
This paper is included in the Proceedings of the
2023 USENIX Annual Technical Conference.

July 10–12, 2023 • Boston, MA, USA
978-1-939133-35-9

Open access to the Proceedings of the
2023 USENIX Annual Technical Conference

is sponsored by

MSRL: Distributed Reinforcement
Learning with Dataflow Fragments

Huanzhou Zhu, Imperial College London; Bo Zhao, Imperial College London and
Aalto University; Gang Chen, Weifeng Chen, Yijie Chen, and Liang Shi, Huawei

Technologies Co., Ltd.; Yaodong Yang, Peking University; Peter Pietzuch, Imperial
College London; Lei Chen, Hong Kong University of Science and Technology

https://www.usenix.org/conference/atc23/presentation/zhu-huanzhou

MSRL: Distributed Reinforcement Learning with Dataflow Fragments

Huanzhou Zhu*

Imperial College London
Bo Zhao*

Imperial College London and
Aalto University

Gang Chen
Huawei Technologies Co., Ltd.

Weifeng Chen
Huawei Technologies Co., Ltd.

Yijie Chen
Huawei Technologies Co., Ltd.

Liang Shi
Huawei Technologies Co., Ltd.

Yaodong Yang
Peking University

Peter Pietzuch
Imperial College London

Lei Chen
Hong Kong University of
Science and Technology

Abstract
A wide range of reinforcement learning (RL) algorithms have
been proposed, in which agents learn from interactions with a
simulated environment. Executing such RL training loops is
computationally expensive, but current RL systems fail to sup-
port the training loops of different RL algorithms efficiently
on GPU clusters: they either hard-code algorithm-specific
strategies for parallelization and distribution; or they acceler-
ate only parts of the computation on GPUs (e.g., DNN policy
updates). We observe that current systems lack an abstrac-
tion that decouples the definition of an RL algorithm from its
strategy for distributed execution.

We describe MSRL, a distributed RL training system
that uses the new abstraction of a fragmented dataflow
graph (FDG) to execute RL algorithms in a flexible way.
An FDG is a heterogeneous dataflow representation of an
RL algorithm, which maps functions from the RL training
loop to independent parallel dataflow fragments. Fragments
account for the diverse nature of RL algorithms: each frag-
ment can execute on a different device using its own low-level
dataflow implementation, e.g., an operator graph of a DNN
engine, a CUDA GPU kernel, or a multi-threaded CPU pro-
cess. At deployment time, a distribution policy governs how
fragments are mapped to devices, without changes to the algo-
rithm implementation. Our experiments show that MSRL ex-
poses trade-offs between different execution strategies, while
surpassing the performance of existing RL systems.

1 Introduction
Reinforcement learning (RL) solves decision-making prob-
lems by having agents learn policies – typically represented
as deep neural networks (DNNs) – on how to act in an en-
vironment [51]. RL has achieved remarkable outcomes: in
game play, AlphaGo [49] defeated a world champion in the
Go board game; in biology, AlphaFold [21] predicts three-
dimensional structures for protein folding; in robotics, RL
allows robots to perform dexterous manipulation without hu-

*Equal contribution.

man intervention [15]; and the ChatGPT chatbot [41] uses a
reinforcement step with PPO [47] to fine-tune its model.

Such advances in RL, however, come with high computa-
tional demands: AlphaStar trained 12 agents on 384 TPUs and
1,800 CPUs for 44 days to achieve grandmaster level in Star-
Craft II game play [54]; OpenAI Five trained to play Dota 2
games for 10 months with 1,536 GPUs and 172,800 CPUs [3].

Existing RL systems (e.g., SEED RL [8], Acme [18],
Ray [34], RLlib [25], Podracer [16]) are therefore optimized
for specific types of RL algorithms and the structure of their
RL training loops. In particular, systems hardcode a strategy
for parallelizing and distributing the RL computation:
Parallelization. Most RL systems only accelerate the DNN
computation on GPUs or TPUs [8, 18, 25] using current
DNN engines (e.g., PyTorch [42], TensorFlow [14], and Mind-
Spore [19]). Other parts of RL algorithms (e.g., action gen-
eration, environment execution, and trajectory sampling) are
executed as sequential Python functions on worker nodes,
potentially becoming performance bottlenecks.

Some systems try to accelerate more parts of RL training
loops: Podracer [16] uses the JAX [12] compilation frame-
work to vectorize Python implementations of RL algorithms;
WarpDrive [23] implement the entire RL training loop using
CUDA on a GPU; and RLlib Flow [26] uses a set of parallel
dataflow operators [58] to express an RL training loop. All of
these approaches, however, require users to rewrite the com-
plete RL algorithm (e.g., agents, learners, and environments)
using a single API with a fixed set of dataflow operators.
Distribution. When distributing computation, current RL sys-
tems allocate algorithmic components (e.g., actors and learn-
ers) to workers in a fixed way: SEED RL [8] assumes that
learners perform policy inference and training on TPUs, and
actors execute on CPUs; Acme [18] only distributes actors
and maintains a single learner; and TLeague [50] distributes
learners but co-locates environments with actors on CPU
workers. As we shown in §6, such decisions are algorithm-
specific: since different algorithms deployed on a given set
of resources exhibit diverse bottlenecks, a single distribution
strategy cannot exhibit the best performance in all cases.

USENIX Association 2023 USENIX Annual Technical Conference 977

We observe that the above challenges come from a lack of
separation between the definition of an RL algorithm and
how it is executed by the system. For example, many RL sys-
tems allow users to define RL algorithms as a set of Python
functions for agents, learners, and environments. The system
then directly invokes the implementation of e.g., an agent’s
act() function to produce new actions for the environment.
While this simplifies system implementation, it removes con-
trol from the system regarding how algorithmic components
are parallelized or distributed at deployment time.

DNN training systems use intermediate representa-
tions (IRs), which are compiled to target devices for execution,
to decouple DNN definition from execution [1,6,56]. Such ap-
proaches, however, assume a homogeneous training computa-
tion (forward/backpropagation over differentiable DNNs [2]),
which can be expressed by a fixed set of computational opera-
tors over tensor types. In contrast, the space of RL algorithms
exhibits more heterogeneity in terms of the computation per-
formed by algorithmic components (agents, actors, learners,
polices, environments, leaderboards), their exchanged data
(observations, actions, policy updates) and communication
patterns (one-to-one, one-to-many, all-reduce).

Our goal is to explore a new design for an RL training
system that requires users to define an RL algorithm only
once. At deployment, the system then supports (i) the exe-
cution of arbitrary parts of the RL computation on parallel
devices (GPUs and CPUs); and (ii) the deployment of parts
of the computation on distributed workers.

We describe MSRL, a distributed RL system that achieves
this by decoupling the specification of a RL algorithm from
its execution through the abstraction of a fragmented dataflow
graph (FDG). Unlike dataflow approaches of DNN and data
analytics systems, an FDG does not enforce a single uniform
dataflow representation, which is challenging for diverse RL
algorithms. Instead, it allows different components of an RL
algorithm to have bespoke GPU or CPU implementations,
chosen by the user at deployment time.

In summary, MSRL’s design makes three contributions:
(1) Fragmented dataflow graphs (§3). From the RL algo-
rithm implementation, MSRL constructs an FDG, which con-
sists of independent fragments. Each fragment can have its
own dataflow representation (e.g., DNN operators, CUDA, or
Python) targeting GPUs or CPUs. MSRL then maps instances
of fragments to devices at deployment time.

