
Challenges in Dependable Internet-Scale
Stream Processing

Peter Pietzuch
Department of Computing
Imperial College London

United Kingdom
prp@doc.ic.ac.uk

ABSTRACT
Today we lack an infrastructure for globally processing stream
data from sensor networks and making this data available
to millions of users in real-time. To build such a system, we
need to address a set of challenges and, in particular, rethink
what dependability means in this context: it is infeasible to
guarantee perfect data processing at a global scale. Instead,
the degradation of result quality due to failure and resource
shortages should be made explicit to users. We briefly de-
scribe one such model to achieve a dependable Internet-scale
stream processing service.

1. INTRODUCTION
With the commoditisation of embedded sensor devices,

we witness an increasing number of deployments of wireless
sensor networks around the world. Today, sensor networks
exist in diverse areas, such as electronic health-care, envi-
ronmental monitoring and urban transport management. It
is safe to predict that their use will grow in the future.

Most deployed sensor networks share a common design, in
which sensor nodes cooperate to deliver a stream of sensed
data using radio communication to a base station node. The
base station is often the only node in the system that has
both wireless and wired network connectivity. Research de-
ployments of sensor networks usually aim to successfully
deliver sensed data to the base station node, without ad-
dressing any further data distribution and processing issues.
This is not a complete solution because, in practise, users
interested in the sensed data will not be located close to
the sensor network. Instead, they may be scientists spread
across research centres on different continents or thousands
of web users sitting in front of their PCs.

The vision of a global sensor web attempts to address this
issue with a world-wide infrastructure for interconnecting
sensor networks [4]. Similar to how the web makes static
content available, a global sensor web would allow millions
of users to harness real-time stream data coming from dif-
ferent corners of the planet. Although the current Internet

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
WDDDM ’08, March 31, 2008, Glasgow, UK
Copyright 2008 ACM 978-1-60558-121-7/08/03 ...$5.00.

provides cheap connectivity, it was not built with this usage
pattern in mind. Stream data requires reliable long-term
transport between sensor networks and users and must be
processed and aggregated while on transit in the network to
reduce resource requirements.

We propose that a dependable Internet-scale stream pro-
cessing (DISSP) system can make the global sensor web a
reality. Similar to the ease of relational queries in DBMS,
stream-processing systems allow users to access and manip-
ulate distributed data streams through declarative queries.
However, the scale of an Internet-wide system poses sub-
stantial challenges when it comes to providing a dependable
service. Any such system must gracefully handle the failure
of network links and processing hosts while managing a large
pool of CPU and network resources.

To achieve this, we argue that DISSP needs a new model
for dependability. This model cannot provide the hard guar-
antees of traditional DBMSs and today’s stream-processing
systems. Ensuring no tuple loss at all times may be feasible
within a single data centre, but we cannot hope to achieve
this at an Internet-scale. Instead, dependability should be
driven by application requirements since many sensing ap-
plications can cope with a controlled degradation of result
quality: a query supporting an earthquake monitoring ap-
plication can accept the transient loss of data from a subset
of sensor networks, as long as this leaves the probability of
missing a seismic event negligible. We describe how such
a dependability model can be realised by a DISSP system
using an overlay network of nodes on today’s Internet.

The rest of the paper is structured as follows: In §2, we
derive requirements for DISSP from three application sce-
narios. We then describe the main research challenges that
a DISSP system faces in §3. In §4, we present an approach
for DISSP, focussing on dependability aspects. We finish
with an overview of related work (§5) and conclusions (§6).

2. APPLICATION SCENARIOS
Diverse sensing applications fall under the DISSP model

and can be supported by such a system. Applications are
realised as declarative queries, resulting in fast deployment
and resource sharing. Next we describe three representative
applications and highlight their requirements.

2.1 Real-time astronomic data processing
The first application scenario (“Astronomy”) provides a

service to astronomers for correlating real-time image streams
from geographically-distributed radio telescopes. The aim is
two detect transient sky events, such as γ-ray bursts [22], in

Figure 1: DISSP system as an overlay network, executing a query
Figure 2: DISSP query for de-
tection of transient sky objects

real-time. These events last for minutes and, after an event
has been detected, instruments need to be re-aligned to fo-
cus on on-going occurrences.

Fig. 1 illustrates the deployment of a DISSP system, exe-
cuting a query that takes images from radio telescopes, pro-
cesses them in real-time and delivers data about transient
anomalies to two astronomers. The processing is done by a
distributed set of hosts (or data centres). The system must
ensure that image data is transported reliably between pro-
cessing sites. However, some data loss is acceptable, as long
as no transient sky events are missed as a consequence.

The logical structure of the query implementing the appli-
cation is shown in Fig. 2. The operators processing the im-
age streams are specific to this application domain and can-
not be expressed easily using, for example, relational query
operators. There is also substantial overlap between the pro-
cessing required by different astronomers who are interested
in distinct types of anomalies.

