KDE
Top-Hat
0.2

Outlier
Filter
2.0

KDE
Top-Hat
0.2

Explore
Choose
MISE
Min

Source
Sample.csv

Outlier
Filter
2.0

Explore
Choose
Count
<80%

Explore

KDE
Top-Hat
0.2

KDE
Gaussian

0.2

Choose
MISE
Min

(a) MDF exploring outlier thresholds and kernel functions

1 val src = readFromFile("sample.csv")

2 val result =

3 EXPLORE(t=seq(1.5, 2), k=seq("gaussian", "top−hat"), {

4 val filtered = Outlier.filter(src, t)

5 val estimated = KDE.estimate(filtered, k, 0.2)

6 }).CHOOSE(mise(estimated), min)

7 writeToFile("results . csv", result)

(b) Above MDF in Scala syntax

Outlier
Filter
1.5

Source
Sample.csv

Outlier
Filter
1.5

KDE
Gaussian

0.2

Sink
Results.csv

Source
Sample.csv

Outlier
Filter
1.5

KDE
Gaussian

0.2

Outlier
Filter
2.0

KDE
Gaussian

0.2

Outlier
Filter
1.5

KDE
Top-Hat
0.2

Outlier
Filter
2.0

KDE
Top-Hat
0.2

Explore
Choose
MISE
Min

Source
Sample.csv

Outlier
Filter
2.0

Explore
Choose
Count
<80%

Explore

KDE
Top-Hat
0.2

KDE
Gaussian

0.2

Choose
MISE
Min

Outlier
Filter
1.5

Source
Sample.csv

Outlier
Filter
2.0

Explore

Choose
Evaluate
Count

Choose
Evaluate
Count

Choose
Pruning
<80%

...

Task 1 (Worker)

Task 2 (Worker) Task 3 (Worker)

Task 5 (Worker) Task 6 (Worker)

Task 4 (Master)
Task 7 (Master)

Branches

(c) MDF that chooses datasets at intermediate stage

Fig. 3: Sample MDFs for KDE job

Exploratory workflows can generally be expected to rely on a set

of common evaluator and selection functions, for which the above

properties are known. For example, as detailed above, a common

evaluator determines the score based on the size of a dataset, which

is a monotone function. Tab. 1 lists the properties of widely used

selection functions. For domain-specific functions, however, the

respective properties need to be provided by a user.

The above properties can then be exploited to execute MDFs

more efficiently. Due to incremental evaluation of a choose operator,

if the selection function is associative, datasets created by a branch

are discarded as soon as it becomes clear that they are not processed

further. Associative selection functions, however, also enable the

detection of superfluous branches, which are not executed.

With monotonic and convex evaluator functions, it is possible to

reason that datasets from not-yet-executed branches are inferior

to those already obtained. In this case, remaining branches are not

executed, and execution continues with the downstream operators.

In some cases it is possible to skip remaining branches regardless

of evaluator behaviour. When scores of different branches are never

compared directly and it is only necessary to select k sufficiently

good results, the decision to discard not-yet-executed branches is

independent of properties (monotonicity or convexity) of the score

computation. For example, if the goal in Ex. 3.4 is to findk estimators

for which the MISE is below a threshold, not-yet-executed branches

become superfluous once k such estimators are found.

3.2 Patterns for MDFs
Next we discuss common patterns in MDF exploratory workflows.

Exploration scopes. In many dataflow jobs, explorables have a

scope, i.e. they concern only a subset of the steps of a data process-

ing pipeline. This scope is encoded in the structure of an MDF: it

is opened by an explore and closed by a choose. Incorporating an

Table 1: Optimisations for different choose operator functions

Evaluator Selection Discard

properties properties branches superfluous
incrementally branches

monotone associative ✓ ✓
convex associative ✓ ✓
none associative & non-exhaustive ✓ ✓
none associative ✓

Properties of common selection functions:
associative top-k, min/max, threshold, interval, k-threshold, k-interval

non-exhaustive k-threshold, k-interval

none mode

explicit end of the scope of an explorable is an important pattern

for MDFs, because it enables more efficient execution. The earlier a

scope is closed by a choose operator, the sooner can underperform-

ing branches be terminated. Consider the following example:

Example 3.5 (Scoped MDF for KDE job). Fig. 3c shows a vari-
ant of the KDE MDF with a limited scope for the exploration of the

outlier removal configuration. It avoids superfluous computation

when overly aggressive outlier removal discarded too much data:

an initial choose operator selects only datasets for which the outlier

detection removes less than 20% of the input data. The outlier filter

is executed once per explorable configuration.

Evaluation of iterative computation. Dataflow jobs that per-

form a fixpoint computation require support for iteration: for ex-

ample, in a dataflow graph for solving a classification problem, a

user may want to try different features to model the problem, i.e.

different sets of features become the explorables. An MDF must

execute a fixpoint computation that iterates over the training data

until convergence, doing this once for each explorable.

In a naive version, each branch in the MDF would run until

completion before making a decision of its quality with a choose op-

erator, i.e. each fixpoint operation must finish before the model can

be evaluated. To avoid full execution of branches, however, a choose

operator is incorporated in the iteration itself. It then terminates

the branch early if, e.g. the computation is not converging.

Cross validation of MLmodels. Cross validation [13] is a widely

used statistical procedure to assess prediction models: it splits in-

put data into training and test data. Multiple successive rounds of

training and validation are performed with different splits of the

data to reduce variability of the end result. This can be expressed

as an MDF as follows: an explore operator splits the input data,

a trainer trains the ML model, and a choose operator selects the

highest quality result. The trainer and choose operators execute

multiple rounds of validation, and then assessing model quality.

4 SCHEDULING & MEMORY MANAGEMENT
Below, we first present a model for the execution of MDFs (§4.1)

and then propose a branch-aware scheduling algorithm for MDFs,

which schedules choose operators early to allow for the termination

of underperforming branches and increases the reuse of interme-

diate datasets (§4.2). Finally, we describe an anticipatory memory
management (AMM) policy, which takes dataset access patterns of

MDF branches into account when making eviction decisions (§4.3).

SIGMOD’18, June 10–15, 2018, Houston, TX, USA R. Castro Fernandez et al.

4.1 MDF execution model
To support MDFs, a distributed dataflow system must schedule their
execution, including the explore and choose operators. Next we

define the notion of a schedule for an MDF and derive requirements

for an efficient MDF scheduling algorithm.

Execution of an MDF happens in stages that group operators,

see App. A (●T and T● denote pre- and post-sets of stage T , respec-
tively). A schedule defines an order of stages:

Definition 4.1 (MDF Schedule). A schedule for an MDF, G =
(V ,E), is a sequence ∐︀T1, . . . ,Tk ̃︀ of stages, such that (i) it is com-

plete, i.e. there is a stageTi , 1 ≤ i ≤ k , for each sinkv ∈ V ,v● = ∅, of
the MDF; and (ii) it respects data dependencies, i.e. for each stageTi ,
1 ≤ i ≤ k with ●Ti ≠ ∅, required input datasets have been produced

already, i.e. ●Tj ⊆ ⋃1≤j≤i Tj .

The execution of an MDF schedule ∐︀T1, . . . ,Tk ̃︀ yields a sequence
S = ∐︀s0, . . . , sk ̃︀ of valid states (see App. A). A state si = (Di ,δi , µi)
represents the situation after execution of stage Ti , in terms of

the available datasets (Di), their partition sizes at nodes (δi), and
their storage locations (µi). We assume that a schedule is feasible:

partitions d ∈ Di−1 needed as input for stage Ti are maintained in

memory; for all nodes n ∈ 𝒩 , it holds that d ∈ µi−1(n).
Each state transition realised by the execution of a stage has a

cost. Since the time needed to perform the computation is fixed and

does not depend on the scheduling order, this cost is given by the

sizes of dataset partitions that need to be loaded into memory at all

nodes. An MDF scheduler tries to create a schedule with minimal

cost. As the cost depends on the states visited during execution,

it can only be assessed in retrospect: in a given state, a scheduler

cannot reliably estimate which dataset partitions need to be spilled

to disk (when cluster memory is exhausted) and which datasets

may still be needed (because some branches of the MDF may not

execute due to choose operators) in some future state. Scheduling

of MDFs therefore differs from scheduling of dataflows built of

traditional relational operators [9, 16, 38].

A natural direction is to try to leverage cost-based query opti-

misation techniques from relational DBMS, which can find a good

execution plan based on performance statistics of operators and

their data access costs, even dynamically [9]. These techniques,

however, are tailored to relational operators. In line with other data-

flow models, MDFs do not make assumptions on the used operators

but consider them to be black-box. This makes it hard to decide

a-priori which branches to skip. While some prior work has focused

on the optimisation of individual black-box operators [10, 28, 35],

we are concerned with the optimisation of entire exploratory work-

flows. A promising line of work [17] proposes to retrieve statistics

for cost-based optimisation in the context of ETL dataflows with

black-box operators, which we could leverage in MDF.

Given the absence of information on operator costs and the sizes

of future dataset partitions, MDF scheduling must be conducted in

an online manner and follow stage scheduling: upon the completion

of a stage, the next stage to be executed must be determined. When

cluster nodes exhaust their available memory, intermediate datasets

are spilled to disk. In that case, memory management becomes

relevant, as it determines which dataset partitions to evict to disk.

Next we show how both problems can be solved for the MDF model.

