
Overload Management in Data Stream Processing Systems
with Latency Guarantees

Evangelia Kalyvianaki?, Themistoklis Charalambous‡, Marco Fiscato?, and Peter Pietzuch?

?Department of Computing, Imperial College London, UK. E-mail: {ekalyv,mfiscato,prp}@doc.ic.ac.uk

‡Automatic Control Lab, Royal Institute of Technology (KTH), Stockholm, Sweden. E-mail: themisc@kth.se

ABSTRACT
Stream processing systems are becoming increasingly impor-
tant to analyse real-time data generated by modern appli-
cations such as online social networks. Their main charac-
teristic is to produce a continuous stream of fresh results as
new data are being generated at real-time. Resource pro-
visioning of stream processing systems is difficult due to
time-varying workload data that induce unknown resource
demands over time. Despite the development of scalable
stream processing systems, which aim to provision for work-
load variations, there still exist cases where such systems
face transient resource shortages. During overload, there is
a lack of resources to process all incoming data in real-time;
data accumulate in memory and their processing latency
grows uncontrollably compromising the freshness of stream
processing results. In this paper, we present a feedback con-
trol approach to design a nonlinear discrete-time controller
that has no knowledge of the system to be controlled or the
workload for the data and is still able to control the average
tuple end-to-end latency in a single-node stream processing
system. The results, of our evaluation on a prototype stream
processing system, show that our method controls the aver-
age tuple end-to-end latency despite the time-varying work-
load demands and increasing number of queries.

1. INTRODUCTION
There is a high demand for real-time analysis of large vol-

umes of streams of data generated by modern applications.
For example, real-time data generated by the Twitter online
social network, have shown to be applicable for financial pre-
dictions [24], rapid notification of earthquakes [5] and out-
come prediction of UK national elections [16]. Additional
application domains that benefit from real-time data analy-
sis include, among others, healthcare and governmental ad-
ministration, environmental sensing infrastructures and cor-
porate business managed systems.

Over the last years, different stream processing systems
(SPSs) have been developed to address the requirements
of high-throughput and timely delivery of results in data
streaming applications [26]. As new, fresh data are contin-
uously generated by applications, it is important to process
data in near real-time by keeping end-to-end latency low and
thus providing up-to-date analysis. Furthermore, SPSs are
required to cope with high, unknown and time-varying rates
of fresh data in addition to increasing the number of users.
These conditions pose unique challenges in the provisioning
of resources to SPSs, e.g., CPU time.

In order to cope with demanding workloads distributed
SPSs (DSPSs) are deployed over a set of nodes where each
node hosts a single stream processing engine (SPE) and all
collaborate transparently towards a resource powerful SPS;
popular systems include Borealis [3], IBM’s System S [12],
Twitter Storm [1] and Yahoo S4 [2]. Recent approaches
also address the problem of leveraging cloud resources to
dynamically provision against time-varying workloads when
required [17, 21, 8].

Nevertheless, conditions of resource saturation can still
exist in a SPS; for example, during transient workload fluc-
tuation or while allocating additional cloud resources for a
workload with increasing demands [8]. When a SPS is over-
loaded, its resources, e.g., CPU time, are insufficient to pro-
cess all incoming load. In this case, data are accumulated
and await processing, causing the stream processing latency
to grow. However, due to the freshness requirement of SPSs,
increasing latency might render the stream processing re-
sults obsolete by the time they are returned to the user,
even for short periods of overload.

In this paper, we address the problem of controlling the
average stream processing latency in periods of resource
overload. We assume that our approach benefits applica-
tions that can delay the freshness of data streaming result
in order to fully utilise available resources. For example,
consider an application that calculates the average number
of tweets per user from North America per hour. In this
case, delaying results by a few minutes does not have a sig-
nificant impact on the utility of results. We assume that
users provide us with a tolerance value of average latency
for their applications.

Our approach to control latency is by discarding incoming
data load via load shedding. Load shedding [4, 28, 23] is a
well-studied technique in SPSs that involves the elimination
of a portion of incoming data from processing to reduce the
required resource footprint. Related approaches exist for
single-node SPEs [4, 28] and DPSPs [35, 11, 22, 27]. We
use random load-shedding [28] to randomly select data to
discard among all awaiting processing in order to reduce the
processing time of the remaining data and control the end-
to-end latency.