To obtain fragments, MSRL statically analyzes the RL
algorithm implementation to group functions into fragments.
By default, the boundaries between fragments are chosen
based on the algorithmic components of the RL algorithm.
Since fragments are deployed on different devices, MSRL
synthesizes appropriate communication operators that allows
fragments to exchange data.
(2) API with distribution policies (§4). Users specify an
RL algorithm by implementing its algorithmic components
as Python functions in a traditional way. The implementa-

tion makes no assumptions about how the algorithm will be
executed: all runtime interactions between components are
managed by calls to MSRL APIs. A separate deployment
configuration defines the devices available for execution.

Since FDGs separate algorithm implementations from ex-
ecution, MSRL can apply different distribution policies to
govern how fragments are mapped to devices. MSRL sup-
ports distribution policies, which subsume the hard-coded
distribution strategies of current RL systems: e.g., a policy
can distribute multiple actors to scale environment interaction
(like Acme [18]); distribute actors and move policy inference
to learners (like SEED RL [8]); distribute both actors and
learners (like Sebulba [16]); or represent the full RL training
loop on a GPU (like WarpDrive [23] and Anakin [16]).

When a user changes the algorithm configuration, its hyper-
parameters or deployment resources, they can also switch be-
tween distribution policy to maintain high training efficiency
without having to change the RL algorithm implementation.
(3) Heterogeneous fragment execution (§5). For execution,
MSRL deploys hardware-specific implementations of frag-
ments on CPUs and GPUs. MSRL supports different fragment
implementations: CPU implementations use regular (multi-
process) Python code, and GPU implementations are gen-
erated as compiled computational graphs for DNN engines
(e.g., MindSpore or TensorFlow) if a fragment is implemented
using operators, or are implemented directly in CUDA.

MSRL optimizes co-located fragments on the same worker:
it fuses data-parallel fragments for more efficient execution by
batching data items (e.g., tensors) and using single-instruction-
multiple-data (SIMD) execution.
We evaluate MSRL experimentally and show that MSRL’s
abstraction supports flexible training across different RL algo-
rithm without compromising training performance compared
to current hardcoded RL training systems: MSRL scales to
64 GPUs and outperforms the Ray distributed RL system [34]
by up to 3×. By switching between distribution policies,
MSRL can improve the training time of the PPO RL algo-
rithm by up to 2.4× as hyper-parameters, network properties
or hardware resources change.

2 Distributed Reinforcement Learning
Next we give background on RL algorithms (§2.1), discuss
the requirements for RL training (§2.2), and survey the design
space of existing RL systems (§2.3).

2.1 Reinforcement learning

Reinforcement learning (RL) solves a sequential decision-
making problem in which an agent operates in an environ-
ment. The agent’s goal is to learn a policy that maximizes the
cumulative reward based on the feedback from the environ-
ment (see Fig. 1). RL training performs three steps: 1 policy
inference: an agent obtains an action by performing inference
on a policy; 2 environment execution: the environment ex-
ecutes the action, generating trajectories of ⟨state,reward⟩

978 2023 USENIX Annual Technical Conference USENIX Association

Environments

Agent 1 Agent 2 Agent n

Policy 1 Policy 2 Policy n

Action a1 Action a2 Action an

…

Joint action
<a2,a3,..,an>

State 1

reward 1

Message
Step 1

Environment 1
Environment 2

Environment 3

…

…

Policy
inference

Step 2
Environment

execution Policy
training

Step 3
…

State 2

reward 2

State n

reward n

Fig. 1: RL training loop with multiple agents

pairs; and 3 policy training: the agent improves the policy by
adapting it based on the reward.

RL algorithms are diverse in nature, falling into three cat-
egories: (1) value-based algorithms (e.g., DQN [33]) use a
DNN to approximate a value function that predicts the ex-
pected return of actions. Agents then select actions based
on these estimated values; (2) policy-based algorithms (e.g.,
Reinforce [55]) directly learn a parameterized policy – ap-
proximated by a DNN – for selecting actions without a value
function. Agents use batched trajectories to train the policy by
updating its parameters to maximize the reward; and (3) ac-
tor–critic algorithms (e.g., PPO [47], DDPG [27], A2C [32])
combine the two by learning a policy that selects actions and
a value function that evaluates them.

Multi-agent reinforcement learning (MARL) employs mul-
tiple agents, each optimizing its own cumulative reward when
interacting with the environment or other agents (see Fig. 1).
A3C [32] executes agents asynchronously on separate environ-
ment instances; MAPPO [57] extends PPO to a multi-agent
setting in which agents share a global parameterized policy.

2.2 Requirements for distributed RL systems

RL algorithms explore large spaces of actions, states and
DNN parameters, which grow exponentially with the number
of agents [37]. RL systems must thus exploit the parallelism
of GPUs and scale computation to many worker nodes.

Due to the diverse computational patterns exhibited by
different RL algorithms, there is no single strategy for paral-
lelization and distribution that is optimal for all RL algorithms,
e.g., in terms of both achieving the lowest iteration time and
scaling to the most workers. Bottlenecks during training de-
pend on the specific algorithm, the training workloads and
the employed hardware resources: e.g., our experiments show
that, for PPO [47], environment execution (2) takes up to
98% of execution time; for MuZero [46], a large MARL al-
gorithm with many agents, instead 97% of time is spent on
policy inference and training (1 + 3).

Therefore, there are many proposals how to parallelize
and distribute RL computation: e.g., in single-agent RL, envi-
ronment execution (2 in Fig. 1), policy inference and train-
ing (1 + 3) can be distributed across workers [8,16,16,18,34];
in MARL, agents can be distributed [25, 26, 34, 45] and ex-
change training state [29, 39]. Environment instances can
execute in parallel [16, 32] or be distributed [7].

Python function
def actor(state)
 action=actor_net(…)
 ...

Agent.act()

Python function
def step(action)
 state,reward=…
 ...

Environment.step()

Python function
def learn(state,reward)
 loss=…
 ...

Agent.learn()

Function call

(a) Function-based

Message

Actor 2

Actor 1

Actor 3

Agent.act()

Environment.step()

Agent.learn()

(b) Actor-based

Dataflow operators
Agent.act()

Environment.step

Agent.learn()

Function operator
Shared memory

Dataflow operators

Dataflow operators

(c) Dataflow-based

Fig. 2: Types of RL system designs

Instead of committing to one approach for parallelizing
and distributing the RL computation, an RL system should
provide the flexibility to change its execution approach based
on the workload. This leads us to the following requirements:
(1) Execution abstraction. The system should have a flex-
ible execution abstraction for parallelizing and distributing
computation, unencumbered by how the algorithm is defined.
(2) Distribution strategies. The system should support mul-
tiple strategies for distributing RL computation. Users should
be permitted to switch between strategies based on the train-
ing workload, without changes to the algorithm.
(3) Acceleration support. The system should exploit the
parallelism of GPUs and CPUs, accelerating not just policy
training and inference (1 + 3) but the full RL training loop,
including environment execution (2) [23].
(4) Algorithm abstraction. The system should expose famil-
iar APIs to users for defining RL algorithms and their training
loops, structured around algorithmic components [9, 13, 22],
such as agents, actors, learners, policies, environments, etc.