4.2 Branch-aware scheduling
Existing dataflow systems use a breadth-first search (BFS) strategy

to schedule stages. With BFS the initial stages execute to comple-

tion before the next stages are scheduled. When scheduling the

explore stage of an MDF, the branches representing all explorables

would thus be scheduled from their initial stages until reaching the

corresponding choose operators. This has two disadvantages: (1) it

is memory-intensive because it produces intermediate datasets for

each explorable, making the memory usage grow linearly with the

number of explorables; (2) all branches must be executed until com-

pletion before a choose operator makes a decision. The latter is a

consequence of the data-parallel processing in distributed dataflow

systems [3, 40], which execute one stage at a time. In cases in which

a choose can select a branch early, there is a lost opportunity to

save resources by avoiding unnecessary computation.

We instead aim to schedule individual branches until completion

before scheduling others, giving choose operators opportunity for

early evaluation. Our branch-aware scheduling (BAS) uses depth-

first traversal between an explore operator and its corresponding

choose. Each choose operator is split into two functions: the evalua-

tor function is executed by worker nodes and applied directly to the

result datasets of each branch; the selection function is executed

during the scheduling decision by the master node.

With BAS, all cluster memory is dedicated to the execution of a

single branch at a time. As choose operators evaluate the quality

of branches as soon as they finish, it is possible to terminate the

remaining branches early if the current branch passes the choose

evaluation criterion. If the current branch does not satisfy the crite-

rion, its allocated memory can be freed immediately.

The order in which BAS executes branches affects efficiency. To

realise such optimisations, BAS respects scheduling hints on the

order in which explorables (and thus branches) are considered as

well as dependencies between them. Scheduling hints may be de-

rived from properties of choose operators (see Tab. 1), stem from

domain knowledge, or originate from models dynamically learned

during the execution of an MDF: (i) scheduling hints may define

priorities of the different choices of an explorable. For example,

having an evaluator function that is convex over the choices of an

explorable permits the scheduler to quickly identifying branches

to select via binary search; (ii) scheduling hints may induce de-

pendencies among the choices of different explorables. Random

strategies work well in hyper-parameter search for ML models [5],

and depth-first traversal by BAS may be relaxed in case of nested

explore operators: changing choices of outer explorables before all

inner explorables have been considered would prevent some optimi-

sation opportunities, such as selecting branches with high quality

results more quickly; (iii) scheduling hints may also be stateful

and take intermediate results into account. Model-based optimisa-

tion of hyper-parameter search [19] relies on regression models

to describe dependencies between explorables and the quality of

results. Maintaining such models during MDF execution enables

dynamic prioritisation of branches. Such techniques are orthogonal

to the optimisations discussed earlier (Tab. 1): datasets will still be

discarded incrementally, and superfluous branches be pruned.

Meta-Dataflows: Efficient Exploratory Dataflow Jobs SIGMOD’18, June 10–15, 2018, Houston, TX, USA

Algorithm 1: Branch-aware scheduling for MDF G = (V ,E)

1 Texec ← ∅ ; // Stages executed so far

2 Topen ← {T ∈ TG ⋃︀ ●T = ∅} ; // Stages ready for execution, in general

3 Tcand ← Topen ; // Stages that shall be executed next

4 while Tcand ≠ ∅ do
5 Tnext ← hinted_schedulinд(Tcand) ; // Stage to be executed next

// Check if next stage is a single choose operator

6 if Tnext = {vnext } ∧ vnext ∈ V> then
7 run_workers(ϕvnext) ; // Execute choose evaluator function

8 run_master(ρvnext) ; // Execute choose selection function

// Record stage as executed, if all predecessors executed

9 if ●Tnext ⊆ Texec then Texec ← Texec ∪ {Tnext } ;
10 else
11 run_workers(Tnext) ; // Execute stage

12 Texec ← Texec ∪ {Tnext } ; // Record stage as executed

// Record current stages that are ready for execution

13 Topen ← Topen ∪Tcand ∖ {Tnext }
// Determine new stages that are ready for execution

14 Tcand ← {T ∈ Tnext ● ⋃︀ ●T ⊆ Texec}
// If no new stages became ready, resort to old ready stages

15 if Tcand = ∅ then Tcand ← Topen ;

Algorithm. We formalise the BAS algorithm in Alg. 1. Given an

MDF, G = ∐︀V ,Ẽ︀, BAS schedules stages (i.e. comprising opera-

tors with narrow dependencies, see App. A) for execution in a

step-wise fashion. It maintains three sets: stages that have been

executed (Texec), stages that are ready for execution (Topen), and
stages that are candidates for being executed next (Tcand).

Initially, Topen and Tcand contain the stages with the source ver-

tices of the dataflow graph. As long as the set of candidate stages is

non-empty, stages are scheduled for execution (lines 4–15). A candi-

date stage is chosen, based on scheduling hints or randomly (line 5).

If it contains a choose operator (choose operators are assigned to

separate stages), its evaluator function is executed by the work-

ers (line 7) and the selection function by the master (line 8). The

stage of the choose is recorded as executed only if all its predeces-

sors have executed, i.e. all branches that lead to the choose (line 9).

All other stages are scheduled for execution on the workers (line 11)

and recorded as executed (line 12).

Next, the algorithm updates the sets of stages that are ready

for execution (Topen) and that are candidates for the next execu-

tion (Tcand). The latter is set to all succeeding stages of the one exe-

cuted last if their respective preceding stages have executed (line 14).

The current branch is executed until completion. Stages of other

branches are only considered if the stages succeeding the one ex-

ecuted last are not yet ready for execution. In this case, the set of

ready stages (Topen) is taken as the new set of candidates (line 15).

Example 4.2 (Branch-aware scheduling). Fig. 4 shows the

schedule obtained by BAS for the first part of the KDE MDF from

Fig. 3c: (i) the source operator loads the input data, which yields a

dataset d0; (ii) tasks are scheduled for the stage that includes the

outlier filter with a threshold of 2.0, resulting in dataset d1, and the

subsequent evaluation, which yields result score r1; (iii) the selec-
tion function is evaluated by the master and leads to the eviction of

dataset d1; (iv) the same is done for the second branch of the MDF,

producing a dataset d2 with a score r2; and (v) the selection function
is evaluated again, and the dataset is kept for further processing.

Regardless of the branch selection order, for MDF execution,

BAS is superior to traditional BFS-based scheduling. As detailed

d0

Outlier Filter (2.0)

Source (Sample.csv)

Choose Eval (Count) Choose Eval (Count)

d1

r1

Outlier Filter (1.5)

Choose Eval (Count) Choose Eval (Count)

d2

r2

d2KDE (Gaussian)

Workers Master

(2)

(3)

(5)

(6)

(8)

(4)

(7)

(1)

Fig. 4: Example of branch-aware scheduling for KDE MDF

above, the cost of a schedule is determined by the sizes of dataset

partitions that need to be loaded by all workers. In the general case,

BAS reduces the number of datasets to be stored, which lowers

the cost of a schedule: when using depth-first traversal between

explore and choose operators instead of BFS, at most as many, and

typically significantly fewer datasets are stored.

Let s = (D,δ , µ) be an execution state of MDF G = (V ,E) (see
App. A), and VT ⊆ V the set of executed operators. For a dataset

d ∈ D, we denote by con(d) ⊆ V the consuming operators in the

MDF. Then,Dc
s is the subset of datasets in state s that are still needed

to complete execution, i.e. Dc
s = {d ∈ D ⋃︀ (con(d) ∖VT) ≠ ∅}.

Theorem 4.3. Let sA = (DA,δA, µA) and sF = (DF ,δF , µF) be
two states during the execution of an MDF with BAS or BFS, respec-
tively. Then, it holds that if the same datasets have been produced to
reach both states, the number of datasets still to be stored with BAS is
at most the number obtained with BFS:

DA = DF ⇒ ⋃︀D
c
sA ⋃︀ ≤ ⋃︀D

c
sF ⋃︀.

A discussion and proof of this result can be found in App. B.

4.3 Anticipatory memory management
When datasets exceed the available memory of cluster nodes, they

must be evicted and spilled to disk. A memory management policy
decides which datasets to evict, and affects execution performance

of future stages that access evicted datasets. Existing systems such

as Spark employ a least-recently-used (LRU) policy: the system

maintains information about the last access of each dataset, e.g.

through timestamps; upon exhausting memory, the datasets that

were used the longest time ago are spilled to disk.

MDFs typically have operators with large fan-outs: an explore

operator has a high out-degree when datasets used as input are

passed to a large number of explored branches. Existing systems do

not account for such graphs in their memory management policies

because, in traditional dataflow graphs, a single dataset is rarely

used as input to many operators. For MDFs, an LRU policy makes

inefficient eviction decisions: the large fan-out of explore operators

means that a recently unused dataset may still be required as input

for future operators and should remain in memory. This inefficiency

of an LRU policy aggravates at more deeply nested branches.

We observe that the structure of the MDF provides information

on how datasets will be accessed during execution: datasets pro-

duced by stages upstream of an explore operator may be accessed

SIGMOD’18, June 10–15, 2018, Houston, TX, USA R. Castro Fernandez et al.

Algorithm 2: Anticipatory memory management for MDFs

input : G = (V , E), an MDF,

n ∈𝒩 , a cluster node for which memory is exhausted,

(D, δ, µ), the current state of MDF execution,

VT ⊆ V , the set of operators of executed stages so far,

α , the ratio of reading/writing data to disk/memory.

output : d∗ ∈ D , dataset of which the partition at n is evicted.