It becomes apparent that when discarding incoming data,
the values of the stream processing results change. There-
fore, previous work in load shedding has proposed methods
to minimise the deviation from perfect processing, i.e., with-
out load shedding, using query approximation and seman-
tic shedding techniques [10, 14, 18, 15, 23, 32, 13]. The
above proposed strategies achieve their goals by leveraging



extensive domain knowledge of the stream processing appli-
cations. Instead, we consider the streaming application as a
black-box and by treating all data as equally important we
randomly choose data to discard among all available. We
assume that our system is used by applications, in which
random shedding does not significantly change the values
of the result outcome, e.g., average aggregate functions. In
future work, we plan to apply semantic shedding for spe-
cific application domains in order to control latency while
minimising performance loss.

The contributions of this work are the following: (a) we
introduce a data shedding, nonlinear controller that chooses
a proportion of data in the incoming queue such that the
desired end-to-end latency remains within a target-interval,
on average; our controller does not use any modelling knowl-
edge about the system; (b) we discuss stability issues of
the controller in the presence of inherent delays to the sys-
tem; (c) we evaluate our controller using a prototype stream
processing system and time-varying workloads and changing
number of queries.

The rest of this paper is organised as follows. Section 2
presents the data streaming processing model considered
in this paper. Section 3 presents the tuple shedding con-
troller with which the average tuple processing latency is
controlled. In Section 4 our approach is evaluated. Related
work in the literature in discussed in Section 5. Finally, Sec-
tion 6 summarises the contributions of this work and draws
directions for future work.

2. DATA STREAM PROCESSING MODEL
In this section, we describe the data streaming model

and our prototype SPS used to implement and evaluate our
latency- and control-based load shedding approach.

Data Stream Model. We support a relational data stream
model where data are organised into tuples. Each tuple con-
tains a set of values of pre-defined types. A stream identifies
an infinite set of time-ordered tuples. In data streaming, new
tuples are continuously generated by sources and then pro-
cessed according to the specifications of user queries. We
support queries that are described by a tree of operators.
The query tree represents the operators and their connec-
tions. We support operators with standard relational se-
mantics, such as filter, join, min, max, count, average, top-
k, group-by and time and count windows. The user also
specifies the data sources and their connections to the query
tree. An operator takes as input one or more streams and
produces a single output stream. The stream emitted by the
root operator of the query tree is the query result.

Stream Processing Engine. Figure 1 illustrates the De-
pendable Internet-Scale Stream Processing (DISSP) multi-
component SPE which executes multiple queries at the same
time. For every new query, a query coordinator component
is created that connects the query to its sources and manages
the query throughout its lifetime. As new tuples arrive from
the sources, they are initially inserted in the incoming buffer
(IB) queue. Tuples are then removed from the IB queue in a
first-in-first-out order and passed for processing at the com-
ponents executing the query operators. Once a tuple arrives
at the DISSP node, its arrival time is attached to the tuple.
As tuples are processed, their arrival times are propagated

query 
coordinator

DISSP node

incoming buffer (IB)
stream processing

tuples

Tuple 
Shedder

operators

latency

Controller Σ +

-

desired 
average 
latency

Figure 1: DISSP stream processing engine.

to the tuples of the result stream. When an operator takes
more than one input tuples to produce an output tuple, the
oldest arrival time from all the input tuples is forwarded to
the output tuple. The end-to-end latency of tuples is the
difference between the creation time of a result tuple at the
query root operator and its arrival timestamp.

Problem Statement. It becomes apparent that if the ar-
rival rate of tuples in the IB queue is higher than the rate
at which tuples are passed for stream processing, the size of
the IB continuously grows until eventually the SPE runs out
of memory resources to allocate for new incoming tuples in
IB. In this paper, we address the problem of computing the
number of tuples to randomly discard from the IB such that
the average end-to-end latency over time across tuples and
queries approaches a user-defined target. Although the end-
to-end tuple latency is the sum of the waiting and processing
times, in case of overload it is dominated by the waiting time.
Therefore, our system aims to control the waiting time by
controlling the number of tuples to keep in the IB.