2.2 Transportation infrastructure monitoring
In the second application scenario (“Transport”), we as-

sume that the national transportation infrastructure, such
as roads, tunnels and bridges, is instrumented with sen-
sor networks to monitor their utilisation and condition [6].
Many parties run DISSP queries: the road authority moni-
tors bridges and tunnels to get early warnings about critical
damages; traffic planers issue queries about real-time traffic
patterns across the road network, identifying hot-spots and
aiding in the planing of new roads; and web users subscribe
to traffic alerts affecting their daily commutes.

A challenge in this scenario is scalability in terms of query
complexity and quantity. A single query such as “What
is the road with highest utilisation between 6-7pm in the
Greater London area?” may lead to the aggregation of stream
data from thousands of roads. In addition, the number of
live queries may be large if thousands of users submit queries
about their commutes.

2.3 Global RSS feed mining (RSS)
The last application scenario (“RSS”) looks at the pro-

cessing of already existing stream data on the web: RSS
feeds from websites and weblogs. Users want to apply data
mining techniques across thousands of RSS feeds to uncover
trends and correlations [20]: a financial institution is in-
terested in real-time notifications about news-worthy events

affecting financial markets; an advertising agency monitors
weblogs to get an up-to-date picture about “hot” products
discussed by bloggers; finally, web users receive custom RSS
feeds with articles matching their interests about, say, the
US election campaign. All of these queries require opera-
tors that implement natural language processing techniques.
Such operators may have large computational requirements
when parsing sentences of millions of news feed articles.

3. RESEARCH CHALLENGES
Next we highlight challenges in the area of DISSP, refer-

ring back to the above scenarios. The focus is on achiev-
ing dependability and we ignore other important issues such
as security and privacy. The dependability challenges can
only be solved through a combination of techniques from
database, distributed systems and networking research.

3.1 Stream data and query models
An important decision for a DISSP system is the choice

of data model. Sensor networks will produce data in dif-
ferent formats. Due to this heterogeneity, a single, unified
data model for a global DISSP system may be unsuitable.
Fortunately the database community has a long history of
working on data heterogeneity and integration issues with
directly applicable results to DISSP [4].

A DISSP system also needs a query model. As shown by
the Astronomy and Transport scenarios, the query model
should support custom processing operators. One possibil-
ity is to provide an API for the definition of new operators.
However, query optimisers struggle to optimise queries with
black box operators. A compromise may be to choose a
restricted computational model for custom operators (e.g.,
finite state automata). This supports non-trivial new op-
erators, while allowing the query optimiser to reason about
their semantics and resource requirements.

3.2 Dynamic data source discovery
Traditional DBMSs assume that users know about rele-

vant input relations and include them in query expressions.
This is infeasible in a DISSP system with many data sources:
in the RSS scenario, the number of feeds scales with the
number of websites. Therefore, data source discovery be-
comes a crucial requirement. Users describe their desired
input data and the DISSP system maps this to a suitable
set of sources. This mapping has to be dynamic because,

during the life-time of a query, new sources will join the
system and old ones will disconnect or fail.

Data source discovery raises several challenges: (1) data
sources must be able to describe the syntax and semantics
of the data that they provide. This must be done intuitively
to encourage the connection of new data sources; (2) the
information about data sources must be disseminated effec-
tively through the system; (3) data source discovery must
be dynamic so that existing queries can be adapted.

3.3 Adaptive stream query optimisation
With many users running queries involving thousands of

data sources, the DISSP system must allocate resources to
queries: it must route query streams along network paths
and map operators to processing hosts. This is similar to
the task that a DBMS query optimiser carries out, however,
there are differences resulting in new challenges: (1) the
network is a limited resource that needs allocation. Often
the performance of network paths will dominate the over-
all performance of queries; (2) due to the scale of DISSP,
the query optimiser must work with incomplete knowledge
about current system state. Resource availability of some
nodes and network paths may be unknown; (3) load balanc-
ing and shedding become important features. In the Trans-
port scenario, a simple aggregation query calculating the
average traffic volume on all UK roads at a 1 Hz frequency
could easily overload the system. The query optimiser must
handle such query hot-spots; (4) due to the long-running
nature of stream queries, optimisation must be adaptive.
Failure and changes in network and host conditions will be
common and require re-optimisation of query plans; (5) fi-
nally, the query optimiser should take advantage of the over-
lap between queries through multi-query optimisation. For
example, in the Astronomy scenario queries for anomaly de-
tection share the same data cleaning and transformation op-
erators.