// Compute how often a dataset can still be used as input of operators

1 for d ∈ D do
2 v ← pro(d);
3 acc(d)← ⋃︀v ● ∖VT ⋃︀;

// Compute preference for all known datasets currently maintained in memory at node n
4 for d ∈ µ(n) do pre(d) = acc(d) ⋅ δ(n, d) ⋅ α ;

// Select dataset with lowest preference value for eviction

5 d∗ ← argmind∈µ(n) pre(d);
6 return d∗ ;

multiple times, once for each branch originating from the explore

operator; other datasets may be subject to pruning of branches by

a choose operator and hence not accessed at all beyond the choose.

Knowledge of the data access patterns alone is not sufficient

to make effective memory management decisions, as the cost of

loading a dataset partition into memory depends on its size. Hence,

the effectiveness of a given eviction decision also depends on the,

potentially unknown, sizes of future intermediate dataset partitions.

In the absence of precise information about future dataset sizes,

we order datasets by the preference to be kept in memory based on

(i) how often a dataset will be accessed and (ii) the cost of loading

the dataset from disk. When memory is exhausted at a cluster node,

the dataset with the lowest preference value is evicted.

Algorithm. We describe the algorithm for anticipatory memory
management (AMM) in Alg. 2. It is invoked when, during the ex-

ecution of an MDF, G = ∐︀V ,Ẽ︀, a cluster node n ∈ 𝒩 exhausts its

memory. We assume that (D,δ , µ) is the current execution state

after the stages with the operators in VT have already been exe-

cuted. The AMM algorithm also takes as input a hardware-specific

ratio of the cost of reading/writing data from/to disk and memory,

respectively. It returns a dataset partition at node n to be evicted.

The algorithm first calculates how often each dataset known in

the current state, d ∈ D, is still used as input of operators according
to G. For each dataset d , it determines the operator that produced

it, pro(d). The successors of this operator inG , which have not yet

been executed as part of a stage, may still need to access dataset d
in the future. The number of future accesses is denoted by acc(d).

Next, AMM assigns a preference pre(d) to each dataset d main-

tained in memory at node n. This preference represents the relative
importance of keeping each dataset in memory. It is computed based

on the number of future accesses acc(d), the size of the partition
of dataset d at node n, and a disk/memory cost ratio α .

The ratio α is computed for a specific cluster hardware ahead of

time. Ifwd ,wm , rd , and rm are the times to write a fixed amount

of data to disk and to memory, and to read it from disk and from

memory, respectively, the ratio α is defined as: α =wd rm⇑wm rd .
Finally, the AMM algorithm returns the dataset with the lowest

preference, and the partition of this dataset at node n is evicted.

5 IMPLEMENTATION
In this section, we describe the implementation of MDF as part

of the SEEP distributed dataflow systems [7]. Its master/worker

architecture is similar to other modern dataflow systems such as

Spark [40] and Flink [3]. The master node runs a scheduler that
instructs worker nodes which stages to execute from the dataflow

graph. Each worker has a memory allocator that manages memory

and makes eviction decisions. We explain how we adapted SEEP’s

scheduler and memory allocator to support MDF, and finish with a

discussion of fault-tolerance and straggler mitigation.

Scheduler. The SEEP scheduler must identify explore and choose

operators in the MDF. When it finds an explore, it triggers the

branch-aware scheduling, until it detects a choose. For that, it filters

out the stages in the scheduling queue to retain only those of the

same branch. The other stages are moved to a pending branch queue,
which is accessed by the choose function, as explained next.

The choose operator must pick active branches according to the

selection function, and assign the output of these branches to tasks

of the following stage. Crucially, after a choose operator executes,

the scheduler may decide to change the dataflow dynamically, e.g.

by pruning a branch. Dynamically changing the dataflow is sup-

ported in SEEP by executing the choose operator in themaster—with

the control at the master, the schedule is rewritten based on the

outcome of choose. After a decision is made, execution continues

by scheduling the remaining stages from the pending branch queue,
or the remainder of the job if no more branches are available.

Memory allocator. Each worker has a memory allocator that can

load datasets into memory or spill them to disk. To support the

AMM policy, we change two components: (i) the master must im-

plement a policy and a mechanism, which exchanges information

about memory management with workers; and (ii) each worker

must enforce the eviction strategy, as dictated by the master. During

scheduling, the workers notify the master about available datasets

and memory. The master uses this information to execute the AMM

policy, and produces a list of datasets ordered by their preference to

remain in memory. This list is sent to workers with each scheduling

decision, which evict datasets based on the preference values.

Fault-tolerance and stragglers. Two common problems of exe-

cuting dataflow jobs on clusters are (i) node failures, which must be

handled by a fault-tolerance mechanism, and (ii) stragglers, which
are underperforming workers that increase the job completion time.

SEEP uses a checkpoint-based fault tolerance mechanism; qother

mechanisms, such as those based on recomputation [40], can also

be applied. If execution during branch exploration fails, recovery

is the same as that for any operator failure: the master maintains

the results of the evaluation function at choose operators, which

are small in size. Thus the result can be recovered from the master

rather than executing entire branches to recompute.

Mitigating straggling workers when executing MDFs does not

require changes to the dataflow system and can leverage existing

mechanisms. A potential new source of stragglers, however, can be

the execution of the selection functions of choose operators at the

master. We have not found this to be an issue in practice though:

on a cluster of 10 machines with a low-end master node, we can

execute 2 million choose invocations per second when collecting

results. If the choose execution becomes a bottleneck, an alternative

design would execute selection functions at worker nodes, and then

relinquish control to the master.

Meta-Dataflows: Efficient Exploratory Dataflow Jobs SIGMOD’18, June 10–15, 2018, Houston, TX, USA

Initial weights

|W | Hyperparams

|R×M |
Exhaustive

|W×R×
M |Early choose

|W |+|R
×M |

0

50

100

Explore configuration

Ti
m

e
(m

in
ut

es
)

Sequential job execution
4 Parallel jobs
8 Parallel jobs
MDF

Fig. 5: Deep learning job

Kernels
|K| +Normalisation

|K×N|
+Bandwidth
|K×B|

All
|K×N×

B|

0

100

200

Explorables

Ti
m

e
(m

in
ut

es
)

Sequential job execution
4 Parallel jobs
8 Parallel jobs
MDF

Fig. 6: Data profiling job

16 64 512 1024
0

100

200

300

400

Masking parameter granularity
(|W×T×L×M×D|)

Ti
m

e
(m

in
ut

es
)

Sequential job execution
4 Parallel jobs
8 Parallel jobs
MDF

Fig. 7: Time series analysis job

6 EVALUATION
We experimentally evaluate the performance benefit of MDFs in

three common domains for exploratory workflows (§6.1). We then

investigate the scalability of MDFs (§6.2), the impact of MDF topol-

ogy on performance (§6.3), and the behaviour of MDFs with differ-

ent CPU and memory resources (§6.4).

Experimental set-up. We have added MDF support, as described

in §5, to SEEP, an open-source distributed dataflow system [7, 8].

The architecture of SEEP is representative of that of other sys-

tems such as Spark [40] or Flink [3], and its scheduler is similar to

Dryad’s [20]. §6.1 compares SEEP’s performance to that of Spark.

We experiment on a private cluster with 1 master node and

12 worker nodes. Each node has a quad-core Intel Xeon E3-1220

CPU, 16 GB of RAM, and a 1 Gbps Ethernet connection. We use

Ubuntu Linux 14.04.3 with the Linux kernel 3.1 and OpenJDK JVM 8.

For all experiments, we consider the average results over 3 runs

and include the minimum and maximum as error bars. Given the

small variance between runs, the error bars are often not visible.

Exploratory workflows. We use the following workflows, for

which the MDFs can be found in App. C:

(1) Deep learning job. Deep learning networks (DNNs) use large

volumes of data to produce accurate machine learning models for

image classification, speech recognition, and text understanding.

Exploratory workflows for training DNN models can include ex-

plorables for hyper-parameters, with the goal of finding the best

configuration that results in the highest classification accuracy.

We create an MDF that covers three stages: data pre-processing,

DNN model training, and model validation. In the training stage,

the MDF explores: (i) eight weight initialisation strategies based

on either Gaussian or uniform distributions (W); (ii) four learn-

ing rates (R={0.0001, 0.001, 0.005, 0.01}); (iii) four momentum val-

ues (M={0.25, 0.5, 0.75, 0.9}). With all possible values of initiali-

sation strategies and hyper-parameters, the number of paths to

explore becomes ⋃︀W × R ×M ⋃︀ = 128. The MDF trains the model us-

ing the CIFAR-10 dataset that contains RGB image data commonly

used for benchmarking ML jobs [22]. After an epoch of training,

the classification accuracy is measured using validation images.

(2) Time series analysis job. A common task in time series analysis

is to determine which data points, or groups thereof, are of interest

for further analysis. A typical processing pipeline has three stages:

(i) masking data points in the series based on the value ranges

within a sliding window; (ii) marking discrete events that indicate

drastic changes in the series; and (iii) detecting sequences of dis-

crete events, each indicating a change of a particular magnitude.

We use a real-world dataset of a million sensor measurements from

oil wells [18] and create an MDF with five explorables: masking

uses (i) different window lengths (W ={2, . . . , 9}); (ii) thresholds for
the permitted data difference in the window (T={1.0001, . . . ,1.5});
marking relies on (iii) different window lengths (L={2, . . . , 10});
(iv) value differences (M={0.1, . . . , 10.0}); and (v) event durations

(D={2k, . . . , 20k}). We consider different granularities of these pa-

rameters, and explore combinations of them at each granularity,

yielding between 16 and 1024 branches. The obtained intermediate

result is then evaluated in terms of the aggressiveness of masking:

the MDF evaluates the number of resulting data points, and the

ratio of masked data points should not exceed a threshold.