Feedback Control Loop. Figure 1 also illustrates the feed-
back control loop and the controller component within DISSP.
Periodically, at every fixed interval, the IB queue is locked
and the controller component using the control law decides
the number of tuples to keep in the queue. This number is
forwarded to the tuple shedder component, which randomly
selects tuples to keep in the IB until the total number of
tuples kept reaches the number calculated by the controller.
The tuple shedder then discards all the remaining tuples
from the IB. Before discarding tuples, the shedder performs
bookkeeping tasks for each tuple in the IB; for example,
the shedder updates the number of tuples discarded across
queries to provide feedback to the users regarding the loss
of data due to shedding. Therefore, there is an information
gathering cost for each tuple. Once this process is com-
pleted, the IB queue is unlocked and the remaining tuples
are forwarded to query operators; there is also a processing
cost for each tuple. Note that, while the IB is locked, we
keep any incoming new tuples in a secondary queue (not
shown in the figure). The tuples in the secondary queue
are appended at the end of the IB queue once the latter is
unlocked.



3. TUPLE SHEDDING CONTROLLER
When designing a system, it is important to create a

mathematical model of the plant in order to be able to pro-
vide accurate controllers and better performance. However,
due to the complexity of stream processing applications and
their time-varying dynamics, it is difficult to derive a pre-
cise mathematical model. More specifically, the informa-
tion gathering and processing costs for tuple across queries
may differ and the rates at which tuples arrive may change.
Hence, it is very challenging to accurately model the costs
of individual tuples.

Previous work in the field, e.g., [31], considered system
identification techniques. While these techniques are power-
ful and contribute to the experimental study of the system’s
dynamics, they need offline training and cannot adapt to
changing dynamics easily. In [31] the importance of feed-
back control is enunciated and a comparison of feedback
versus non-feedback control strategies is discussed.

In the discrete time set-up that we investigate, we con-
veniently define the time coordinate so that unity is the
time between consecutive iterations of the controller. We
denote cs(t) and cp(t) to be the information gathering and
processing costs for each tuple, respectively, at the time
t = 0, 1, 2, . . .. The problem being targeted is to create a
controller that at each time instant chooses a number of tu-
ples to be processed, denoted by n(t), of the random number
of tuples in the IB queue, denoted by N(t), such that, the
desired end-to-end latency remains within the time-interval
T on average.

The latency of the system at time t, denoted by `(t), is
given by

`(t) , N(t)cs(t) + n(t)cp(t), (1)

i.e., there is a cost for all tuples in the IB queue for infor-
mation gathering and a cost of the tuples being processed.

In our approach, assuming that the target interval T is
kept constant (i.e., T (t) = T ∀t), we require that the la-
tency of the system remains smaller than or equal to the
target interval T , i.e., l(t) ≤ T for all times t. Note that
we can choose n(t), such that N(t)cs(t) + n(t)cp(t) � T ,
but the system will operate well below its capacity, which is
undesirable (see Figure 2). However, if we choose n(t) such

!"#$

ncpncs

� T0

(N − n)cs

Figure 2: Latency ` remains less than the desired
latency T , meaning that useful resources remain un-
exploited.

that N(t)cs(t) +n(t)cp(t)� T , the latency `(t) exceeds the
desired latency T due to the fact that there are many tuples
in the queue (see Figure 3).

Let n? be the optimal number of elements, such that our
system will be able to process all n? within the time-interval
T , i.e., n? = {n(t) : l(t) = T}. Hence,

N(t)cs(t) + n?(t)cp(t) = T. (2)

!"#$

ncpncs

�T0

(N − n)cs

Figure 3: Latency ` exceeds the desired latency T ;
the constraint of having ` < T is soft and may be
violated for some time instances.

Therefore, our target is to reach the optimal number of tu-
ples to be processed provided that the costs are unknown
and change over time, and we only measure the latency of
the system with some delay that corresponds to the actual
latency `(t), and hence is of the order of the user-desired
target latency T . The system dynamics are shown in Fig-
ure 4, where the tuples to be processed are controlled and
the latency is the output of the system.

T !(t)e!(t) n(t)

N(t)

Controller Server

Delay τ(t)

Σ
+

−

Figure 4: Block diagram of the closed-loop control
system.

In this work, we first consider a simple integral controller
of the following form

n(t+ 1) = n(t) + pe(t− τ(t)), (3)

where p is a positive constant, e(t) , n?(t) − n(t) is the
error from the optimal value at time t, and τ(t) is a time-
varying bounded delay (i.e., 0 ≤ τ(t) ≤ τmax for all t). Using
equation (2), the error e(t) can be expressed as

e(t) =
T −N(t)cs(t)

cs(t) + cp(t)
− n(t)

=
T −N(t)cs(t)− n(t)(cs(t) + cp(t))

cs(t) + cp(t)

=
T − `(t)

cs(t) + cp(t)
.

