
CrossBow: Scaling Deep Learning on Multi-GPU Servers

Alexandros Koliousis†, Pijika Watcharapichat†, Matthias Weidlich∗, Paolo Costa‡, Peter Pietzuch†

†Imperial College London ‡Microsoft Research ∗Humboldt-Universität zu Berlin

ABSTRACT

With the widespread availability of servers with 4 or more GPUs,
scalability in terms of the number of GPUs in a server when training
deep learning models becomes a paramount concern. Systems such
as TensorFlow and MXNet train using synchronous stochastic
gradient descent—an input batch is partitioned across the GPUs,
each computing a partial gradient. The gradients are then combined
to update the model parameters before proceeding to the next
batch. For many deep learning models, this introduces a scalability
challenge: to keep multiple GPUs fully utilised, the batch size must
be sufficiently large, but a large batch size slows down model con-
vergence due to the less frequent model updates, thus prolonging
the time to reach a desired level of accuracy.

This paper introduces CrossBow, a new single-server multi-
GPU deep learning system that avoids the above trade-off. Cross-
Bow trains multiple model replicas concurrently on each GPU,
thereby avoiding under-utilisation of GPUs evenwhen the preferred
batch size is small. For this, CrossBow must (i) decide on an
appropriate number of model replicas per GPU and (ii) employ
an efficient and scalable synchronisation scheme within and across
GPUs. CrossBow automatically tunes the number of replicas per
GPU at runtime to maximise training throughput for a given batch
size. We designed a novel synchronisation scheme that eliminates
dependencies among model replicas, enabling high throughput and
scalability. Our experiments show that CrossBow outperforms
TensorFlow on a 4-GPU server by 2.5× with ResNet-32.

1 BATCH SIZES IN DEEP-LEARNING SYSTEMS

Large-scale deep learning models are prominent in many applica-
tion fields, including computer vision [5, 9, 12], speech recogni-
tion [14], and natural language processing [13]. Models are trained
using labelled data samples to make accurate predictions. When
training with stochastic gradient descent (SGD), model parameters
are iteratively refined based on the how well they can predict the
label of each sample. A model update, termed a gradient, is typically
computed over a batch of samples. The goal of training is to reach
a desired level of accuracy as fast as possible.

Training can effectively exploit the parallelism of a GPU, and
multi-GPU servers have become widely available: public cloud
providers offer VMs with up to 16 GPUs [2], and a 10-GPU server
costs less than $40,000. Deep learning systems such as Tensor-
Flow [1], MXNet [3], CNTK [10], and Caffe [6] must therefore scale
well with multiple GPUs in a single server. As the number and capa-
bility of GPUs in a single server increases, this becomes increasingly
challenging because systems must fully utilise the parallelism of
all GPUs during training without introducing bottlenecks.

Current systems [1, 3] must use large batch sizes in order to scale
to multiple GPUs. They commonly employ synchronous stochastic
gradient descent (S-SGD) [8] to parallelise model training on a

multi-GPU server. Assuming a batch size b across k GPUs, parallel
training with S-SGD involves two types of computational tasks
for learning and synchronisation: learning tasks on each GPU first
compute a partial gradient usingb/k samples; synchronisation tasks
then update the model with aggregate values before the next batch
is considered. To scale S-SGD with the number of GPUs k , the batch
size b must increase as well. When b increases, however, eventually
statistical efficiency [15] decreases due to the less frequent model
updates, resulting in a higher time-to-accuracy.

Systems attempt to compensate for this effect during training:
they may proportionally increase the learning rate [4], or they
may adapt the batch size during training [11]. These techniques,
however, do not avoid the fundamental issue that current systems
couple the batch size b with the number of GPUs k , preventing the
training of models with small batch using many GPUs. We ask the
question how to design for a deep-learning system that supports the
efficient training with small batch sizes while scaling to many GPUs.

2 CROSSBOW: MULTIPLE REPLICAS PER GPU

Our design for a new deep-learning system, CrossBow, exploits
the idea to train multiple model replicas concurrently on each GPU,
thus fully utilising all GPU resources even with small batch sizes.
For this, CrossBow overcomes two challenges: (i) it automatically
selects the optimal number of model replicas per GPU (§2.1); and
(ii) it frequently synchronises a large number of model replicas
within and across GPUs without limiting concurrency (§2.2).

2.1 Selecting the number of model replicas

When training multiple model replicas on a single GPU, the num-
ber of replicas must be chosen carefully for a given batch size:
when training too few replicas, the GPU is under-utilised, wast-
ing resources; choosing too many means that learning tasks are
sequentialised partially on the GPU, leading to a slow-down. In
addition, the synchronisation of many replicas reduces statistical
efficiency, particularly for large models. Finding a sweet-spot is
challenging because it depends on the features of the model (e.g. its
parameters), the GPU (e.g. the number of cores), and the software
stack used for training (e.g. the specific employed kernels).