2.3 Design space of existing RL systems

We analyze the design space of RL systems. Existing designs
fit into three types (see Fig. 2):
(a) Function-based RL systems are the most common type.
They express RL algorithms typically as Python functions,
executed directly by workers (see Fig. 2a). The RL training
loop is implemented through direct function calls. For ex-
ample, Acme [18] and SEED RL [8] organize algorithms
as actor/learner functions; RLGraph [45] uses a component
abstraction, and users register Python callbacks to define func-
tionality. Distributed execution is delegated to backend en-
gines, e.g., TensorFlow [14], PyTorch [42], Ray [34].
(b) Actor-based RL systems execute algorithms as a set
of (programming language) actors deployed on worker
nodes (see Fig. 2b). For example, Ray [34] uses an actor
model to define tasks, which are distributed among nodes
using remote calls. Defining control flow in an actor model,
however, is burdensome. To overcome this issue, RLlib [25]
adds logically centralized control on top of Ray. Similarly,
MALib [61] offers a higher level abstractions for population-
based MARL algorithms (e.g., PSRO [35]) on Ray.
(c) Dataflow-based RL systems define algorithms through a

USENIX Association 2023 USENIX Annual Technical Conference 979

Type System (1) Execution (2) Distribution (3) Acceleration (4) Algorithm

Function-based
SEED RL [8] Python functions

environment only DNNs only actor/learner/env
Acme [18] Python classes
RLGraph [45] delegated to backend agent

Actor-based
Ray [34] task (stateless)

actor (stateful)
scheduler/RPC DNNs only

Python functions
with Ray API [34]RLlib [25]

MALib [61] agent/actor/learner/env

Dataflow-based

Podracer [16]
JIT-compiled
by JAX [12] hardcoded funcs/DNNs/envs JAX [12] API

RLlib Flow [26]
predefined
dataflow operators

dataflow operators/
Ray tasks [34] DNNs only operator API

WarpDrive [23] GPU thread blocks — CUDA kernels CUDA API

Fragmented dataflow MSRL heterogeneous
fragments any fragment funcs/operators/

DNNs/envs agent/actor/learner/env

Tab. 1: Design space of distributed RL systems

set of data-parallel operators, implemented by GPU kernels
or distributed tasks (see Fig. 2c). Users must express the com-
plete RL training loop using operators APIs. For example,
Podracer [16] uses JAX [12] to compile vectorized Python to
TPU kernels. RLlib Flow [26] provides Spark-like dataflow
operators on top of Ray. WarpDrive [23] executes RL training
loops implemented in CUDA using GPU thread blocks.
Tab. 1 considers how well these approaches satisfy the four
requirements from §2.2:
(1) Execution abstraction. Function- and actor-based sys-
tems execute RL algorithms directly through implemented
(Python) functions and user-defined language actors, respec-
tively. This prevents systems from applying optimizations
how RL algorithms are parallelized or distributed. In contrast,
dataflow-based systems execute computation using opera-
tors [16,26] or CUDA kernels [23]. This allows for execution
optimizations, but algorithm implementations are restricted
by the supported set of operators.
(2) Distribution strategies. Most function-based systems
only support a hardcoded strategy, e.g., one that distributes ac-
tors to parallelize the environment execution (1 + 2 in Fig. 1)
with a single learner. In actor-based systems, a scheduler as-
signs stateful actors and stateless tasks to workers, and users
have no control over the distribution approach.

Similarly, existing dataflow-based systems only support
fixed policies how dataflow operators are assigned to workers:
Anakin [16] co-hosts an environment and an agent on each
TPU core; Sebulba distributes the environment, learners and
actors on different TPUs; and RLlib Flow [26] shards dataflow
operators across distributed Ray actors.
(3) Acceleration support. Most RL systems only accelerate
DNN policy inference and training (1 + 3). Some dataflow-
based systems (e.g., Podracer [16] and WarpDrive [23]) also
accelerate other parts of training, requiring bespoke dataflow
implementations: e.g., Podracer accelerates environment exe-
cution (2) on TPU cores; WarpDrive executes the entire RL
training loop (1 – 3) on a single GPU using CUDA.
(4) Algorithm abstraction. Function-based RL systems pro-
vide intuitive actor/learner/env APIs. Actor-based RL sys-

tems exhibit harder-to-use low-level APIs for distributed
components (e.g., Ray’s get/wait/remote [34]) and must
rely on high-level libraries (e.g., RLlib’s PolicyOptimizer
API [25]) to bridge the gap. Dataflow-based systems come
with their own dataflow operators, requiring the rewriting
of a complete RL training loop. For example, JAX [12] re-
quire users to express RL algorithms in terms of the vmap and
pmpa operators for vectorization and single-program multiple-
data (SPMD) parallelism, respectively.
We note that there is an opportunity to combine the usabil-
ity of a function-based algorithmic abstraction, which allow
users to express RL algorithms naturally using algorithmic
components, with the acceleration potential of dataflow-based
approaches. Such a design, however, requires a new execution
abstraction, which also retains the flexibility of supporting
different distribution strategies.

3 Fragmented Dataflow Graphs
We now describe the dataflow abstraction that we use to rep-
resent the heterogenous computation of RL algorithms and to
map it to various devices for execution.

3.1 Overview

Our aim is to take an arbitrary RL training loop of a single- or
multi-agent RL algorithm (Fig. 1) and translate it to a dataflow
representation. The RL system can then use the dataflow
representation to parallelize and distribute the computation
across heterogeneous devices. We observe that RL training
loops combine different types of computations: e.g., actors
decide on an action to carry out based on inference results
from the DNN policy, obtaining trajectories first; learners
update the DNN policy using a DNN training algorithm;
and environments execute steps in e.g., a physics simulator,
returning trajectories based on the current simulation state.

Unlike existing dataflow models for DNN computation [1,
6,19], this heterogeneity of computation makes it challenging
to impose a single uniform dataflow model that prescribes a
set of computational operators and a single data representation
(e.g., tensors) between them. Instead, we adopt a heteroge-

980 2023 USENIX Annual Technical Conference USENIX Association

computational graph

exit interface entry interface

CUDA kernel

entry interface exit interface

GPU 1 GPU 2 GPU 3
Python functions

def step():
reward = env.step()
…

send
trajectories

broadcast
policy

parameters

CPU

Fragment A (Actors)

Fragment B (Environment)

Fragment C (Learner) entry interface exit interface

gather
actions

GPU

Fig. 3: Fragmented dataflow graph

neous dataflow model, in which independent dataflow rep-
resentations for different algorithmic components of the RL
training loop can be “stitched together” through well-defined
interfaces. We refer to this dataflow model as a fragmented
dataflow graph (FDG), shown in Fig. 3.
Fragments. Each node in an FDG is a potentially data-
parallel fragment, which is implemented using a bespoke
dataflow representation. For example, fragment A in Fig. 3
represents the action computation of an actor using the data-
parallel operators of a DNN engine [1, 6, 19], performing
model inference to decide on an action; fragment B imple-
ments the environment simulation directly as parallel Python
code; and fragment C conducts the model training, which is
implemented as CUDA kernels [11, 38].

Based on the fragment allocation, FDGs support the execu-
tion of RL computation on different devices. Each fragment
is assigned to one or more devices: the DNN operator repre-
sentation of fragment A allows it to be deployed on GPUs
or CPUs; fragment B requires a Python interpreter with the
multiprocessing library [10] on CPU cores; and instances of
fragment C must run as CUDA kernels on GPUs.

In addition, it is possible to parallelize fragment execution
by having multiple instances of a fragment and assigning
each instance to a separate device. In Fig. 3, fragment A is
replicated 3 times and executed by 3 GPU devices in parallel.
Communication. To form a connected FDG of the complete
RL training loop, each fragment must support entry and exit
interfaces, allowing them to exchange data: the entry inter-
face receives data as a byte buffer, which is transformed into
a fragment-specific representation (e.g., a tensor); and the
exit interface requires a fragment to provide output, which is
serialized for consumption by the next fragment.