If the costs cs(t) and cp(t) were constant and known through-
out the operation of the stream processing system, our con-
troller would be a simple linear integrator. However, these
costs are unknown and more importantly they change ac-
cording to the tuples inserted in the IB queue. In addition,
since the measured latency is delayed, the controller will be
given by

n(t+ 1) = n(t) + p
T − `(t− τ(t))

cs(t− τ(t)) + cp(t− τ(t))
. (4)

Since we do not have a measure of cs(t−τ(t))+cp(t−τ(t)), we



need to approximate it, but still make sure that the system
remains stable. Hence, the update depending on the error
should be equal or smaller to the actual error. In order to
do this, we make use of the following remark.

Remark 1. Since n(t) < N(t) for all times t, by (1) it
is easily shown that

n(t)

`(t)
≤ 1

cs(t) + cp(t)
≤ N(t)

`(t)
(5)

Therefore, our controller becomes of the form

n(t+ 1) = n(t) + pn(t− τ(t))
T − `(t− τ(t))

`(t− τ(t))
, (6)

and will remain stable by an appropriate choice of constant
p. For simplicity and for obtaining a less oscillatory con-
troller, we approximate

n(t− τ(t))

`(t− τ(t))
≈ n(t)

T
,

while accounting for the case where n(t − τ(t)) < n(t) and
`(t− τ(t)) > T , by choosing a control gain q, such that

q
n(t)

T
≤ pn(t− τ(t))

`(t− τ(t))
.

Hence, controller (6) now becomes

n(t+ 1) = n(t) + qn(t)
T − `(t− τ(t))

T
. (7)

Therefore, the problem boils down to choosing q such that
the system remains stable. In linear discrete-time systems,
the upper bound of the control gain is a decreasing function
of the delay (see for example [20]).

Proposition 1. A system of the form

x(t+ 1) = x(t) + ke(t− τ(t))

for 0 ≤ τ(t) ≤ τmax for all t, is stable provided that the
control gain k is selected such that

0 < k <
2

2τmax + 1
.

Proposition 1 suggests how the control gain should be adapted
in the case of delays. The controller proposed in (7) is non-
linear, but it can be easily deduced that by choosing a small
enough q the system is stable, provided the corresponding
linear system is stable (using Proposition 1).

4. EVALUATION
In this section, we evaluate our approach to control the av-

erage tuple processing latency. We use the DISSP prototype
SPE deployed on a single server machine. To create overload
conditions we simulate a demanding workload of increasing
number of user queries. Each user issues the same avg query
that calculates the average CPU consumption every second
over ten server machines from the PlanetLab network. We
use ten source processes that generate data from real-world
traces of resource utilisations of PlanetLab nodes [30]. Each
source process emits tuples node at a time-varying rate by
changing the submission rate every ten seconds in a repeated
pattern: the rate increases from 50 to 150 and then de-
creases again to 50 in steps of 50. Such a workload pattern
tests the controller against time-changing workloads. We

 1

 10

 100

 1000

 10000

 100000

 1e+06

 0  100  200  300  400  500  600  700  800

m
e

a
n

 l
a

te
n

c
y
 (

m
s
e

c
s
)

time in secs

80 queries
100 queries
200 queries

Figure 5: SPE performance without the controller.

use one server machine for the ten source processes and one
machine for submitting the queries. All machines including
the DISSP node are equipped with 4 CPU cores of 1.8 GHz
each and 4 GB of memory, running Ubuntu Linux 2.6.27-
17-server and are connected over 1 Gbps network.

Initially, we illustrate the rapid increase in the mean tu-
ple latency when the controller and the tuple shedder are
disabled and the SPE is overloaded. We perform different
experiments, and for each one, we keep the number of queries
constant. Overall we vary the number of queries from 20 to
200 in steps of 20. Figure 5 shows the mean tuple latency
over time for each experiment for 80 (similar results hold
for 20, 40 and 60 queries) and 100 and 200 queries (similar
results hold for 120, 140, 160 and 180). The results show
that, up to 80 queries, the SPE engine can cope with the
incoming rate of tuples and processes all data for all queries
adequately while keeping the latency low. However, once the
number of queries exceeds 100, the latency increases rapidly
until the engine runs out of memory to allocate for incoming
tuples and the system can no longer execute after the first
450 seconds and beyond. To sustain more than 100 queries,
the system needs to perform tuple shedding.