CrossBow estimates the best number of replicas per GPU based
on the observed training throughput, i.e. the data volume of pro-
cessed batches per second. CrossBow thus detects under- and
over-utilisation of the GPU during training: it observes a decrease
in throughput and adapts the number of model replicas accordingly.

CrossBow starts with a single replica per GPU, m=1, and in-
creasesm as long as a significant increase in throughput is observed.
The increase must be above a given threshold (empirically set
to 10%) to compensate for the potential loss in statistical efficiency
due to the larger number of replicas. In practice, CrossBow discov-
ers the best number of replicas to use after a few seconds.

2.2 Synchronising model replicas

Deep learning systems such as TensorFlow and MXNet adopt syn-
chronous SGD (S-SGD) to coordinate model replicas. It requires all
replicas to synchronise at the same time, creating a global barrier
between successive learning tasks. This approach is ill-suited for
CrossBow for two reasons: (i) since CrossBow trains multiple
replicas per GPU, the overall number of replicas in the system
is significantly higher, typically by a factor of 2 or more. This
drastically increases the chances of stragglers, which would slow
down the rest of the replicas due to the global barrier. The effect
would be even more pronounced if different generations of GPUs
(with different performance characteristics) were used; and (ii) the
cost of synchronisingwithin a single GPU is significantly lower than
across GPUs. By requiring a global synchronisation step, S-SGD
does not exploit this difference.

To address these shortcomings, we develop a new synchroni-
sation technique that eliminates any global barrier and reduces
dependencies among tasks to increase concurrency and, hence,
training throughput. Our approach works as follows: each GPU
stores a reference copy of the model locally. After a model replica
has been updated by all its assigned learning tasks, the CrossBow
scheduler issues a synchronisation task that computes the weighted
difference between the model replica and the local reference model
and applies it to the replica. Once all model replicas across all
GPUs have completed their assigned learning tasks, all differences
are aggregated and sent to one GPU where a new global model
is generated and then copied to all other GPUs. This ensures that
all reference models are consistent. As done by elastic averaging
SGD (EA-SGD) [16], CrossBow uses a moving average to update
the values of models, which yields faster convergence.

A key property of our approach is that all replica synchronisation
tasks are independent of each other. Once a replica has synchronised
with its local reference model, it is ready to accept the next learning
task without waiting for other synchronisation tasks to complete.
Dependencies between successive synchronisation tasks are set
on a per replica basis. This fine-grained concurrency control has
several benefits: (i) by avoiding a global synchronisation step, it
allows CrossBow to scale to a large number of GPUs and model
replicas; (ii) it is not impacted by stragglers (e.g. due to hetero-
geneous hardware). CrossBow’s task scheduler maintains a pool
of model replicas and assigns learning tasks opportunistically as
a new model replica becomes available. This ensures that model
replicas executing on a faster GPU receive more tasks; and (iii) by
decoupling intra- and inter-device synchronisation, it is possible
to optimise performance further by taking advantage of locality.
In our current implementation, we first aggregate the differences
for all model replicas hosted on the same GPU before propagating
them to the GPU responsible for generating the new model, thus
reducing GPU-to-GPU transfers.

TensorFlow and Caffe2 [4] support several inter-GPU synchro-
nisation mechanisms to aggregate gradients and broadcast models.
While they overlap data movement with gradient computation, as
each operation is handled by distinct parts of the GPU runtime
(the copy and compute engines), CrossBow enables efficient multi-
plexing of tasks on the compute engine. DimmWitted [15] explores
the problem of model replica synchronisation on multi-core CPUs.

 0

 100

 200

 300

 400

1 2 4T
im

e
 t

o
 a

c
c
u

ra
c
y
 (

s
e

c
)

Number of GPUs

Crossbow
TensorFlow

Figure 1: Scalability

 0

 200

 400

 600

 800

 1 3 6 9 12
 0

 100

 200

 300

 400

T
im

e
 t

o
 a

c
c
u

ra
c
y
 (

s
e

c
)

T
h

ro
u

g
h

p
u

t
(M

B
/s

)

Model replicas per GPU

Throughput

Figure 2: Model replicas

Each NUMA node has its own replica shared by the cores within
that node, which can be seen as having multiple replicas per GPU.
Within a node, DimmWitted builds an asynchronous update model
amongst cores to boost performance, relying on the hardware to
ensure data coherence. On GPUs, however, uncontrolled concur-
rency leads to data corruption. CrossBow’s model achieves high
utilisation while remaining synchronous.