The implementation of these interfaces depends on how
the fragments are deployed: if two fragments are placed on
different workers, the interface must use network commu-
nication to exchange data e.g., using an RPC protocol over
Infiniband [48]; if two fragments are co-located on devices
on the same worker, they can share data structures e.g., using

inter-GPU communication links such as NVLink [40].
According to the communication method and distribution

policy (§4.2), fragment interfaces may be blocking, which
means that they only execute after all data has arrived, e.g.,
after a collective communication AllReduce round when ag-
gregating DNN gradients. Alternatively, they can be non-
blocking, which means that they execute continuously, e.g.,
allowing actors to interact with environments asynchronously.

3.2 Trade-offs with fragmented dataflow graphs

FDGs subsume execution strategies of existing RL systems.
For example, an FDG may represent an actor and its envi-
ronment as a single CPU-based fragment, and a learner as
a GPU-based fragment, as proposed by Acme [18]. Alterna-
tively, it may create a larger GPU fragment by moving the
DNN policy to the learner, accelerating policy inference, as
proposed by SEED RL [8]. An even larger fragment may
contain the actor, learner, policy, and environment, execut-
ing the whole training loop on a single GPU, as proposed by
WarpDrive [23] and Anakin [16].

More generally, FDGs expose two dimensions that impact
execution performance:
Fragment granularity refers to the code size, which affects
device utilization: a small fragment may underutilize a GPU,
and a large one may exhaust GPU memory.

Fragment granularity also determines the ratio between
computation and communication. The frequency and amount
of data synchronization between fragments often limit scal-
ability: coarser fragments require less synchronization with
other fragments, which reduces communication overhead, but
they remove opportunities for parallelism. For example, mul-
tiple fragments may exchange trajectories frequently at each
step; alternatively, they may batch data from multiple steps
and communicate only once in each episode.
Fragment co-location is the assignment of fragments to
devices on the same worker. Co-locating fragments avoids
network communication (e.g., Ethernet or InfiniBand) and
instead uses more efficient intra-node communication (e.g.,
NVLink or PCIe). Whether two fragments can be co-located
depends on the available resources on the worker, such as the
number of available GPUs.
Choosing the right trade-off between fragment granularity
and co-location is key to achieving good performance. In the
next section, we describe how FDGs allow users to define
an RL algorithm and select between different distribution
policies, which expose these trade-offs.

4 Using MSRL
MSRL is our system that implements FDGs for parallel and
distributed execution of RL algorithms based on distribution
policies. We describe the APIs supported by MSRL for users
to define RL algorithms (§4.1) and the distribution policies
supported by MSRL to deploy FDGs (§4.2).

USENIX Association 2023 USENIX Annual Technical Conference 981

Type API Description

Component

Agent, Actor, Learner, Trainer Abstract classes for components
Actor.act(. . .) Trajectory collection
Learner.learn(. . .) DNN policy training
Trainer.train(. . .) RL training loop

MSRL.agent_act(. . .) Invoke actor
MSRL.agent_learn(. . .) Invoke learner
MSRL.env_step(. . .) Execute environment
MSRL.env_reset() Reset environment

Interaction MSRL.replay_buffer_insert(. . .) Store trajectories in buffer
MSRL.replay_buffer_sample() Sample trajectories from buffer

Tab. 2: MSRL APIs

4.1 MSRL APIs

MSRL’s APIs are designed to decouple the algorithm logic
from its deployment, while supporting familiar algorithmic
concepts (i.e., agents, actors, learners, trainers, and environ-
ments). As listed in Tab. 2, MSRL supports component and
interaction APIs:
Component APIs specify an RL algorithm by defining algo-
rithmic components derived from abstract classes. An Agent

consists of actors and learners: actors collect trajectories in
Actor.act() by invoking MSRL.env_step(); and learners im-
plement the DNN update logic in Learner.learn(). A trainer
constructs the RL training loop in Trainer.train(). It can use
MSRL.env_step() to invoke the environment implementation
and MSRL.env_reset() to reset the training episode.
Interaction APIs offer RL-specific functionality to
algorithmic components. For example, an actor can
store collected trajectories in a replay buffer using
MSRL.replay_buffer_insert(), and a learner can sample
from that replay buffer with MSRL.replay_buffer_sample().
This avoids direct invocations between components, which
allows MSRL to distributed fragments transparently.
Alg. 1 shows a sample implementation of the multi-agent
PPO (MAPPO) algorithm [57]. (For brevity, it omits the
DNN policy definition.) The MAPPOAgent (line 1) defines
the agent behavior: it interacts with the environment
through MAPPOActor (line 6), and performs the policy train-
ing with MAPPOLearner (line 12). The agent collects trajecto-
ries (lines 8–9), and updates its DNN policy (lines 15–21).

MAPPOTrainer defines the RL training loop (line 23).
At the start of each episode, it resets the environment
(MSRL.env_reset()) and calls MSRL.agent_act() to place tra-
jectories (line 28) in a replay buffer (line 10). The trainer
invokes the learner through MSRL.agent_learn() (line 29).

To separate the algorithm’s logic from its deployment,
MSRL uses configurations, specified as Python dictionaries:
an algorithm configuration instantiates the algorithmic com-
ponents and their hyper-parameters (e.g., the number of agents
and learning rates). In the MAPPO example (lines 30–38),
the configuration requests 4 agents, each with 3 actor and
1 learner. Each actor interacts with 32 environments; and a de-
ployment configuration defines (i) the resources (e.g., GPUs,
CPUs, and worker nodes) and (ii) a distribution policy. In the

Algorithm 1: MAPPO algorithm in MSRL
1 class MAPPOAgent(Agent):
2 def act(self ,state):
3 return self.actors.act(state)
4 def learn(self ,sample):
5 return self.learner.learn(sample)

6 class MAPPOActor(Actor)
7 def act(state):
8 action = self.actor_net(state)
9 reward ,new_state = MSRL.env_step(action)

10 MSRL.replay_buffer_insert(reward,new_state)
11 return reward ,new_state

12 class MAPPOLearner(Learner):
13 def learn():
14 sample = MSRL.replay_buffer_sample()
15 action ,reward ,state ,next_state = sample
16 last_pred = self.critic_net(next_state)
17 pred = self.critic_net(state)
18 r = discounted_reward(reward ,last_pred ,self.gamma)
19 adv = gae(reward ,next_state ,pred ,last_pred ,self.

gamma)
20 for i in range(self.iter):
21 loss += self.mappo_net_train(action ,state ,adv ,r)
22 return loss / self.iter

23 class MAPPOTrainer(Trainer):
24 def train(self ,episode):
25 for i in range(episode):
26 state = MSRL.env_reset()
27 for j in range(self.duration):
28 reward ,new_state = MSRL.agent_act(state)
29 loss = MSRL.agent_learn()

30 mappo_algorithm_config = {
31 ’agent’:{’num’:4,’name’:MAPPOAgent ,
32 ’actor’:MAPPOActor ,’learner ’:MAPPOLearner},
33 ’actor’:{’num’:3,’name’:MAPPOActor ,
34 ’policy ’:MAPPOActorNet ,’env’:True},
35 ’learner ’:{’num’:1,’name’:MAPPOLearner ,
36 ’policy ’:[MAPPOCriticNet ,MAPPONetTrain],
37 ’params ’:{’gamma’:0.9}} ,
38 ’env’:{’name’:MPE ,’num’:32,’params ’:{’name’:’MPE’}}}

39 mappo_deployment_config = {
40 ’workers ’:[198.168.152.19 , 198.168.152.20 , [. . .],
41 ’GPUs_per_worker ’:4},
42 ’distribution_policy ’:’SingleLearnerCoarse ’}

example (lines 39–42), it deploys workers with 4 GPUs each,
using the SingleLearnerCoarse distribution policy.