(3) Data profiling job. We use the kernel-density estimation (KDE)

job from §2.2 to create an MDF. It processes a synthetic dataset with

100million normally distributed random values. TheMDF hasmulti-

ple explorables: (i) the data pre-processing method between normal-

isation and standardisation (N); (ii) the kernel function that is used

in the estimation of the distribution (K={biweight, triweight, . . .})
and (iii) the kernel bandwidth parameter (B={0.1, 0.2, 0.3}). To eval-
uate the effectiveness of branches, the MDF uses hold-out samples

(1% of the dataset) and computes the log likelihood of the probability

density function values of the hold-out samples.

(4) Synthetic job. Finally, we create a synthetic MDF that offers

control over the branch structure, and computational cost. TheMDF

processes string/integer pairs, and uses two nested explores, B1 and
B2. Each explore performs an algebraic operation on each branch,

updating the integer value in tuples accordingly. The algebraic

operation is performed a configurable number of times per data

item, which permits us to tune the processing cost.

6.1 How do MDFs affect completion time?
We study the job completion times of MDFs against three baseline

approaches: (i) sequential executes separate jobs for each explorable
setting in sequence. Each job utilises the full cluster, and once it is

finished, the next job is scheduled; (ii) 4-parallel submits four jobs in

parallel to the cluster until all the jobs have run; and (iii) 8-parallel
executes eight parallel jobs. The deployment uses 8 worker nodes,

and the parallel deployments share the memory of workers equally.

Fig. 5 shows the completion time for the deep learning job with

different explorables. The first set of bars shows the time to explore

just the initial weightsW ; the second set of bars reflects the explo-

ration of all combinations of hyper-parameters, R ×M . In the first

configuration, differences between all approaches are small, and

completion times are short; in the second one, parallel execution

(4-parallel and 8-parallel) leads to slight speed-ups compared to

sequential execution. MDF offers further improvement as it pre-

processes the dataset only once and reuses it across explored paths.

SIGMOD’18, June 10–15, 2018, Houston, TX, USA R. Castro Fernandez et al.

8 16 32 64
0

1

2

3

4

Masking parameter granularity (|W×T |)

Ti
m

e
(m

in
ut

es
)

MDF
MDF (top-4)
MDF (first-4, random)
MDF (first-4, sorted)

Fig. 8: Impact of optimisations

4 16 36 64 100
0

200

400

600

Branching factor (|B1×B2|)

Ti
m

e
(m

in
ut

es
)

Spark (sequential)
Spark (YARN)
Spark (cache)
SEEP (BFS)
SEEP (MDF)

Fig. 9: Completion times of MDF

The final two sets of bars consider both the initial weights and the

hyper-parameters, thus exploring the full set of combinations. The

first option, exhaustive exploration, considers all combinations of

weights with all combinations of hyper-parameters, thus exploring

a number of options equal to the cardinality of the cross product of

each set, ⋃︀W ×R×M ⋃︀. For the deep learning job, however, it is possible
to explore the initial weights first, then choose the best result as the

starting point for the exploration of the hyper-parameters within a

single job. The last set of bars therefore considers this early choose
approach, which reduces the explored paths to ⋃︀W ⋃︀ + ⋃︀R ×M ⋃︀.

Under exhaustive exploration, MDF reduces completion time

by 60% compared to sequential. Parallel execution fully utilises

the cluster, thus achieving better performance. MDF offers further

improvement—reducing completion times by 28% and 15% com-

pared to 4-parallel and 8-parallel, respectively—because it does not
repeatedly pre-process the training data across explored paths.

MDF with early choose exploration reduces completion time by

85% compared to 8-parallel, the best-performing baseline approach.

Here the MDF can avoid training the model with poorly chosen

initial weightsW , thus only exploring promising combinations of

the other parameters R ×M . Compared to exhaustive exploration,

this requires fewer intermediate datasets to be kept in memory.

Fig. 6 shows the completion times for the data profiling job.
MDF consistently finishes fastest. It reduces completion time by

70%, on average, when exploring KDE configurations compared

to sequential because it reuses the output of data pre-processing
operators for subsequent exploration of the kernel functions and

bandwidths. The benefit of MDF depends on the input size: the

normalisation process is inexpensive, but it requires a linear scan

over the entire dataset and therefore has increased cost as the

dataset size grows. With MDF, this input data is read only once.

Among the baselines, the completion time of parallel execution

is shorter than that of sequential, and 8-parallel is faster than 4-
parallel. In this job, the computation and I/O operations can be

overlapped among the parallel jobs. A higher degree of parallelism,

however, increases memory pressure, which limits performance.

Fig. 7 shows the results of the time series analysis job. The com-

pletion time of sequential grows linearly with the number of ex-

plored combinations ofW ×T ×L×M×D, as expected. With parallel

execution, the completion time increases more slowly due to better

cluster utilisation. All three baselines are significantly slower than

MDF, though. With MDF, the choose after the masking operator

selects only a subset of intermediate results for further processing

(event marking and sequence detection), thereby terminating un-

derperforming branches. This reduces completion time between

60% and 98% over parallel and sequential execution, respectively.

In Fig. 8, we investigate the effect of the optimisations from

§3.1 and the scheduling hints from §4.2. We use the time series
analysis job and vary the choose function. The MDF bars are the

same as those in Fig. 7, exploring all branches to completion. By

selecting only the top-4 results at the choose operator, as shown

by the MDF (top-4) bar, the system reduces completion time by

34%–39%, discarding datasets incrementally. When the MDF can

select any 4 results that meet a threshold (rather than the top-4),

this effect becomes more pronounced—in this experiment, half of

the results meet the threshold. As the selection function is now not

only associative but also non-exhaustive, significant savings ensue.

As shown by the MDF (first-4, random) bar, executing branches

in randomorder (as suggested by random search in hyper-parameter

optimisation [5]), leads to a large variability in completion times

depending on the order (we show the minimum, average and max-

imum of 12 runs). Yet, the maximum is always less than that of

MDF (top-4), showing an 85% improvement in the best case.

The scheduling hints can be exploited to optimise the search

further. If the evaluator is monotonic, domain-specific hints on the

order in which the values of the explorable are considered reduce

the completion time: as shown by the MDF (first-4, sorted) bar, the
system consistently executes faster with these scheduling hints.

Finally, we compareMDF against Spark [40] using the synthetic
job. We compare (i) Spark (sequential), the equivalent sequential
jobs executed by Spark; (ii) Spark (YARN), parallel jobs executed by
Spark together with YARN [36]; (iii) Spark (cache), a single Spark
job in which we explicitly designate intermediate datasets for reuse

using Spark cache() statements. Since Spark does not use AMM for

eviction, we empirically determine which datasets to retain—when

instructing Spark to cache all datasets, execution is slower than

without caching; (iv) SEEP (BFS), a single job in SEEP that traverses

the dataflow in a breadth-first (BFS) manner; and (v) SEEP (MDF).
Given the simple nature of computation in the synthetic job, the
implementations in SEEP and Spark are the same.

Fig. 9 shows the completion time as the branching factors ⋃︀B1⋃︀
and ⋃︀B2⋃︀ vary. We use the same branching factor in the inner and

outer explores, i.e. ⋃︀B1⋃︀=⋃︀B2⋃︀. The Spark (sequential) deployment

is consistently the worst, as it neither removes redundant computa-

tion nor parallelises the job. Spark (YARN) improves performance,

especially when there are few branches that benefit from paral-

lelism. The improvement plateaus for larger number of branches

as the redundant computation increases with each job.

SEEP (MDF) outperforms Spark (YARN) by 69% and Spark (cache)
by 37% when executing 100 branches. It outperforms Spark (YARN)
because of the reuse of intermediate results. It outperforms Spark
(cache) because of the better memory management introduced by

AMM. The performance of SEEP (BFS) is worse than SEEP (MDF)
and Spark (cache) because it does not use BAS. In summary, the

combination of BAS and AMM, as realised in MDF, achieves the

best performance for exploratory workflows, even when compared

with a judiciously designed dataflow in Spark.

6.2 How scalable are MDFs?
We evaluate scalability with respect to the number of workers and

the input data. We break down the completion time results in terms

of the impact of traditional (LRU) and optimised (AMM) memory

management, both with and without incremental evaluation of

the choose operator (incremental; see §3.1). Both the incremental
choose evaluation and AMM are meant to decrease completion

Meta-Dataflows: Efficient Exploratory Dataflow Jobs SIGMOD’18, June 10–15, 2018, Houston, TX, USA

2 4 6 8 10 12
0

2

4

6

8

Workers

A
gg

re
ga

te
M

B
/s

ec
on

d

LRU LRU+Incremental
AMM AMM+Incremental

Fig. 10: Completion times (workers)

0 2 4 6 8
0

50

100

150

200

250

Input size (GB/worker)

Ti
m

e
(m

in
ut

es
) LRU LRU+Incremental

AMM AMM+Incremental

Fig. 11: Completion times (data)

0 20 40 60 80 100 120
0

300

600

900

Outer branching factor

Ti
m

e
(s

ec
on

ds
) LRU LRU+Incremental

AMM AMM+Incremental

Fig. 12: Completion times (topology)

2 4 6 8 10 12
0

0.5

1

Workers

M
em

or
y

hi
tr

at
io

LRU LRU+Incremental
AMM AMM+Incremental

Fig. 13: Memory hit ratio (workers)

0 2 4 6 8
0

0.5

1

Input size (GB/worker)

M
em

or
y

hi
tr

at
io LRU LRU+Incremental

AMM AMM+Incremental

Fig. 14: Memory hit ratio (data)

0 20 40 60 80 100 120
0

0.5

1

Outer branching factor

M
em

or
y

hi
tr

at
io

LRU LRU+Incremental
AMM AMM+Incremental

Fig. 15: Memory hit ratio (topology)

time by accessing more data in memory instead of disk, albeit via

different mechanisms. To measure their effect, we also report the

memory hit ratio, which is the fraction of data accesses that read

data residing in memory.