3 EVALUATION

We evaluate CrossBow’s ability to scale on a 4-GPU server, com-
pared to TensorFlow v1.4 [1], and the impact of varying the number
of model replicas per GPU. The server has two Intel Xeon E5-2640 v4
2.40 GHzCPUs (20 CPU cores) with 64 GB of RAMand four NVIDIA
Titan X (Pascal) GPUs with 12 GB of RAM connected via PCIe 3.0
(×16). CrossBow’s implementation consists of 8.9K LOCs in C with
a Java dataflow front-end (24.8K LOCs). The GPUs use the NVIDIA
driver 375.26 with the CUDA 8.0 runtime; the dataflow operator
implementations rely on NVIDIA cuBLAS and cuDNN 5.1.

First, wemeasure the time-to-accuracy of CrossBow and Tensor-
Flow as we vary the number of GPUs. We use ResNet-32, a residual
network with ∼120 layers [5], and train it to classify images from
the CIFAR-10 dataset [7]. We set the target test accuracy to 80%
because, without data augmentation, this is where test accuracy
plateaus. We use the same configuration for the hyper-parameters
for both systems apart from the batch size b.

The results in Fig. 1 show that (i) CrossBow outperforms Ten-
sorFlow (by up to 2.5×) due to its ability to train multiple replicas
per GPU and (ii) it exhibits better scalability due to its efficient
replica synchronisation (§2.2). With 1 GPU, TensorFlow achieves
the shortest time-to-accuracy with b=128; the best batch size for
CrossBow is the same, but it trains twomodel replicas concurrently,
thus boosting convergence speed. With 2 GPUs, the best batch size
for TensorFlow increases to b=512 (i.e. 256 per GPU); CrossBow
scales linearly with b=64 and 3 replicas per GPU. With 4 GPUs,
both systems suffer from the synchronisation overhead, but the
impact on CrossBow is lower.

Next we explore CrossBow’s approach for selecting the number
of model replicas per GPU. To fit a large number of replicas, we use
ResNet-20 with a target accuracy of 88% trained on 3 GPUs. Fig. 2
shows the time-to-accuracy and the throughput as we increase
the number of model replicas per GPU. With more model replicas,
eventually the GPU resources are saturated and the throughput
plateaus. This coincides with values ofm that yield the shortest
time-to-accuracy, which is what CrossBow exploits for tuningm.
This approachworks because, while EA-SGD permitsmodel replicas
to diverge, CrossBow schedules synchronisation tasks after a
model replica was updated a few times. We have also experimented
with other ResNet networks with similar results.

2

REFERENCES

[1] Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey
Dean, Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving, Michael Isard,
Manjunath Kudlur, Josh Levenberg, Rajat Monga, SherryMoore, Derek G. Murray,
Benoit Steiner, Paul Tucker, Vijay Vasudevan, Pete Warden, Martin Wicke, Yuan
Yu, and Xiaoqiang Zheng. 2016. TensorFlow: A System for Large-scale Machine
Learning. In Proceedings of the 12th USENIX Conference on Operating Systems
Design and Implementation (OSDI’16). USENIX Association, Berkeley, CA, USA,
265–283.

[2] Amazon EC2 Instance Types (P2). (2017). https://aws.amazon.com/ec2/
instance-types/ Last accessed on January 6, 2017.

[3] Tianqi Chen, Mu Li, Yutian Li, Min Lin, Naiyan Wang, Minjie Wang, Tianjun
Xiao, Bing Xu, Chiyuan Zhang, and Zheng Zhang. 2015. MXNet: A Flexible
and Efficient Machine Learning Library for Heterogeneous Distributed Systems.
CoRR abs/1512.01274 (2015). arXiv:1512.01274 http://arxiv.org/abs/1512.01274

[4] Priya Goyal, Piotr Dollár, Ross B. Girshick, Pieter Noordhuis, Lukasz Wesolowski,
Aapo Kyrola, Andrew Tulloch, Yangqing Jia, and Kaiming He. 2017. Accurate,
Large Minibatch SGD: Training ImageNet in 1 Hour. CoRR abs/1706.02677 (2017).
arXiv:1706.02677

[5] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2015. Deep Residual
Learning for Image Recognition. CoRR abs/1512.03385 (2015). arXiv:1512.03385

[6] Yangqing Jia, Evan Shelhamer, Jeff Donahue, Sergey Karayev, Jonathan Long,
Ross B. Girshick, Sergio Guadarrama, and Trevor Darrell. 2014. Caffe: Convo-
lutional Architecture for Fast Feature Embedding. In Proceedings of the ACM
International Conference on Multimedia, MM ’14, Orlando, FL, USA, November 03 -
07, 2014, Kien A. Hua, Yong Rui, Ralf Steinmetz, Alan Hanjalic, Apostol Natsev,
and Wenwu Zhu (Eds.). ACM, 675–678. https://doi.org/10.1145/2647868.2654889

[7] Alex Krizhevsky. 2009. Learning Multiple Layers of Features from Tiny Images.
Master’s thesis. Department of Computing Science, University of Toronto.
www.cs.toronto.edu/ kriz/learning-features-2009-TR.pdf.