Figure 6 shows the mean tuple latency of the SPE when its
incoming tuple load is managed by our latency-based con-
troller. As before, we vary the number of queries and set
four different target values for the mean tuple latency: T=
500, 1000, 2000 and 3000 msecs. In all cases, the controller is
invoked every 250 msecs and the controller gain q is set to a
small value of 0.1 to compensate for the various delays intro-
duced by the target values. Results show that once the sys-
tem overloads—when the CPU utilisation approaches 200%
in Figure 6(b) above 120 queries—our controller manages to
keep the mean latency at the target values in all four cases
as shown in Figure 6(a). To reach and maintain the target
value, the controller decides the number of tuples to keep in
the IB, as shown in Figure 6(c). This figure shows that the
number of tuples kept increases with the target value—with
larger latency values the controller has to keep more tuples.
This effect continues as the number of queries increases.

The goal of the controller is to maintain the mean tuple la-
tency at a user-given target value. Although, as Figure 6(a)
suggests, our controller performs well, there is a latency vari-
ation around the mean values. Figure 7 presents the empiri-
cal cumulative distribution function (CDF) for the different
target values in the case of 200 queries (similar results hold
when queries lie above 120). Although the mean value is in



 0

 1000

 2000

 3000

 4000

 5000

 6000

 20  40  60  80  100 120 140 160 180 200m
e

a
n
 l
a
te

n
c
y
 +

/-
 o

n
e
 s

td
 (

m
s
e
c
s
)

number of queries

T=500
T=1000
T=2000
T=3000

(a) mean latency

 0

 50

 100

 150

 200

 20  40  60  80  100 120 140 160 180 200

%
 o

f 
C

P
U

 t
im

e

number of queries

T=500
T=1000
T=2000
T=3000

(b) CPU resources

 0

 100000

 200000

 300000

 400000

 500000

 600000

 20  40  60  80 100 120 140 160 180 200

n
u
m

b
e
r 

o
f 
tu

p
le

s

number of queries

T=500
T=1000
T=2000
T=3000

(c) tuples left

Figure 6: SPE performance with the shedding controller for different target values of mean query latency.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  2000  4000  6000  8000

C
D

F

latency in msecs

T=500, mean=489
T=1000, mean=985
T=2000, mean=1982
T=3000, mean=2995

Figure 7: CDF of tuple latencies for 200 queries.

all cases very close to the target value, the variation around
the mean increases with the target value. When the target
value increases, the tuples remain in the IB for longer. As
a result, a delay exists in the control loop which increases
with the target value and affects the latency variance. To
compensate for such delays we set q to the small value of
0.1.

5. RELATED WORK
Tu et al. [31] use system identification techniques to ap-

proximate the model of SPS, while initially assuming con-
stant costs. Later, they allow for the costs to change, but
very slowly compared to the data arrival rates, so that their
identification techniques can capture the change. In addi-
tion, they ignore the delay that is inherent in such systems.

Load shedding has long been used to address resource
overload in single-node SPS [4, 28, 23]. Tailored load shed-
ding techniques exist for certain types of operators, such
as joins [14, 13, 18, 10] and aggregations [6, 29]. Srivas-
tava et al. [25] study the load shedding problem to reduce
the memory footprint for windowed stream joins. Differ-
ent techniques exist that limit the loss of information in the
output stream caused by discarded data. For example, se-
mantic shedding assumes a function that correlates tuples
with their contribution to the query output [7, 28]. Tuples
are discarded in ways to maximise query performance. Ad-
ditionally, Wei et al. [32] apply semantic load shedding in
XML streams.

In contrast, we use random load shedding [28] that is ap-
plicable to a wide-range of applications. We regard semantic
shedding complementary to our approach. Rather than ran-
dom shedding, our tuple shedder component can adopt an-

other shedding technique. As our controller uses a simple,
black-box approach to control latency, it can incorporate
different shedding costs.

Query approximation techniques reduce the resource util-
isations of operators by modifying the semantics of queries
through query rewriting [23, 18, 10, 9, 33]. We differ from
these approaches in that we target overload management
across a wide range of queries and our controller has no con-
trol over the query semantics.