Number of worker nodes.We observe the effect of the number of

worker nodes on the completion time for the synthetic job. We vary

the workers from 2 to 12. The input data per worker is constant, so

the aggregate input size increases as workers are added.

Fig. 10 shows the rate at which the input data is processed. AMM
with incremental is the best performing followed by LRU with

incremental, which indicates that the incremental choose yields

the biggest benefits in terms of completion time. When not using

incremental evaluation, AMM still performs better than LRU alone.

The scaling behaviour for AMM and incremental remains un-

changed as we increase the number of workers, which means that

they do not negatively affect the scalability of the system. Across

the approaches, we observe sublinear scaling due to the overhead

of the extra workers in our current implementation. Fig. 13 shows

that, since the input size per worker is constant, the memory hit

ratio is not affected by the number of workers.

Dataset size. Next we investigate how MDFs scale with increasing

input dataset sizes. We vary the dataset size from 2 GB to 9 GB per

worker. Each node has 10 GB of available memory.

Fig. 11 shows the completion times; Fig. 14 shows the memory

hit ratios. For the memory hit ratio, we see different behaviour

based on dataset size: initially the memory-hit ratio decreases up

to 6 GB of data, and then remains constant for the rest of the exper-

iment. During the first phase, completion times increase more than

linearly with size because a growing amount of data is accessed

from disk; once most are disk based, the time increases linearly. We

also observe that the constant overhead of AMM is higher than that

of LRU. This is more than offset by its reduction in disk accesses.

These results show how the memory hit ratio affects completion

times. With AMM and incremental, MDF achieves better memory

hit ratios, which leads to a reduction of the completion time.

6.3 What is the impact of MDF topology?
Next we investigate how the branching factor of an MDF influences

the completion time and the memory hit ratio. We use the synthetic
job with its two nested explores, and adjust the branching factors.

Incremental choose evaluation and AMM are different mecha-

nisms to improve memory hit ratios to reduce MDF job completion

time: AMM by controls eviction when necessary, and incremen-
tal greedily consumes data. Since AMM is affected by data access

frequency, and incremental is affected by the availability of data

to choose greedily, we create an experiment to control both of

these with a fixed total number of branches in the MDF. We use

120 branches, which is a highly composite number: it allows many

different branching factors for the inner and outer explore opera-

tors such that ⋃︀B1×B2⋃︀=120.
Fig. 12 and Fig. 15 show the completion times and memory hit

ratios, respectively, as the outer branching factor, B1, increases.
Incremental choose evaluation significantly reduces completion

times, especially when the outer branching factor is low and the

inner branching factor is high. This is because datasets are discarded

by the inner choose earlier in the job, freeing up memory for other

data. Incremental is less effective when the outer branching factor is
high because more datasets must be kept until the choose operator

of the outer explore later in the job.

AMM also outperforms LRU, particularly for high outer branch-

ing factors. Here some datasets are reused more often, increasing

the utility of keeping them in memory rather than evicting them in

favour of less-used datasets. By accounting for the increased utility,

AMM shows stable behaviour across all branching factors.

In summary, incremental and AMM provide complementary

improvements. incremental is beneficial when datasets can be pro-

cessed greedily and discarded early;AMM helps when datasets must

be evicted and not all datasets have the same access frequency.

6.4 How does resource usage affect MDFs?
Finally, we study how CPU usage and memory availability affect

completion times of MDF jobs. We use the synthetic job with

SIGMOD’18, June 10–15, 2018, Houston, TX, USA R. Castro Fernandez et al.

0 2 4 6 8 10
0

0.5

1

Compute iterations

Ti
m

e
R

el
at

iv
e

to
LR

U

LRU LRU+Incremental
AMM AMM+Incremental

Fig. 16: Relative completion time
(processing cost)

0 10 20 30 40
0

0.5

1

Maximum number of datasets in memory

Ti
m

e
R

el
at

iv
e

to
LR

U

LRU LRU+Incremental
AMM AMM+Incremental

Fig. 17: Relative completion time
(available memory)

0 10 20 30 40
0

0.5

1

Maximum number of datasets in memory

M
em

or
y

hi
tr

at
io

LRU LRU+Incremental
AMM AMM+Incremental

Fig. 18: Memory hit ratio (available
memory)

⋃︀B1⋃︀=⋃︀B2⋃︀=5. This provides non-trivial branching at both explore

levels while a reasonable fraction of all data fits in memory.

CPU.We observe the impact of CPU usage by changing the process-

ing cost of branches in the synthetic job. Fig. 16 shows the relative
completion time (normalised against the LRU baseline) when in-

creasing the processing cost. As expected, AMM with incremental
performs the best, followed by LRU with incremental. Using AMM
alone results in the lowest benefit.

The relative improvement of AMM with incremental over LRU
decreases with the processing cost: as the processing becomes more

costly, the job becomes compute-bound, which means that the

reduction in I/O operations due to AMM has less impact. Similarly,

any reduction in completion time due to the incremental choose
evaluation becomes offset by the more costly branch computations.

Memory. Next we increase the available memory at each worker

while maintaining the same input data size for the synthetic job.
Fig. 17 shows the completion time (again normalised against LRU),
and Fig. 18 shows the memory hit ratio. When little data fits in

memory, completion time with AMM and incremental is signifi-
cantly better than with LRU because of fewer disk accesses. As the

amount of available memory increases, all approaches experience

better memory hit ratios, thus reducing completion time. This ef-

fect is strongest for LRU, which makes the least effective eviction

decisions, and thus benefits the most from more available memory.

As more data fits into memory, the relative benefit of AMMwith

incremental reduces: as the memory hit ratios of all approaches

reach 1 (Fig. 18), completion times also converge. LRU, however,
requires more available memory to reach a high memory hit ratio,

showing that AMMwith incremental uses memory more efficiently.

7 RELATEDWORK
Scientific workflow management. Pegasus [12], Azkaban [33],

Luigi [32], and Oozie [21] orchestrate the execution of multiple jobs,

but do not handle data sharing or optimised memory allocation.

Work on provenance of scientific workflows [11] focuses on how

data and results of jobs can be shared, with a focus on cataloguing

and providing access to datasets. MDFs are orthogonal to this work.

Data sharing in jobs. Tachyon [23] uses a storage layer to cache

recently accessed in-memory data, following an LRU policy. Nec-

tar [15] manages the storage and caching of datasets. It can share

intermediate datasets generated by sub-computations of jobs.

In contrast, MDFs do not only target dataset caching but also

schedule computation efficiently for exploratory workflows. MDFs

are implemented in a dataflow system and do not require a caching

layer. Sharing opportunities for intermediate datasets are made

explicit in MDFs through the explore and choose operators, which

permits sophisticated memory management policies.

Automated parameter exploration. Exploratory workflows are

prevalent in machine learning algorithms due to the many hyper-

parameters they need to configure. Spark ML [30] and Keystone

ML [31] permit the declaration of hyper-parameters to be explored

through ML-specific API functions when training models.

These approaches make assumptions about the nature of the da-

taflow job, which allows domain-specific optimisations such as grid

or random search for hyper-parameters [5]. Instead, MDFs target

arbitrary dataflow graphs and can execute complex dataflows with

multiple phases of exploration and reuse of intermediate results.

DryadOpt [6] is a library implemented on top of DryadLINQ [39],

performing exhaustive search of the solution space for optimisation

algorithms implemented as dataflow graphs. It breaks the original

problem into subproblems using a branch-and-bound approach,

forming a search tree that can be executed in parallel. DryadOpt

targets optimisation problems only, and its pruning strategy would

not be applicable in other domains. MDFs require users to manually

specify selection strategies, making them more generally usable.

Dynamic query optimisation. MDF modifies a dataflow on-the-

fly, which is necessary to skip branches after a choose operator.

Although most dataflow systems do not support dynamic data-

flow topologies, the ideas have appeared in query optimisers for

relational DBMS before. StarBurst [16] introduces a choose-plan
operator [9, 14] that permits the execution of dynamic query evalu-
ation plans in which the best query plan is only decided at runtime.

In addition, support for dynamically controlling workflows appears

in the context of optimising business processes [37] and scientific

workflows [25]. In this paper, we have shown how dynamic changes

to the dataflow topology along with judicious memorymanagement

can speed up modern exploratory workflows used by analysts.

8 CONCLUSIONS
We presented meta-dataflows (MDFs), a new dataflow model for

exploratory workflows. The idea behind MDFs is to capture the

expertise of users who want to explore a dataset with a range of

related dataflow jobs with different algorithms or parameters. By

specifying such exploratory workflows as a single integrated MDF,

we demonstrated performance gains due to discarding unnecessary

computation and utilising cluster memory better.