4. PROPOSED APPROACH FOR DISSP
In this section we describe how DISSP can achieve a reli-

able, fault-tolerant service. We assume that hosts located at
distributed sites provide the processing infrastructure [19],
as illustrated in Fig. 1. This deployment model has the
advantage that resources are contributed through a federa-
tion of distinct administrative entities. Unlike in a general
peer-to-peer model, hosts participating in the federation are
dedicated and have a low churn rate. Grid deployments and
PlanetLab, a distributed networking test-bed, are successful
examples of such federated resource pools.

4.1 Quality-centric query model
We propose a quality-centric query model where a query is

accompanied by a utility function. This function allows the
DISSP system to calculate the user-perceived quality value
of data tuples. Failure in the system will reduce data quality
in a quantifiable way. For example, the utility of an aggre-
gation query combining sky images from multiple telescopes
may decrease proportionally with the number of unavailable
telescopes due to the less precise results. By reducing preci-
sion to improve availability [18], a DISSP system guarantees
a predictable stream processing service even with substantial
resource failure.

Data quality metrics can be from two broad categories:
system-centric metrics are independent of any given ap-

1D31D1 1D2 1D4

2D5

4D6

Figure 3: Propagation of quality-metrics with
stream tuples

(a) operator
replication

(b) multi-path
streaming

(c) fidelity
reduction

Figure 4: Fault-tolerance techniques in DISSP

plication and capture properties inherent to DISSP. Exam-
ples are harvest — the fraction of data sources with tuples
included in the result stream of an aggregation query, fresh-
ness — the time until a user receives a tuple from a data
source, and throughput — the rate at which tuples are deliv-
ered; query-centric metrics involve domain-specific knowl-
edge about tuple semantics. Metrics such as result accuracy,
detection confidence and sample rate fall into this category.

As shown in Fig. 3, this query model can be implemented
by associating data tuples in a stream with their quality
values. In this example, the quality value is harvest and is
updated as tuples traverse the query graph. For many ap-
plications, tuples closer to the user in the graph will have
higher values — their loss has a larger impact because they
represent aggregated data. The quality value may also de-
crease over time if freshness is part of the utility function.

4.2 Fault-tolerance techniques
A DISSP system can use different fault-tolerance tech-

niques to maximise the utility of result tuples. As shown in
Fig. 4, each technique rewrites the query plan into an equiva-
lent representation: (a) operator replication adds redun-
dant processing to the plan, preventing host failures from
affecting results; (b) multi-path streaming adds redun-
dant network paths to handle network failures; (c) fidelity
reduction degrades processing quality, for example, by re-
placing exact operators with approximations or requesting
lower grade streams from data sources. This reduces the re-
source requirements of a query so that the DISSP system can
continue operation with diminished resources after failure.

The system must reconcile inconsistent state between repli-
cated operators. Divergence may be caused by restarted
failed hosts, temporary tuple loss due to network failure and
network partitions. It is infeasible to withhold inconsistent
results from users and replay corrected tuples because the
system will lack sufficient resources to recover completely
from missed processing. Instead, a DISSP system should
accept a limited degree of inconsistency leading to a tem-

porary reduction of data quality. The system can reconcile
inconsistent tuples according to several strategies: (a) se-
lect tuples using a majority vote; (b) select tuples with
the maximum quality value as they are most useful to
the user; (c) perform further processing to combine tuples
into ones with higher data quality.

4.3 Strategies for stream query optimisation
A DISSP system must have a strategy for choosing among

the above fault-tolerance techniques. In a system with thou-
sands of queries, it is infeasible to expect a system adminis-
trator to manually allocate redundant resources for a DISSP
service. The aim is to deliver result tuples with the highest
quality to as many users as possible. This can be viewed as
an optimisation problem: available resources are allocated
to queries in order to maximise the overall user benefit un-
der failure. More valuable tuples should be protected first.
Some fault-tolerance techniques, such as operator replica-
tion, should be applied proactively, in anticipation of future
failures, whereas others should be used reactively to ensure
satisfactory performance of queries during failure, e.g., by
switching to approximate processing.

5. RELATED WORK
Global sensor web. The distributed systems community

has recognised the need for global stream processing. [4, 9,
16, 17, 2]. However, previous efforts have either neglected
dependability [9] or advocated reliability through substan-
tial redundancy, thus wasting resources [10]. This is infeasi-
ble in an environment with resource-constraint hosts.

Distributed stream processing. Previous research has
focused on moderate-scale, well-provisioned environments
such as single data centres [1, 8, 5]. Therefore solutions for
high availability mask failures, treating them as exceptions.
The aim is to eventually deliver correct data to all users
after a failure [3, 11, 21]. Such resource-intensive recovery
limits scalability and is at odds with the ephemeral nature
of real-time stream data. In addition, administrators have
to manually configure redundant processing in anticipation
of system failures. More recent work [13, 12] has consid-
ered deployments in wide-area networks but still assumes
substantial over-provisioning of resources.