6. CONCLUSIONS AND FUTURE WORK
In this paper, we present a feedback control approach to

control the average end-to-end tuple latency in single-node
SPSs. We have developed a non-linear controller to control
the latency without accurately modelling the processing and
information gathering costs. Our results show that our con-
troller maintains the average latency very close to the target
values across different number of queries and time-varying
input tuple rates.

Controlling the end-to-end latency in SPSs is critical for
stream processing users to maintain their latency require-
ments for their applications. In future work, we plan to in-
clude heterogeneous workloads with different types of queries.
As resource demands vary across queries, it is important
for a multi-tenant SPSs to control the resource allocations
across queries while maintaining latency guarantees within
queries of the same application class and also to address
saturation of other resources such as memory.

We have designed and tested our control system for single-
node SPSs. We plan to extend our work for DSPSs to control
latency across queries and nodes. In multi-tenant DSPSs,
where queries span many nodes and nodes are shared by
queries, it is particularly challenging to control end-to-end
tuple processing latency. We plan to investigate distributed
strategies to build protocols where local, per-node decisions
can make all queries of the DSPS to converge to user-defined
latencies. This can be achieved by leveraging on the co-
location of queries over a single node and the distribution of
queries across nodes.

Load shedding in SPSs share the same goals with admis-
sion control in web servers environments, e.g., [19, 34], since
both approaches aim to control the amount of processing
load to tackle overload. In future work we plan to com-
pare our approach with existing approaches from the area
of admission control.
Acknowledgements. This work was supported by the
grants: EP/F035217/1 (“DISSP: Dependable Internet-Scale



Stream Processing”), EP/I012036/1 (“Custom Computing
for Advanced Digital Systems”) and EP/E025188/1 (“AE-
DUS2: Adaptable Environments for Distributed Ubiquitous
Systems”) from the UK Engineering and Physical Sciences
Research Council (EPSRC).

7. REFERENCES
[1] Twitter storm.

https://github.com/nathanmarz/storm/wiki.

[2] Yahoo s4. http://incubator.apache.org/s4/.

[3] D. J. Abadi, Y. Ahmad, M. Balazinska, U. Cetintemel,
M. Cherniack, J.-H. Hwang, W. Lindner, A. S.
Maskey, A. Rasin, E. Ryvkina, N. Tatbul, Y. Xing,
and S. Zdonik. The Design of the Borealis Stream
Processing Engine. In CIDR, 2005.

[4] D. J. Abadi, D. Carney, U. Çetintemel, M. Cherniack,
C. Convey, S. Lee, M. Stonebraker, N. Tatbul, and
S. Zdonik. Aurora: a New Model and Architecture for
Data Stream Management. The VLDB Journal,
12(2):120–139, 2003.

[5] Agence French Presse (AFP). Twitters beat media in
reporting China earthquake, 2008.

[6] B. Babcock, M. Datar, and R. Motwani. Load
Shedding for Aggregation Queries over Data Streams.
In ICDE, 2004.

[7] D. Carney, U. Çetintemel, M. Cherniack, C. Convey,
S. Lee, G. Seidman, M. Stonebraker, N. Tatbul, and
S. Zdonik. Monitoring Streams: a New Class of Data
Management Applications. In VLDB, pages 215–226.
VLDB Endowment, 2002.

[8] J. Cervio, K. Evangelia, J. Salvacha, and P. Pietzuch.
Adaptive Provisioning of Stream Processing Systems
in the Cloud. In SMDB, 2012.

[9] K. Chakrabarti, M. Garofalakis, R. Rastogi, and
K. Shim. Approximate Query Processing using
Wavelets. The VLDB Journal, 10:199–223, 2001.

[10] A. Das, J. Gehrke, and M. Riedewald. Approximate
Join Processing over Data Streams. In SIGMOD,
pages 40–51, New York, NY, USA, 2003. ACM.

[11] H. Feng, Z. Liu, C. H. Xia, and L. Zhang. Load
Shedding and Distributed Resource Control of Stream
Processing Networks. Perform. Eval.,
64(9-12):1102–1120, 2007.

[12] B. Gedik, H. Andrade, K.-L. Wu, P. S. Yu, and
M. Doo. SPADE: The System S Declarative Stream
Processing Engine. In SIGMOD’08, pages 1123–1134.
ACM, 2008.