Acknowledgements. This research was partially supported by

BP plc, a Google research faculty award, and the German Research

Foundation (DFG) under grant agreement 246594964.

Meta-Dataflows: Efficient Exploratory Dataflow Jobs SIGMOD’18, June 10–15, 2018, Houston, TX, USA

REFERENCES
[1] Martín Abadi, Ashish Agarwal, et al. 2016. TensorFlow: A System for Large-

scale Machine Learning. USENIX Conference on Operating Systems Design and
Implementation (OSDI) (2016).

[2] Alfred V. Aho, Peter J. Denning, and Jeffrey D. Ullman. 1971. Principles of Optimal

Page Replacement. Journal of the ACM (JACM) (1971).
[3] Alexander Alexandrov, Rico Bergmann, et al. 2014. The Stratosphere Platform

for Big Data Analytics. Conference on Very Large Data Bases (VLDB) (2014).
[4] Apache. 2017. Hadoop. http://hadoop.apache.org/. (2017).

[5] James Bergstra and Yoshua Bengio. 2012. Random Search for Hyper-parameter

Optimization. Journal of Machine Learning Research (2012).

[6] Mihai Budiu, Daniel Delling, et al. 2011. DryadOpt: Branch-and-Bound on Dis-

tributed Data-Parallel Execution Engines. IEEE International Parallel & Distributed
Processing Symposium (IPDPS) (2011).

[7] Raul Castro Fernandez, Matteo Migliavacca, et al. 2013. Integrating Scale Out

and Fault Tolerance in Stream Processing using Operator State Management.

SIGMOD (2013).

[8] Raul Castro Fernandez, Matteo Migliavacca, et al. 2014. Making State Explicit

for Imperative Big Data Processing. USENIX Annual Technical Conference (ATC)
(2014).

[9] Richard L. Cole and Goetz Graefe. 1994. Optimization of Dynamic Query Evalua-

tion Plans. SIGMOD (1994).

[10] Andrew Crotty, Alex Galakatos, et al. 2015. An Architecture for Compiling

UDF-centric Workflows. VLDB (2015).

[11] Susan B. Davidson and Juliana Freire. 2008. Provenance and Scientific Workflows:

Challenges and Opportunities. ACM International Conference Management of
Data (SIGMOD) (2008).

[12] Ewa Deelman, Karan Vahi, et al. 2015. Pegasus, AWorkflowManagement System

for Science Automation. Future Generation Computer Systems (2015).
[13] Jerome Friedman, Trevor Hastie, and Robert Tibshirani. 2001. The elements of

statistical learning. Vol. 1. Springer series in statistics Springer, Berlin.

[14] G. Graefe and K. Ward. 1989. Dynamic Query Evaluation Plans. SIGMOD (1989).

[15] Pradeep Kumar Gunda, Lenin Ravindranath, et al. 2010. Nectar: Automatic

Management of Data and Computation in Datacenters. (2010).

[16] L. M. Haas, W. Chang, et al. 1990. Starburst Mid-Flight: As the Dust Clears. TKDE
(1990).

[17] RamanujamHalasipuram, PrasadMDeshpande, et al. 2014. Determining Essential

Statistics for Cost Based Optimization of an ETL Workflow. (2014).

[18] Matthew Hill, Murray Campbell, et al. 2008. Event Detection in Sensor Networks

for Modern Oil Fields. DEBS (2008).
[19] Frank Hutter, Holger H. Hoos, et al. 2011. Sequential Model-Based Optimization

for General Algorithm Configuration. LION (2011).

[20] Michael Isard, Mihai Budiu, et al. 2007. Dryad: Distributed Data-parallel Programs

From Sequential Building Blocks. EuroSys (2007).
[21] Mohammad Islam, Angelo K. Huang, et al. 2012. Oozie: Towards a Scalable

Workflow Management System for Hadoop. SWEET@SIGMOD (2012).

[22] Alex Krizhevsky and Geoffrey Hinton. 2009. Learning Multiple Layers of Features

From Tiny Images. (2009).

[23] Haoyuan Li, Ali Ghodsi, et al. 2014. Tachyon: Reliable, Memory Speed Storage

for Cluster Computing Frameworks. ACM Symposium on Cloud Comp. (SoCC)
(2014).

[24] Derek G. Murray, Malte Schwarzkopf, et al. 2011. CIEL: A Universal Execution

Engine for Distributed Data-flow Computing. NSDI (2011).
[25] Eduardo Ogasawara, Jonas Dias, et al. 2011. An algebraic approach for data-

centric scientific workflows. VLDB (2011).

[26] Emanuel Parzen. 1962. On Estimation of a Probability Density Function and

Mode. The Annals of Mathematical Statistics (1962).
[27] Fabian Pedregosa, Gaël Varoquaux, et al. 2011. Scikit-learn: Machine Learning in

Python. J. Mach. Learn. Res. (2011).
[28] Astrid Rheinländer, Ulf Leser, et al. 2017. Optimization of Complex Dataflows

with User-Defined Functions. ACM Surveys (2017).
[29] A. Simitsis, K. Wilkinson, et al. 2013. HFMS: Managing the lifecycle and com-

plexity of hybrid analytic data flows. ICDE (2013).

[30] Apache Spark. 2017. ML Pipelines. http://spark.apache.org/docs/latest/ml-guide.

html. (2017).

[31] Evan Sparks, Shivaram Venkataraman, et al. 2017. KeystoneML: Optimizing

Pipelines for Large-Scale Advanced Analytics. ICDE (2017).

[32] Spotify. 2017. Luigi. https://github.com/spotify/luigi. (2017).

[33] Roshan Sumbaly, Jay Kreps, et al. 2013. The Big Data Ecosystem at LinkedIn.

ACM International Conference Management of Data (SIGMOD) (2013).
[34] Ilya Sutskever, James Martens, et al. 2013. On the Importance of Initialization

and Momentum in Deep Learning. ICML (2013).

[35] Kostas Tzoumas, Johann-Christoph Freytag, et al. 2013. Peeking into the Opti-

mization of Data Flow Programs with MapReduce-style UDFs. ICDE (2013).

[36] Vinod Kumar Vavilapalli, Arun C. Murthy, et al. 2013. Apache Hadoop YARN:

Yet Another Resource Negotiator. ACM SoCC (2013).

[37] Marko Vrhovnik, Holger Schwarz, et al. 2007. An Approach to Optimize Data

Processing in Business Processes. VLDB (2007).

[38] Sai Wu, Feng Li, et al. 2011. Query optimization for massively parallel data

processing. SOCC (2011).

[39] Yuan Yu, Michael Isard, et al. 2008. DryadLINQ: A System for General-purpose

Distributed Data-parallel Computing Using a High-level Language. OSDI (2008).
[40] Matei Zaharia, Mosharaf Chowdhury, et al. 2012. Resilient Distributed Data-

sets: A Fault-Tolerant Abstraction for In-Memory Cluster Computing. USENIX
Symposium on Networked Systems Design and Implementation (NSDI) (2012).

[41] Mohammed J. Zaki and Wagner Meira Jr. 2014. Data Mining and Analysis:
Fundamental Concepts and Algorithms. Cambridge University Press.

[42] Matthew D. Zeiler. 2012. ADADELTA: An Adaptive Learning Rate Method. Arxiv
preprint arXiv:1212.5701 (2012).

A DISTRIBUTED DATAFLOWMODEL
Dataflow graph. A dataflow graph is a connected directed graph,

G = (V ,E), where the vertices V are data processing operators, and
the edges, E ⊆ V × V , are data dependencies between them. We

denote the pre- and post-sets of a vertexv ∈ V as ●v = {v′ ⋃︀ (v′,v) ∈
E} and v● = {v′ ⋃︀ (v,v′) ∈ E}, respectively. In a dataflow graph,

an operator v with ●v = ∅ is called a source, and an operator v
with v● = ∅ is a sink. Two operators v and v′ are connected by a

path, denoted by π(v,v′), if there exist edges e1, . . . ,en ∈ E with

ei = (vi ,vi+1), v1 = v , and vn+1 = v
′
.

Most existing systems execute dataflow graphs without cycles,

i.e. the graph is a directed acyclic graph (DAG). To support iterative

computation, cycles in the dataflow graph are either unrolled [40]

or encapsulated by special iteration operators [3]. In this paper, we

assume, without loss of generality, that dataflow graphs are acyclic,

and iterations are unrolled.

Datamodel.Wemodel the processed data in terms of finite datasets
of a domain 𝒟 without imposing assumptions on the structure of

data (e.g. relational tuples or key/value pairs). We assume that

datasets d,d′ ∈ 𝒟 can be concatenated, denoted by d ⊕ d′. The
semantics of operators in the dataflow graph is defined in terms

of a function over datasets: for each operator v ∈ V in G = (V ,E),

there is an operator function fv ∶ 𝒟
i
→ 𝒟

o
where i = ⋃︀ ● v ⋃︀ and

o = ⋃︀v ● ⋃︀ are the in- and out-degrees of the operator, respectively.