4.2 Distribution policies

A distribution policy (DP) governs how MSRL distributes and
parallelizes an RL algorithm by allocating, replicating and
collocating fragments from the FDG to workers and devices.

In general, there exists no single DP that is optimal in all
cases: the performance and applicability of a DP depends on
the type of RL algorithm, the size and complexity of the DNN
model, its hyper-parameters, the available cluster compute
resources (i.e., CPUs and GPUs), and the network bandwidth.
MSRL allows users to easily switch between DPs, either for
the same RL algorithm or when using different algorithms.
MSRL provides six DPs, which follow widely used hard-
coded distribution strategies of existing RL systems.

Next we give an overview of the support DPs and their
trade-offs. Tab. 3 shows how three of the DPs deploy the
fragments of an RL algorithm. (We list all DPs currently
implemented by MSRL in Appendix A).
DP-SingleLearnerCoarse replicates the actor and environment
fragments but uses a single learner. The policy DNN is repli-
cated across the actors and learner, which only requires coarse
synchronization. This policy is therefore most suitable with

982 2023 USENIX Annual Technical Conference USENIX Association

DP-SingleLearnerCoarse
replicate: actor,env split: learner e.g., Acme [18], Sebulba [16]

Gather

Actor

Replay
buffer

GPU
Worker 1

Actor

Replay
buffer

GPU

Environ
ment

CPU
Worker 2

Worker 3

Learner
Replay
buffer

GPU CPU
Broadcast

Environ
ment

CPU

Actor

Replay
buffer

GPU
Environ

ment

CPU
Worker 4

DP-SingleLearnerFine
replicate: fused actor/env split: learner e.g., SEED RL [8]

Gather

Actor

Replay
buffer

Environment

CPU
Worker 1

Actor

Replay
buffer

Environment

CPU
Worker 2

Actor

Replay
buffer

Environment

CPU
Worker 3

Learner
Replay
buffer

GPU CPU

Scatter Worker 4

DP-MultiLearner
replicate: fused actor/learner, env

Learner

Actor
Replay
buffer

GPU
Worker 1

Learner
Actor

Replay
buffer

GPU
Worker 2

CPU

Worker 4Allreduce

Environ
ment

CPU

Learner

Actor
Replay
buffer

GPU
Worker 3

Environ
ment

CPU

Environ
ment

Learner
Actor

Replay
buffer

GPU CPU

Environ
ment

Tab. 3: Sample distribution policies with deployments

computationally-expensive environments that need scaling
out, but small DNN models that can be synchronized in a
batched fashion, e.g., Acme [18], Sebulba [16].

The MAPPO deployment in Alg. 1 uses DP-
SingleLearnerCoarse: each agent is partitioned into
4 GPU fragments, i.e., 3 actors and 1 learner, and 3 CPU
fragments for environments. Actor and environment frag-
ments are collocated. This setting is replicated for each of the
4 MAPPO agents, as specified in the algorithm configuration.
In contrast, DP-SingleLearnerFine fuses the actor and en-
vironment into a single CPU fragment, and only deploys
the learner on a GPU. Therefore it does not communicate
policy parameters between workers, which is preferable for
large DNN models with many parameters. Compared to the
DP-SingleLearnerCoarse, it relies on fine-grained synchro-
nization: training data is exchanged at each step, instead
of being batched per episode. For good performance, DP-

SingeLearnerFine therefore requires high bandwidth connec-
tivity between workers, e.g., SEED RL [8].
DP-MultiLearner performs data-parallel training with multiple
learners. This policy is necessary when the data generated
from actors becomes too large for a single GPU, and e.g., DP-
SingleLearnerCoarse cannot be used. However, it requires the
tuning of hyper-parameters (e.g., the learning rate) to scale
due to its reliance on data parallelism. Since workers only ex-
change information about the trained policy (e.g., aggregated
DNN gradients), DP-MultiLearner is communication efficient,
supporting fully decentralized MARL training [5, 43, 59, 62].
MSRL supports further policies: DP-GPUOnly fuses the RL
training loop into a single GPU fragment and distributes it
to multiple GPU devices. DP-Environments dedicates one
or more workers for the execution of complex or compute-
intensive environments (e.g., physics simulations). Finally,
DP-Central introduces a separate fragment for a centralized
component (e.g., policy pool [61] or parameter server [24]).

The choice of the best distribution policy depends on the
algorithm’s characteristics and available hardware resources:
single-agent RL algorithms, such as PPO/A3C, exhibit the
best performance under the DP-SingleLearnerCoarse pol-
icy, which distributes actors to speed up trajectory collec-
tion through data parallelism; multi-agent algorithms, such
as MAPPO/MADDPG, require a DP-MultiLearner policy that
distributes actors and learners separately from agents, thus
parallelizing both trajectory collection and model training; a
DP-GPUOnly policy can be used in a GPU environment to
fuse the training loop and execute it entirely on GPUs, which
offers the best performance.

Based on the hardware resources, bottlenecks shift between
DPs: the DP-SingleLearnerFine policy exchanges data be-
tween actors/environments at a fine granularity by distribut-
ing inference/training to one GPU worker and environments
across CPU workers. Despite the need for frequent commu-
nication, this policy is suitable in situations where GPUs
are scarce; in contrast, the DP-SingleLearnerCoarse policy
co-locates the GPU DNN inference with the environments,
enabling the learner to gather batched training data. With
enough GPUs, this policy accelerates trajectory collection.

5 MSRL Architecture
We describe MSRL’s architecture, explaining how FDGs are
generated (§5.1) and executed (§5.2).

MSRL follows a coordinator/worker design (see Fig. 4):
a user submits the RL algorithm implementation to the co-
ordinator 1 . The coordinator generates the fragments that
constitute the FDG and dispatches them to the workers 2 .
Each worker maintains one or more execution backends (e.g.,
a DNN engine, a CUDA job scheduler, a Python interpreter),
each managing devices (e.g., GPUs or CPU cores). After re-
ceiving fragments, the worker optimizes them 3 and submits
them to a backend for execution 4 .

USENIX Association 2023 USENIX Annual Technical Conference 983

Worker 1

Coordinator

GPU

CPU

Send
operator

Broadcast
operator

Environment.step()

Fragment Generator Fragment Dispatcher

Fragment A

Python

DNN engine

Executor
Backends

Fragment 
Optimizer

4

Deployment configuration
Distribution policy

Worker 3

Send
operator

Broadcast
operator

Worker 2

Gather
(experience)
Broadcast

 (DNN weights)

GPU

Gather
operator

Broadcast operator

CUDA runtime

Gather
(experience)

Broadcast
(DNN weights)

Fragment B
Algorithm configuration

1 2

3 43 43

Executor
Backends

Fragment 
Optimizer

Executor
Backends

Fragment 
Optimizer

DNN engine

CPU
Python Environment.step()

GPU
DNN engine

Fragment C

Fig. 4: Overview of the MSRL architecture

5.1 Generating FDGs

The coordinator has two components:
The FDG Generator partitions the RL algorithm according
to the DP specified in the deployment configuration (§4.1). It
splits the implementation at fragment boundaries and injects
code for the interface implementations between fragments.
The fragment logic is then emitted as part of a run() method
in a generated Fragment class.