[13] B. Gedik, K.-L. Wu, P. Yu, and L. Liu. GrubJoin: An
Adaptive, Multi-Way, Windowed Stream Join with
Time Correlation-Aware CPU Load Shedding. IEEE
Transactions on Knowledge and Data Engineering,
19(10):1363 –1380, 2007.

[14] B. Gedik, K.-L. Wu, P. S. Yu, and L. Liu. Adaptive
Load Shedding for Windowed Stream Joins. In CIKM,
pages 171–178, 2005.

[15] L. Golab and M. T. Özsu. Issues in Data Stream
Management. SIGMOD Rec., 32:5–14, June 2003.

[16] guardian.co.uk. Twitter election predictions are more
accurate than YouGov.

[17] V. Gulisano, R. Jimenez-peris, M. Patino-martinez,
and P. Valduriez. StreamCloud: A Large Scale Data
Streaming System. In ICDCS, pages 126–137, 2010.

[18] J. K. Jeffrey, J. F. Naughton, and S. D. Viglas.
Evaluating Window Joins over Unbounded Streams.
In ICDE, pages 341–352, 2003.

[19] A. Kamra. Yaksha: a Self-tuning Controller for
Managing the Performance of 3-tiered Web Sites. In
IWQoS, pages 47–56, 2004.

[20] C.-Y. Kao and B. Lincoln. Simple Stability Criteria
for Systems with Time-varying Delays. Automatica,
40(8):1429 – 1434, 2004.

[21] W. Kleiminger, E. Kalyvianaki, and P. Pietzuch.
Balancing Load in Stream Processing with the Cloud.
In SMDB, pages 16–21, 2011.

[22] Z. Liu, A. Tang, C. Xia, and L. Zhang. A
Decentralized Control Mechanism for Stream
Processing Networks. Annals of Operations Research,
170:161–182, 2009.

[23] R. Motwani, J. Widom, A. Arasu, B. Babcock,
S. Babu, M. Datar, G. S. Manku, C. Olston,
J. Rosenstein, and R. Varma. Query Processing,
Resource Management, and Approximation in a Data
Stream Management System. In CIDR, 2003.

[24] E. J. Ruiz, V. Hristidis, C. Castillo, A. Gionis, and
A. Jaimes. Correlating Financial Time Series with
Micro-blogging Activity. In WSDM, pages 513–522,
2012.

[25] U. Srivastava and J. Widom. Memory-limited
Execution of Windowed Stream Joins. In VLDB,
pages 324–335. VLDB Endowment, 2004.

[26] M. Stonebraker, U. Cetintemel, and S. Zdonik. The 8
Requirements of Real-time Stream Processing.
SIGMOD Rec., 34(4):42–47, 2005.

[27] N. Tatbul, U. Çetintemel, and S. Zdonik. Staying FIT:
Efficient Load Shedding Techniques for Distributed
Stream Processing. In VLDB, pages 159–170. VLDB
Endowment, 2007.

[28] N. Tatbul, U. Çetintemel, S. Zdonik, M. Cherniack,
and M. Stonebraker. Load Shedding in a Data Stream
Manager. In VLDB, pages 309–320. VLDB
Endowment, 2003.

[29] N. Tatbul and S. Zdonik. Window-aware Load
Shedding for Aggregation Queries over Data Streams.
In VLDB, pages 799–810. VLDB Endowment, 2006.

[30] The PlanetLab Consortium. PlanetLab.
http://www.planetlab.org, 2004.

[31] Y.-C. Tu, S. Liu, S. Prabhakar, and B. Yao. Load
Shedding in Stream Databases: a Control-based
Approach. In VLDB, pages 787–798. VLDB
Endowment, 2006.

[32] M. Wei, E. A. Rundensteiner, and M. Mani.
Utility-driven Load Shedding for XML Stream
Processing. In WWW, pages 855–864, 2008.

[33] M. Wei, E. A. Rundensteiner, and M. Mani. Achieving
High Output Quality Under Limited Resources
Through Structure-based Spilling in XML Streams.
Proceedings VLDB Endow., 3:1267–1278, 2010.

[34] M. Welsh and D. Culler. Adaptive Overload Control
for Busy Internet Servers. In USITS, pages 4–4, 2003.

[35] H. C. Zhao, C. H. Xia, Z. Liu, and D. Towsley. A
Unified Modeling Framework for Distributed Resource
Allocation of General Fork and Join Processing
Networks. In SIGMETRICS, pages 299–310, 2010.