Execution model. Stages group sets of operators. Intuitively, a

stage comprises operators for which execution at a worker can be

pipelined. The respective dependencies are derived from a dataflow

graph,G = (V ,E), whose edges Emay specify narrow orwide depen-
dencies [40]: there is a narrow dependency between operatorsv ∈ V
and v′ ∈ v●, denoted by v ↣ v′, if each partition produced by fv
is used in at most one partition over which fv ′ is evaluated (e.g.

map and filter functions); there is a wide dependency if partitions

produced by fv are used in more than one partition when evaluat-

ing fv ′ (e.g. a group-by function). For dataflow graph G = (V ,E),
a stage is a set of operators, T = {v1, . . . ,vn} ⊆ V , that have only
narrow dependencies, vi ↣ vi+1, 1 ≤ i < n. We denote the set of

stages of G that are maximal, i.e. all operators not contained in a

stage T have a wide dependency with at least one operator in T , as

TG ⊆ 2
V
.

A possible execution order of stages is induced by a topological

sort of the vertices in G, ensuring that data dependencies between

operators are satisfied. We lift the notions of pre- and post-sets

from the vertices of a dataflow graph to stages: ●T and T● denote
the sets of stages that must be executed before and after stage T ,
respectively.

http://hadoop.apache.org/
http://spark.apache.org/docs/latest/ml-guide.html
http://spark.apache.org/docs/latest/ml-guide.html
https://github.com/spotify/luigi

SIGMOD’18, June 10–15, 2018, Houston, TX, USA R. Castro Fernandez et al.

Based on the above notions, the execution of an MDF can be

described in terms of states. A state (D,δ , µ) is characterised by

a set of datasets, D ⊆ 𝒟, and two functions: δ ∶ 𝒩 × 𝒟 → N0
assigns the size of a partition to a node and dataset; and µ ∶ 𝒩 → 𝒟
assigns partitions that are kept in memory to nodes. A state needs

to be valid, i.e. the total size of partitions kept in memory at a

node must not exceed its memory limit: for all n ∈ 𝒩 , it holds that

∑d∈µ(n) δ(n,d) ≤mem(n).

B DEPTH- VS. BREADTH-FIRST SCHEDULE
We now show that a breadth-first traversal by the scheduler would

require the distributed dataflow system to store at least as many, and

often significantly more, datasets after each stage has completed

as depth-first traversal, even in the worst case. Fewer maintained

datasets should correlate to fewer evictions to disk, which is why

we use depth-first traversal for BAS.

B.1 Collapsed MDFs
We define a new structure, called a collapsed MDF, to analyse how

many datasets must be maintained after stages of a certain depth

complete when choose stages select a single dataset, which is the

minimal MDF graph which is necessary to find the number of

datasets at a given set of stages.

In order to generate a collapsed MDF we choose a set of stages
of interest. These are all stages which are at the same point of

execution in sibling branches. For instance, they may be all the

children of the root, or all the grandchildren. We then construct

the collapsed MDF which determines how many datasets are in the

system when those stages are run, which means we can ignore any

datasets which have already been discarded because they will no

longer be used and datasets which have not yet been created. In

order to analyse all stages in an MDF if may be necessary to create

multiple collapsed MDFs, but we show that our conclusions hold

for all of them.

When a group of stages are collapsed, they are replaced by a

single stage with the same number of inputs as the first stage in

the group and the same number of outputs as the last stage in the

group. To create a collapses MDF, we collapse groups of stages with

the following rules:

● (1) Any explore/choose structures that have encountered a

choose before the stages of interest are collapsed into single stages.

All intermediate datasets for the branches within the structure

are fully discarded after the choose, and thus will no longer be

maintained when encountering the stages of interest.

● (2) Any explore/choose structures that explore after the stages

of interest are collapsed into single stages because they do not create

datasets that affect the counts at the stages of interest. The result of

these first two rules is that all explore stages in the collapsed MDF

will appear before the stages of interest, and all choose stages will

appear after.

● (3) Choose stages and children of explore stages are the only

types of stages which change the number of datasets in the system.

Any other stage discards its input as it creates its output, meaning

the total number of datasets remains the same in those stages. Thus

we can analyse subsequent stages as a single unit as long as we do

not collapse an explore stage with its child or a choose stage with

its parent. Any strings of stages which match this can be collapsed.

This includes any stages which were collapsed in the first two rules.

Fig. 19 and Fig. 20 give an example of collapsing an MDF. Fig. 19

shows an MDF. The blue dotted box shows stages of interest which

are at the same depth to be analysed by a collapsed MDF. Following

the rules, any groups of stages in red boxes can be collapsed into

single stages for analysing the number of datasets at the stages of

interest, which results in the collapsed MDF in Fig. 20.

Fig. 20 further compares the two scheduling strategies. The sched-

uling order of a stage and the number of datasets which must be

maintained after that stage executes is shown for both breadth-

and depth-first traversal for every stage. It is clear in this example

that for no stage does depth-first traversal maintain more datasets

than breadth-first traversal. However, even in this small example,

there is a stage where breadth-first must maintain 8 datasets to the

4 required by depth-first—a 2× difference. Both strategies hit their

peak required number of datasets at the same stage, which is 9 for

breadth-first, and 5 for depth-first.

B.2 Number of datasets maintained
We now determine how many datasets must be maintained by

the system after each stage completes. Each stage outputs a single

dataset, which is read as input only by its children. Once all stages

which read a dataset have completed, it is no longer necessary to

maintain that dataset. Thus the number of datasets to be maintained

is the number of stages that have executed minus the stages whose

children have all executed.

We make two simplifying assumptions: (i) every explore has

the same degree of explorables, defined by a global breadth vari-

able B ≥ 2; (ii) sibling branches are symmetric, i.e. any nested

explore operators are nested in all sibling branches.

If these assumptions do not hold we can analyse the offending

parts of the collapsed MDF piecemeal. Note that the collapsed MDF

is a structure of nested collapsed MDFs. We can set the stages of

interest as the stages just before the explore-choose structure which

breaks the assumption, and the analysis for those stages will be

correct. We can then analyse the pieces from the offending pieces

separately.

In the cases of depth-first search, analysing each piece, then

adding it to the number of datasets maintained at the stage of

interest which is its parent gives a correct accounting of the number

of datasets maintained within the piece. In a breadth-first approach

each stage must add not only the branches at the stage of interest

which is the parent of the piece, but also the number of branches at

the same depth in sibling which run before the piece in question.

Thus it is sufficient to prove that the number of datasets main-

tained for depth-first traversal is at least as many as the number

maintained by breadth-first at the stages of interest which are the

parents to each piece. Then it will also hold in each of the pieces.

Stages within the collapsed MDF are identified by two variables:

a local depth variable d indicates the nesting level; the source and

sink are at d=0. A local breadth variable b indicates in which order a

stage is executed relative to the other stages within the same depth.

For each depth, the stages are numbered from 1 to Bd .
For depth-first traversal, we assume no early or incremental

choose. This considers a worst case scenario because it requires the

Meta-Dataflows: Efficient Exploratory Dataflow Jobs SIGMOD’18, June 10–15, 2018, Houston, TX, USA

Fig. 19: Red dashed boxes are collapsible for finding
the number of datasets maintained after stages within

the blue dotted box (see Fig. 20)

1
 (

1
)

 1
 (

1
)

2 (2) 2 (2)

5 (4) 3 (3)

6 (5) 4 (4)

7 (5) 5 (4)

8 (6) 8 (4)

9 (7) 9 (5)

10 (7) 10 (5)

11 (8) 13 (4)

12 (9) 14 (5)

13 (9) 15 (5)

3 (3) 7 (3)

4(3) 12 (3)

14 (7) 6 (2)

15 (5) 11 (3)

16 (3) 16 (3)

1
7

 (1
) 1

7
 (1

)

Fig. 20: Schedule order and maintained
datasets for breadth-first (red) and

depth-first (black) traversal

maintenance of a maximum number of datasets until a choose is

ready to complete. For each depth up tod , the systemmust maintain

the results from the choose of any sibling that has completed. It

must also maintain the stages for the path along the current branch

unless it is exploring a path from the last child at that depth. Thus

the number of datasets which the system is required to maintain

after a stage denoted by b,d in a depth-first execution of a collapsed

MDF is:

1 +
d
∑
x=1

⎝
⎝
⎝
⎝
⎝
⎝
⎪

(b − 1) − ⃒b−1Bx)︁B
x

Bx−1

⎠
⎠
⎠
⎠
⎠
⎠
⎮

+ 1 −

⎝
⎝
⎝
⎝
⎝
⎝
⎪

(b − 1) − ⃒b−1Bx)︁B

(1 − 1

B)B
x

⎠
⎠
⎠
⎠
⎠
⎠
⎮

(1)

For breadth-first traversal, the system only needs to maintain

datasets that are produced by stages at two different depths: (i) those

from the immediately previous depth with at least one child at the

current depth, which has not been explored; second, those from

the current depth, which have been explore. Thus the number of

datasets which the system is required to maintain after a stage

denoted by b,d in a breadth-first execution of a collapsed MDF is:

Bd−1 − ⃦
b

B
(︂ + b (2)

B.3 Proofs
Explore stages, d=0. In this case, there is no explore, so there is

only a single stage to run. Thus there is no difference in the two

scheduling strategies.

Explore stages,b≤B andd≥1.Weagain use the 1+(b−1)∑
d
x=1 d=b+

d replacement for the first two terms of Eq. 1. Furthermore, when

b=B and x=1, ⃦
(b−1)−⟩︀ b−1Bx (︁B
(1− 1

B)Bx
(︂ = 1within the rangeb≤B, this makes

it equivalent to ⃒ bB)︁, so the entire replacement for Eq. 1 isb + d − ⃒ bB)︁.