The partitioning of the RL algorithm into fragments uses
the information associated with a DP. Each DP provides a set
of rules about (1) how fragments are generated and (2) how
they are distributed. The DP contains a fragment template,
which associates each fragment with a Python class that has
placeholders for class names, member functions, and other
relevant elements. These placeholders instruct the Genera-
tor where to insert specific algorithm logic, such as actor
computation, into the generated fragments. The DP also de-
fines the communication operations required by the inter-
faces. To choose appropriate implementations, the DP refers
to communication operations supported by backends (e.g.,
comms.AllGather [20] in a DNN engine). The DP also spec-
ifies which fragments are replicated into multiple instances
for parallel execution, or co-located on the same worker.

When partitioning the RL training loop, the boundaries be-
tween fragments follow the algorithmic components (actors,
learners, environments). The data to be transferred between
fragments is defined in terms of the function signatures of
the components. The partitioning is done on a dataflow rep-
resentation of the RL algorithm: nodes in the dataflow graph
are Python statements; edges represent the dataflow through
variables. Therefore, edges at the boundary of algorithmic
components describe fragment interfaces, and we refer to
them as boundary edges. MSRL creates fragments by parti-
tioning the dataflow graph at these boundary edges.

As an example, consider partitioning the MAPPO algo-
rithm (Alg. 1) into actor and learner fragments, with the
boundary between lines 28 and 29. Fig. 5a shows the sim-
plified dataflow graph obtained after static analysis, with the

Algorithm 2 Generation of fragmented dataflow graphs
function generate_FDG (alg, DP):

1: FDG←{}, DFG← generate_DFG(alg)
2: boundary_edges← obtain_boundary_edges(DFG)
3: interfaces← generate_interfaces(boundary_edges, DP)
4: for boundary in boundary_edges do
5: fragment_code← build_fragment(alg, boundary)
6: fragment← build_fragment(fragment_code, interfaces, DP)
7: FDG← FDG ∪ fragment
8: return FDG

input/output data of the components shown in red. Splitting
the graph at these boundaries, partitions it into two fragments
(see Fig. 5b), which communicate through the new interface
obtained from the boundary edges (shown in red).

Alg. 2 summarizes the FDG generation. The Generator
takes the RL algorithm’s abstract syntax tree (alg) and dis-
tribution policy DP as input (line 0) and constructs its
dataflow graph (DFG) (line 1). Next, it locates the algorith-
mic components and determines the boundary edges from the
DFG (line 2). Based on the information from the DP, it con-
structs the communication interfaces (line 3). For each bound-
ary edge (line 4), it extracts the fragment code (line 5) and
builds the fragment with its interface implementation (line 6).
At the end, it returns the complete FDG (line 8).
The Fragment Dispatcher launches instances of execution
backends on each worker according to the devices from the
deployment configuration. It also sets up distributed commu-
nication, e.g., through MPI [30], as required by the fragment
interfaces. Finally, it assigns fragments to devices based on
the DP and sends the fragments to the workers.

5.2 Executing fragments

The workers use a set of execution backends to take the frag-
ment code and run it. Some backends (e.g., a DNN engine)
produce executable machine code for a given device (e.g.,
GPUs) by translating the fragment implementation into a
computational graph, which enables code optimizations.

The communication between fragments is also handled
by the execution backends. For example, a DNN engine

984 2023 USENIX Annual Technical Conference USENIX Association

agent_reset

agent_act

replay_buffer

learn

state

reward

trajectorypolicy_
update

(a) Dataflow
graph

replay_buffer

policy_updateFragment 1 Fragment 0

agent_act

agent_reset

entry
interface

exit
interface

state

reward

trajectory

exit
interface

learn

entry
interface

(b) Two fragments

Fig. 5: Example of FDG generation for MAPPO

MSRL RLlib WarpDrive

PPO 207 347 (+68%) 400 (+93%)
A3C 267 428 (+60%) n/a

Tab. 4: Lines of code for the RL algorithm implementations

uses communication operators as part of its computational
graph, automatically selecting suitable implementations (e.g.,
NCCL [39] for GPU collective communication).

Each worker has two components:
The Fragment Optimizer optimizes fragments that have
been received for a given execution backend. To avoid the
overhead of executing multiple instances of a replicated frag-
ment, the optimizer attempts to fuse instances represented as
computational graphs: it exploits the support of DNN engines
to process data in a SIMD fashion by batching tensors from
multiple fragment instances.

The Optimizer performs this transformation on the frag-
ment’s AST before submitting it to the DNN engine. It locates
the AST nodes of tensors and merges their data. It then com-
putes the new tensor shape to create a single tensor that can
be processed by other data-parallel operators.
The Executor backends execute the fragments on a given
target device: a DNN engine (MindSpore) executes compu-
tational graph on GPUs or CPUs; a CUDA job scheduler
runs CUDA kernels on GPUs; a Python interpreter executes
Python fragments on CPU cores; and a container scheduler
can run arbitrary compute containers on CPU cores.

6 Evaluation
Our experimental evaluation answers the following questions:
(i) what is the training performance that MSRL with FDGs
achieves compared to existing RL systems with fixed exe-
cution strategies (§6.2)?; (ii) how does MSRL benefit from
choosing different distribution policies (§6.3)?; and (iii) how
well does MSRL scale in terms of the number of agents and
the amount of training data (§6.4)?

6.1 Experimental set-up

Implementation. We implement MSRL in 11,700 lines
of Python and C++ code. It uses CUDA 11.03,
cuDNN 8.2.1, OpenMPI 4.0.3, and the MindSpore

Cluster CPU cores GPUs Interconnects
#nodes × #per node #nodes × #per node intra-, inter-node

Azure VMs
NC24s_v2

Intel Xeon E5-2690
16×24, 448 GB

NVIDIA P100
16×4

PCIe
10 GbE

Local cluster
Intel Xeon 8160
4×96, 250 GB

NVIDIA V100
4×8

NVLink
100 Gbps IB

Tab. 5: Testbed configuration

DNN framework 1.8.0 [19] as a GPU-based ex-
ecution backend. The source code is available at
https://github.com/mindspore-lab/mindrl.

MSRL uses the following distribution policies from Ap-
pendix A: DP-SingleLearnerCoarse; DP-SingleLearnerFine;
DP-MultiLearner; DP-GPUOnly; and DP-Environments.
Baseline comparisons. For comparison, we use RLlib [34]
of Ray V2.0, as a representative distributed RL system, and
WarpDrive V1.6 [23], as a single-GPU system that accelerates
the full RL training loop. Note that the implementations of
RLlib Flow [26] and PodRacer [16] are unavailable.
RL algorithms. We focus on three popular algorithms:
(1) proximal policy optimization (PPO) [47]; its multi-agent
version, (2) multi-agent PPO (MAPPO) [57]; and (3) asyn-
chronous advantage actor-critic (A3C) [31].

Tab. 4 compares the lines of code for the algorithm im-
plementations. The RLLib and WarpDrive implementations
require 68% and 93% more lines than MSRL, respectively,
due to the hardcoded execution and distribution logic. This
shows a benefit of MSRL’s approach, which allows users to
focus on the algorithm logic in their implementations.

For environments, we use two games (CartPole,
HalfCheater) from the MuJoCo simulation engine [52], and
two strategies (Spread, Tag) from the multi-agent particle
environment (MPE) [28]. The policies use a 7-layer DNN.
Testbeds. We conduct experiments on a cloud and a local
cluster. The hardware details are given in Tab. 5: the cloud
cluster has 16 VMs (with 64 GPUs); the local cluster has
4 nodes (with 32 GPUs). All nodes run Ubuntu Linux 20.04.
Metrics. For PPO, we measure (i) the training time to reach
a given reward and (ii) the time per episode. For MAPPO, as
the problem size increases with agents, we report (i) training
time against the problem size and (ii) training throughput.