[8] Alex Krizhevsky. 2014. One weird trick for parallelizing convolutional neural
networks. CoRR abs/1404.5997 (2014). arXiv:1404.5997 http://arxiv.org/abs/1404.
5997

[9] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. 2012. ImageNet
Classification with Deep Convolutional Neural Networks. In Advances in Neural
Information Processing Systems 25, F. Pereira, C. J. C. Burges, L. Bottou, and K. Q.
Weinberger (Eds.). Curran Associates, Inc., 1097–1105.

[10] Frank Seide and Amit Agarwal. 2016. CNTK: Microsoft’s Open-Source Deep-
Learning Toolkit. In Proceedings of the 22nd ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, San Francisco, CA, USA, August 13-17,
2016, Balaji Krishnapuram, Mohak Shah, Alexander J. Smola, Charu C. Aggarwal,
Dou Shen, and Rajeev Rastogi (Eds.). ACM, 2135. https://doi.org/10.1145/2939672.
2945397

[11] Samuel L. Smith, Pieter-Jan Kindermans, and Quoc V. Le. 2017. Don’t Decay
the Learning Rate, Increase the Batch Size. CoRR abs/1711.00489 (2017).
arXiv:1711.00489

[12] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir
Anguelov, Dumitru Erhan, Vincent Vanhoucke, and Andrew Rabinovich. 2014.
Going Deeper with Convolutions. CoRR abs/1409.4842 (2014).

[13] Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V. Le, Mohammad Norouzi,
Wolfgang Macherey, Maxim Krikun, Yuan Cao, Qin Gao, Klaus Macherey, Jeff
Klingner, Apurva Shah, Melvin Johnson, Xiaobing Liu, Lukasz Kaiser, Stephan
Gouws, Yoshikiyo Kato, Taku Kudo, Hideto Kazawa, Keith Stevens, George Kurian,
Nishant Patil, Wei Wang, Cliff Young, Jason Smith, Jason Riesa, Alex Rudnick,
Oriol Vinyals, Greg Corrado, Macduff Hughes, and Jeffrey Dean. 2016. Google’s
Neural Machine Translation System: Bridging the Gap between Human and
Machine Translation. CoRR abs/1609.08144 (2016). arXiv:1609.08144

[14] Wayne Xiong, Jasha Droppo, Xuedong Huang, Frank Seide, Mike Seltzer, Andreas
Stolcke, Dong Yu, and Geoffrey Zweig. 2016. The Microsoft 2016 Conversational
Speech Recognition System. CoRR abs/1609.03528 (2016). arXiv:1609.03528

[15] Ce Zhang and Christopher Ré. 2014. DimmWitted: A Study of Main-memory
Statistical Analytics. Proc. VLDB Endow. 7, 12 (Aug. 2014), 1283–1294. https:
//doi.org/10.14778/2732977.2733001

[16] Sixin Zhang, Anna Choromanska, and Yann LeCun. 2015. Deep Learning with
Elastic Averaging SGD. In Proceedings of the 28th International Conference on
Neural Information Processing Systems (NIPS’15). MIT Press, Cambridge, MA, USA,
685–693.

3

https://aws.amazon.com/ec2/instance-types/
https://aws.amazon.com/ec2/instance-types/
http://arxiv.org/abs/1512.01274
http://arxiv.org/abs/1512.01274
http://arxiv.org/abs/1706.02677
http://arxiv.org/abs/1512.03385
https://doi.org/10.1145/2647868.2654889
http://arxiv.org/abs/1404.5997
http://arxiv.org/abs/1404.5997
http://arxiv.org/abs/1404.5997
https://doi.org/10.1145/2939672.2945397
https://doi.org/10.1145/2939672.2945397
http://arxiv.org/abs/1711.00489
http://arxiv.org/abs/1609.08144
http://arxiv.org/abs/1609.03528
https://doi.org/10.14778/2732977.2733001
https://doi.org/10.14778/2732977.2733001

	Abstract
	1 Batch sizes in deep-learning systems
	2 CrossBow: Multiple replicas per GPU
	2.1 Selecting the number of model replicas
	2.2 Synchronising model replicas

	3 Evaluation
	References