Thus we conclude that a breadth-first approach is required to

maintain at least as many datasets if the difference between Eq. 2

and this upper bound of Eq. 1 is non-negative:

Bd−1 − d ≥ 0 (3)

To determine when the lefthand side of this inequality is minimal,

we analyse the behaviour and find the global minimum within the

constraints B ≥ 2, d ≥ 1. We first find the derivatieve of the left side

of the inequality with respect to B, which is (d − 1)Bd−2. This is
negative for all values of B ≥ 2, d ≥ 1. Thus the minimum occurs

when B is minimal, i.e. B=2, and the inequality holds for all values

if 2
d−1
− d ≥ 0.

We find the derivative of the lefthand side of this new inequality

with respect to d , 2d−1 log(2) − 1, where log is the natural loga-

rithm. There is a single root at d = 2 log
4
(e) ≈ 1.44 < 2. The value

at d=2 is positive, which means the derivative is positive for all

values d ≥ 2. Thus, within our constraints, the inequality is minimal

when d is minimal, i.e. d=2, and the inequality holds for all values

if 0 ≥ 0, which is true.

Therefore we have shown that a breadth-first traversal is re-

quired to maintain at least as many datasets as depth-first after

any stage defined by b ≤ B. This includes all stages at d=1, as those
depths contain no stages such that b > B in a collapsed MDF. □

Note that our conclusion is a boundary when the inequality is

minimal. If we use other variables for B and d , there may be a much

larger difference. For instance, at a stage at d = 3when B = 10, Eq. 3
shows a difference of at least 98 datasets must be maintained, and

the actual number may be higher if we used Equations 1 and 2

rather than the bounding equations.

Explore stages, b>B and d≥2. For all values, ⃦
(b−1)−⟩︀ b−1Bx (︁B

x

Bx−1 (︂ ≤

B−1. If it equalsB−1, ⃦
(b−1)−⟩︀ b−1Bx (︁B
(1− 1

B)Bx
(︂ = 1. Thus ⃦

(b−1)−⟩︀ b−1Bx (︁B
x

Bx−1 (︂−

⃦
(b−1)−⟩︀ b−1Bx (︁B
(1− 1

B)Bx
(︂ ≤ B − 2. Given this, Eq. 1 is bounded from above

by 1 +∑
d
x=1 B − 1 = 1 + dB − d .

We also note that − ⃒ bB)︁ ≥ −
b
B , so Eq. 1 is bounded from below by

Bd−1 − b
B + b. Thus a stage is required to maintain at least as many

datasets in breadth-first traversal as depth-first if the following

holds:

Bd−1 −
b

B
+ b − 1 − dB + d ≥ 0 (4)

To determine when the lefthand side of this inequality is minimal,

we analyse the behaviour and find the global minimum within the

constraints d ≥ 2, B ≥ 2, and B + 1 ≤ b ≤ B.
First we find the derivative of the lefthand side of the inequality

with respect to b, which is
B−1
B . For B ≥ 2, this derivative is always

positive. Thus the minimum occurs when d is minimal, i.e. d=B + 1,
for all values of B and d , and the inequality holds for all values if

Bd−1 − B+1
B + B − dB + d ≥ 0.

SIGMOD’18, June 10–15, 2018, Houston, TX, USA R. Castro Fernandez et al.

Next we find the derivative of the lefthand side of the new in-

equality with respect to B, which is
(d−1)(Bd−B2)+1

B2
. This is posi-

tive for all values of d ≥ 2 and B ≥ 2. Thus, for all values of d , the
minimum occurs when B is minimal, i.e. B=2, and the inequality

holds for all values if 2
d−1
+ 1

2
− d ≥ 0.

Finally we find the derivative of the lefthand side of this new in-

equality with respect to d . This is 1

2
(2

d
log(2) − 2)where log is the

natural logarithm. This has a single root at d = 2 log
4
(e) ≈ 1.44 < 2.

The value at d=2 is positive, which means the derivative is positive

for all values d ≥ 2. Thus, within our constraints, the inequality is

minimal when d is minimal, i.e. d=2, and the inequality holds for

all values if
1

2
≥ 0, which is true.

Therefore we have shown that a breadth-first traversal is re-

quired to maintain at least as many datasets as depth-first after

any stage defined by d ≥ 2, B ≥ 2, and B + 1 ≤ b ≤ B in a collapsed

MDF. □
Again, this is theminimal difference between the two approaches.

If we look at the stage where d = 3, B = 10, and b = 103, Eq. 4 shows
we should expect breadth-first traversal to need at least 972 datasets

more than depth-first.

Choose stages. We note that, for depth-first traversal, the output

of all stages between the explore and its matching choose stage are

discarded by the time the choose completes, including the output

of the explore. Additionally, no stages which are not between the

explore and choose run, which means no datasets are created or

discarded in any sibling branches. Therefore, the number of datasets

necessary to be maintained after a choose is the same as the number

after its matching explore, as determined by Eq. 1.

For breadth-first traversal, however, the number of datasets nec-

essary to be maintained after a choose executes may not be the

same as its matching explore. This is because the depth of the input

is greater than the depth of the explore operators. The equation for

the number of datasets maintained after a choose stage matching

the explore stage denoted by b,d is:

Bd+1 − Bb + b (5)

We now find that, for any value of b, the difference between

Eq. 5 and Eq. 2 is non-negative. Since a choose stage reads B inputs

at a time, it is not necessary to consider values of b which are not

multiples of B. Thus we can do not need the floor function for ⃒ bB)︁.

Bd+1 − Bb − Bd−1 +
b

B
≥ 0 (6)

The derivative of the lefthand side of this inequality with respect

to b is
1

B − B, which is negative for B ≥ 2. Thus the inequality is

minimised when b is maximised, i.e. b=Bd , and the inequality holds
for all values if 0 ≥ 0, which is true. Thus each the system must

maintain at least as many datasets after a choose stage as after its

matching explore stage.

We already showed that the system must maintain at least as

many datasets after explore stages in a breadth-first traversal of the

collapsed MDF as in a depth-first traversal. We have now shown

that a the system maintains the same number of datasets after

choose stage as its matching explore stage in depth-first traversal,

and at least as many after choose stage as its matching explore

stage in breadth-first traversal. Thus by the transitive property it

1 val src = readFromFile("cifar_10.dat")

2 val model =

3 EXPLORE(i=seq("Gaussian(0,0.1)", "Gaussian (0,0.05) ", "Uniform(−1,1)")
4 r=seq(0.0001, 0.001, 0.005, 0.01),

5 m=seq(0.25, 0.5, 0.75, 0.9), {

6 val result = DNN.training(src,i,r,m)

7 }).CHOOSE(validate(result), top-1)

8 writeToFile("results . csv", result)

Fig. 21: MDF of the Deep learning job
1 val src = readFromFile("time_series.csv")

2 val masked =

3 EXPLORE(w=seq(2,3,4,5,6,7,8,9),

4 t=seq(1.0001,1.0005,1.001,1.005,1.01,1.05,1.1,1.5), {

5 val masked_res = Data.query(src,masking_query(w,t))

6 }).CHOOSE(count(masked_res), threshold(0.8))

7 val marked = Data.query(masked,marking_query)

8 val detected = Data.query(marked,detection_query)

9 writeToFile("results . csv", detected)

Fig. 22: MDF of the Time series analysis job
1 val src = randomStringIntPairs()

2 val result =

3 EXPLORE(w1=seq(10,100,1000,10000), {

4 val first_op = Math.op(src,w1)

5 val first_res =

6 EXPLORE(w2=seq(10,100,1000,10000), {

7 val second_res = Math.op(src,w2)

8 }).CHOOSE(int_value(second_res), max)

9 }).CHOOSE(int_value(first_res), max)

10 writeToFile("results . csv", result)

Fig. 23: MDF of the Synthetic job

follows that the number of datasets maintained after a choose stage

in breadth-first traversal is at least as many as after the same choose

stage in depth-first traversal. □

C MDF LISTINGS
This section shows the four MDFs used in our experiments in §6.

TheDeep learning job covers three steps: data pre-processing, DNN
model training, and model validation. The MDF, shown in Fig. 21,

explores weight initialisation strategies, learning rates, and momen-

tum values in the training of a model.

The Time series analysis job proceeds in three steps: masking of

data points; marking of discrete events; and detecting sequences of

discrete events. In our setup, we considered explorables relates to

the masking of data points, varying the size of a sliding window

and the threshold for removing data with the MDF in Fig. 22.

In the main part of the paper, we used the Data profiling job as a
running example. Its MDF code was shown already in Fig. 3b.

Finally, the Synthetic job processes string/integer pairs. In two

nested explore, algebraic operations update the integer values of

tuples, as illustrated in Fig. 23.

	Abstract
	1 Introduction
	2 Exploratory Workflows
	2.1 Distributed dataflow systems
	2.2 Exploratory workflows
	2.3 Support for exploratory workflows
	2.4 Requirements

	3 Meta-Dataflows
	3.1 Meta-dataflow model
	3.2 Patterns for MDFs

	4 Scheduling & Memory Management
	4.1 MDF execution model
	4.2 Branch-aware scheduling
	4.3 Anticipatory memory management

	5 Implementation
	6 Evaluation
	6.1 How do MDFs affect completion time?
	6.2 How scalable are MDFs?
	6.3 What is the impact of MDF topology?
	6.4 How does resource usage affect MDFs?

	7 Related Work
	8 Conclusions
	References
	A Distributed Dataflow Model
	B Depth- vs. Breadth-First Schedule
	B.1 Collapsed MDFs
	B.2 Number of datasets maintained
	B.3 Proofs

	C MDF Listings