6.2 Performance with FDGs against baselines

We investigate the performance impact that MSRL’s FDG
abstraction incurs compared to RL systems that only support
hardcoded parallelization and distribution approaches.
Distributed training. We compare MSRL with DP-Single-
LearnerCoarse to Ray [34] using PPO and A3C on the lo-
cal cluster. For Ray, both algorithms are implemented using
RLlib-Flow [26] and tuned based on RLlib’s public PyTorch
implementation [44]. DP-SingleLearnerCoarse is equivalent
to the distribution approach implemented by RLlib-Flow’s
PPO and A3C implementations.

USENIX Association 2023 USENIX Annual Technical Conference 985

https://github.com/mindspore-lab/mindrl

0

50

100

150

200

 1 2 4 8 16 24

T
im

e
 (

s
e
c
s
)

Number of GPUs

MSRL
Ray

(a) Episode time vs. GPUs (PPO)

0

100

200

300

400

500

 2 4 8 16 24

T
im

e
 (

m
s
)

Number of GPUs

MSRL
Ray

(b) Episode time vs. GPUs (A3C)

Fig. 6: Performance comparison with Ray

0

50

100

150

200

 2 4 6 8 10

T
im

e
 (

m
s
)

Number of agents (×10
4
)

MSRL
WarpDrive

(a) Episode time vs. agents
(1 GPU)

50

100

150

200

 16 32 48 64 80 96 112 128

T
im

e
 (

m
s
)

Number of agents (×10
4
)

MSRL

(b) Episode time vs. agents
(n GPUs)

Fig. 7: Performance comparison with WarpDrive (PPO)

For PPO, we distribute 320 environments evenly among
the actors, i.e., each actor interacts with 320/#actors envi-
ronments. A single learner trains the DNN. For A3C, one
learner performs gradient optimization with gradients col-
lected asynchronously from actors. Each actor interacts with
one environment and computes gradients locally. We measure
the time per episode, which is dominated by actor and envi-
ronment execution. Since the DNN training/inference time
is negligible, the fact that MSRL and Ray use different DNN
frameworks (MindSpore vs. PyTorch) has low impact.

Fig. 6a shows the time per episode for PPO. MSRL’s time
with 1 GPU is 2.5× faster than Ray’s, because Ray’s CPU ac-
tor interacts with all environments sequentially. As the number
of GPUs increases, both systems reduce episode time, because
each actor interacts with fewer environments. With 24 GPUs,
it takes 3.9 s for MSRL to execute an episode compared to
11.4 s for Ray (3× speed-up). When actors interact with mul-
tiple environments, MSRL combines DNN inference into one
operation through FDG fusion, increasing GPU parallelism.
It also uses fragments to execute environment steps in parallel
by launching multiple processes.

Fig. 6b shows the time per episode for A3C. Both systems
exhibit constant time with more GPUs, because the workload
of each GPU executing an actor remains unchanged. MSRL
executes actors 2.2× faster than Ray: since its distribution
policy exploits customized asynchronous send/receive oper-
ations from the DL engine, it can avoid further data copies
between GPUs and CPUs. In contrast, Ray must copy data to
the CPU to communicate asynchronously.

In addition, MSRL generates the FDG that can be trans-
lated into a computational graph by the DL engine, enabling
code optimizations and efficient execution. By leveraging
code templates, MSRL generates optimized fragment code by
directly manipulating the FDG AST.

0

200

400

600

800

 10 20 30 40 50 60 70

T
ra

in
in

g
 t
im

e
 (

s
e
c
s
)

Number of actors

SingleLearnerCoarse
MultiLearner

(a) Training time vs. actors (PPO)

0

20

40

60

 2 4 8 16 24
0

100

200

300

P
P

O
 t
im

e
 (

s
e
c
s
)

A
3
C

 t
im

e
 (

m
s
)

Number of actors

PPO
A3C

(b) Episode time (PPO vs. A3C)

0

200

400

600

800

1000

 100 200 300 400 500 600

T
ra

in
in

g
 t
im

e
 (

s
e
c
s
)

Number of environments

SingleLearnerCoarse
MultiLearner

(c) Training time vs. envs

0

500

1000

1500

2000

 0 1 2 3 4 5 6

T
ra

in
in

g
 t
im

e
 (

s
e
c
s
)

Network latency (ms)

SingleLearnerCoarse
MultiLearner

(d) Training time vs. network
latency

Fig. 8: Impact of parameters on distribution policies

GPU only training. Next, we use MSRL to deploy PPO
with distribution policy DP-GPUOnly, which fuses the train-
ing loop into a single GPU fragment and replicates it for
distributed execution. We use the simple tag MPE environ-
ment [28], which simulates a predator-prey game in which
chaser agents are rewarded for catching runner agents. We
train different numbers of agents, thus increasing the number
of environments, on the local cluster and measure the training
time per episode. We compare against WarpDrive [23], which
performs single-GPU end-to-end RL training.

Fig. 7a shows the training time on 1 GPU. Compared to
WarpDrive, MSRL is 1.2–2.5× faster when ranging from
20,000 to 100,000 agents. MSRL’s DL engine (MindSpore)
compiles fragments to computational graphs, exploiting more
parallelization and optimization opportunities than Warp-
Drive’s hand-crafted CUDA implementation.

While WarpDrive cannot scale to more than 1 GPU, Fig. 7b
shows MSRL’s performance when using up to 16 GPUs (each
GPU trains 80,000 agents). Initially, training time increases
from 138 ms to 150 ms due to the increased computation on a
single worker (i.e., up to 640,000 agents). After that, training
time is stable, and it is limited by communication bandwidth
(InfiniBand, NVLink).
Conclusions: MSRL’s FDG abstraction provides distribution
policies for PPO and A3C that are tailored to their bottlenecks,
e.g., enabling parallel environment execution and aggressively
parallelizing GPU execution. Ray is limited by the distribution
approach of its RLlib library; WarpDrive’s manual CUDA im-
plementation prevents it from exploiting more sophisticated
compiler optimizations.

6.3 Trade-offs between distribution policies

Next, we explore the trade-offs between different distribution
policies when changing RL algorithms and resources.
Actors. We measure PPO’s training time with two distribution

986 2023 USENIX Annual Technical Conference USENIX Association

policies, DP-SingleLearnerCoarse and DP-MultiLearner. We
use a reward of 3,000 with 200 environments.

Fig. 8a shows the training time with 2 to 70 actors.
DP-MultiLearner outperforms DP-SingleLearnerCoarse with
fewer than 30 actors, but DP-SingleLearnerCoarse scales bet-
ter after that, converging faster with more actors. Since DP-
SingleLearnerCoarse only has 1 learner, its training batch size
is fixed. Adding more actors therefore only distributes envi-
ronment execution. In contrast, DP-MultiLearner fuses actors
and learners into single fragments. With more actors, it also
adds learners, reducing the batch size for each learner. This
adds randomness to the training, affecting convergence [17].

Next, we compare two algorithms, PPO and A3C, under
the same distribution policy DP-SingleLearnerCoarse.

Fig. 8b shows the time per episode for up to 24 actors. For
PPO, the time decreases with the actor count; in contrast,
A3C’s time stays constant. Adding actors in PPO increases
the parallelism of environment execution, thus reducing the
workload per actor; for A3C, each actor only interacts with
one environment, which makes its workload independent of
the actor count. To reduce the episode time for A3C, a new
distribution policy could be written that distributes the actor
among multiple devices, combining data- or task-parallelism.
Environments. We explore how changing the number of en-
vironments affects the choice of distribution policy. When an
agent interacts with more environments in parallel per episode,
it trains with more data, improving training performance.