Grid. The Grid vision is to process large volumes of data
collaboratively [7]. Most Grid applications follow a batch
processing model, although researchers have begun looking
at the needs of real-time streams [15, 14]. To achieve de-
pendability, Grid applications are often built using redun-
dant hardware and dedicated network links (e.g., GridPP
and TeraGrid), leading to higher deployment costs. Instead,
we advocate to exploit unreliable commodity hardware and
shared networks for global stream processing.

6. CONCLUSIONS
By encouraging a fresh look at dependability in Internet-

scale stream processing, we hope that such systems will play
a crucial role in the future global sensor web. We also be-
lieve that these techniques for handling real-time stream
data from sensor networks will provide useful input to ef-
forts on next generation Internet designs. As a next step, we
intend to validate our ideas with a public DISSP system on
Planetlab. We will encourage sensor researchers to use our
infrastructure to inter-connect real-world sensor networks.

7. REFERENCES
[1] D. J. Abadi, Y. Ahmad, et al. The Design of the

Borealis Stream Processing Engine. In CIDR, 2005.

[2] K. Aberer, M. Hauswirth, and A. Salehi.
Infrastructure for Data Processing in Large-scale
Interconnected Sensor Networks. In MDM, May 2007.

[3] M. Balazinska, H. Balakrishnan, et al. Fault-Tolerance
in the Borealis Distributed Stream Processing System.
In Proc. of SIGMOD’05, Baltimore, MD, June 2005.

[4] M. Balazinska, A. Deshpande, et al. Data
Management in the Worldwide Sensor Web. IEEE
Pervasive Computing, 6(2):30–40, 2007.

[5] L. Chen, K. Reddy, and G. Agrawal. GATES: A
Grid-Based Middleware for Processing Distributed
Data Streams. In Proc. of HPDC-13, June 2004.

[6] EPSRC. WINES II Project - Smart Infrastructure.
winesinfrastructure.org, 2006.

[7] I. Foster. What is the Grid? - A Three Point
Checklist. GRIDtoday, 1(6), July 2002.

[8] M. Franklin, S. Jeffery, et al. Design Considerations for
High Fan-in Sys.: The HiFi Approach. In CIDR, 2005.

[9] P. Gibbons, B. Karp, et al. IrisNet: An Architecture
for a Worldwide Sensor Web. Pervasive Computing,
IEEE, 2(4):22–33, Oct.-Dec. 2003.

[10] R. Huebsch, J. M. Hellerstein, et al. Querying the
Internet with PIER. In Proc. of VLDB, Sept. 2003.

[11] J.-H. Hwang, M. Balazinska, et al. High-Availability
Algorithms for Distributed Stream Processing. In
Proc. of ICDE’05, Washington, DC, USA, 2005.

[12] J.-H. Hwang, U. Cetintemel, and S. Zdonik. Fast and
Highly-Available Stream Processing over Wide Area
Networks. In Proc. of ICDE’08, Cancun, Mexico, 2008.

[13] J.-H. Hwang, Y. Xing, U. Cetintemel, et al. A
Cooperative, Self-Configuring High-Availability Sol-
ution for Stream Processing. In Proc. of ICDE, 2007.

[14] M. Ivanova and T. Risch. Customizable Parallel
Execution of Scientific Stream Queries. In Proc. of
VLDB’05, Trondheim, Norway, Aug. 2005.

[15] R. Kuntschke, T. Scholl, et al. Grid-Based Data
Stream Processing in e-Science. In Proc. of
E-SCIENCE, Washington, DC, USA, 2006.

[16] S. Midkiff. Internet-Scale Sensor Systems: Design and
Policy. Pervasive Comp., 2(4):10–13, Oct.-Dec. 2003.

[17] R. N. Murty and M. Welsh. Towards a Dependable Ar-
chitecture for Internet-Scale Sensing. In HotDep, 2006.

[18] C. Olston and J. Widom. Offering a Precision-
Performance Tradeoff for Aggregation Queries over
Replicated Data. In The VLDB Journal, 2000.

[19] P. Pietzuch, J. Ledlie, J. Shneidman,
M. Roussopoulos, M. Welsh, and M. Seltzer.
Network-Aware Operator Placement for Stream-
Processing Systems. In Proc. of ICDE, Apr. 2006.

[20] I. Rose, R. Murty, P. Pietzuch, et al. Cobra: Content-
based Filtering and Aggregation of Blogs and RSS
Feeds. In Proc. of NSDI, Cambridge, MA, USA, 2007.

[21] M. A. Shah, J. M. Hellerstein, and E. Brewer. Highly
Available, Fault-tolerant, Parallel Dataflows. In Proc.
of SIGMOD, New York, NY, USA, 2004.

[22] W. Vestrand, J. Wren, et al. Energy Input and
Response from Prompt and Early Optical Afterglow
Emmission in Gamma-Ray Bursts. Nature, 442, 2006.