Fig. 8c shows the training time with 50 actors with 100–
600 environments under DP-SingleLearnerCoarse and DP-
MultiLearner. DP-MultiLearner scales better than DP-Single-
LearnerCoarse with more than 320 environments: DP-Single-
LearnerCoarse’s training time increases with more environ-
ments, because its actors send trajectories to the learner,
adding communication overhead; DP-MultiLearner only com-
municates gradients, having a fixed overhead.
Network latency. We examine the behavior of DP-Single-
LearnerCoarse and DP-MultiLearner with PPO under different
network latencies. We change network latency in our cloud
cluster using the Linux traffic control (tc) tool from 0.2 ms
to 6 ms. We use 400 environments and 50 actors.

As Fig. 8d shows, DP-MultiLearner is more sensitive to net-
work latency than DP-SingleLearnerCoarse, and its training
time increases with higher latency: since DP-MultiLearner
uses Mindspore’s data parallel model [19] to broadcast, ag-
gregate and update gradients, it transmits many small tensors.
This makes it a more suitable choice for cluster with low
latency (< 2 ms); DP-SingleLearnerCoarse transmits the tra-
jectory and DNN model weights as large tensors, performing
data transmissions less frequently.
Cluster size. Finally, we study the performance of PPO under
3 distribution policies when increasing the GPU count: DP-
SingleLearnerCoarse and DP-SingleLearnerFine use a single
learner but apply different synchronization granularities; DP-
MultiLearner scales to multiple learners using data-parallelism.

0

1000

2000

3000

4000

5000

 1 2 4 8 16 32 64

T
ra

in
in

g
 t
im

e
 (

s
e
c
s
)

Number of GPUs

SingleLearnerCoarse
SingeLearnerFine

MultiLearner

(a) Training time vs. GPUs

 0

 10

 20

 30

 40

 50

 60

 1 2 4 8 16 32 64

T
im

e
 (

s
e
c
s
)

Number of GPUs

SingleLearnerCoarse
SingeLearnerFine

MultiLearner
SingleLearnerCoarse’

SingeLearnerFine’

(b) Episode time vs. GPUs

Fig. 9: Impact of GPU count on distribution polices

We use a constant 320 Mujoco HalfCheetah [4] environments.
Fig. 9a shows the training time in the cloud cluster to reach

a reward of 4,000 with up to 64 GPUs; Fig. 9b reports the
time per episode. With 64 GPUs, DP-SingleLearnerCoarse
achieves the best speed-up in training time (5.3×). It main-
tains local copies of the DNN model at the actor and learner,
and only actors send the batched states and rewards to the
learner at the end of each episode (i.e., after 1,000 steps).
This reduces the overhead with more GPUs compared to DP-
SingleLearnerFine, whose actor fragments must communicate
with the learner at each step.

DP-MultiLearner exhibits a different behavior: with
16 GPUs, it achieves better performance than either DP-Single-
LearnerCoarse and DP-SingleLearnerFine, because it dis-
tributes policy training: it trains smaller trajectory batches
on each GPU and aggregates the gradients from all GPUs.
Instead, DP-SingleLearnerFine and DP-SingleLearnerCoarse
gather all batches and train them using 1 learner.

With more than 16 GPUs, DP-MultiLearner performs worse
than DP-SingleLearnerCoarse: batches become smaller, mak-
ing the gradient aggregation less efficient compared to training
a large batch. Although DP-MultiLearner trains each episode
faster than DP-SingleLearnerCoarse (see Fig. 9b), it requires
more episodes to reach a similar reward value.

Note that DP-SingleLearnerCoarse and DP-SingleLearner-
Fine use the original PPO implementation with 1 learner [47],
which limits scalability due to the centralized policy train-
ing (3 in Fig. 1). To ignore this bottleneck in the algorithm,
Fig. 9b also reports only the policy training time (labelled
DP-SingleLearnerCoarse’ and DP-SingeLearnerFine’). Now,
MSRL scales better: when moving from 32 to 64 GPUs, per-
formance increases by 25%.
Conclusions: As hyper-parameters, network properties or
GPU counts change, the differences between distribution poli-
cies in terms of synchronization granularity and frequency of
impact performance. MSRL’s ability to allow users to switch
between distribution policies at deployment time means that
they can achieve the best performance in different scenarios
without changing the algorithm implementation.

6.4 Scalability

Finally, we investigate how MSRL’s design scales with the
number of deployed agents for a MARL algorithm and of en-
vironments, thus increasing training data. We want to validate

USENIX Association 2023 USENIX Annual Technical Conference 987

1

10

100

1000

10000

 2 4 8 16 32 64

T
im

e
 (

s
e
c
s
)

Number of agents

MSRL
sequential

(a) Training time per episode

1

10

100

1000

10000

100000

2 4 8 16 32 64

T
h

ro
u

g
h

p
u

t
(M

B
/s

)

Number of agents

(b) Training throughput

Fig. 10: Scalability with agent count (MAPPO)

0

1000

2000

3000

4000

5000

 1 20 40 60 80 100

T
h
e
 r

e
w

a
rd

 v
a
lu

e

Number of episodes

2 GPUs
4 GPUs
8 GPUs

16 GPUs
32 GPUs
64 GPUs

Fig. 11: Statistical efficiency with environment count (PPO)

if MSRL’s approach introduces scalability bottlenecks.
Agents. We use MAPPO with the MPE simple spread envi-
ronment [28], in which n agents learn to cover n landmarks
while avoiding collisions. Agents must also process global
observations on how far the closest agent is to each landmark.
This results in O(n3) observations with n agents, quickly grow-
ing in computational cost and GPU memory usage [28]. We
deploy on the cloud cluster using DP-Environments: each
GPU trains 1 agent, and 1 worker executes all environments.

Fig. 10a shows the training time per episode for up to
64 GPUs against a sequential baseline (1 GPU). Due to its
cubic complexity, the time increases both for the baseline and
MSRL. With distributed training, MSRL’s time grows more
slowly than the baseline: with 32 agents, MSRL improves
performance by 58×; with 64 agents, the baseline exhausts
GPU memory, while MSRL trains one episode in 23.8 mins.

Fig. 10b compares the throughput with different agent num-
bers. Throughput is measured as the amount of data trained
per second (in MB/s). Adding more agents (i.e., GPUs) signif-
icantly improves throughput, and the margin becomes larger
with more GPUs: the throughput with 64 agents is over
7,600× higher than with 2 agents, as multiple GPUs train
agents in parallel, processing more observations per GPU.
Environments. We observe the effect of more environments
on statistical efficiency, i.e., the episodes needed to reach a
given reward. We use 10 environments per CPU, adding more
workers in the cloud cluster using DP-SingleLearnerCoarse.

Fig. 11 shows the reward along with the number of episodes
for different environment counts. More environments lead to
a higher reward: as more CPUs execute environments, the
larger use of trajectories per episode yields a higher reward.
Conclusions: FDGs do not deteriorate scalability. MSRL

scales to a large number of data-intensive agents, handling
the increase in communication between fragments without
bottlenecks. A larger amount of data generated by more envi-
ronments also improves the statistical efficiency of training.

7 Related Work

DNN compilation. XLA [56] is a domain-specific compiler
that accelerates the linear algebra of DNN models. JAX [12]
uses just-in-time (JIT) compilation to transform vectorized
Python programs to GPU or TPU code. TVM [6] is an au-
tomated end-to-end optimizing compiler for DNN training.
These approaches focus on DNN training and inference work-
loads with regular computation/communication patterns. In
contrast, RL algorithms exhibit more complex control and
data flow in their training loops.

DNN auto-parallelization. Alpa [60] and Unity [53] automat-
ically parallelize and distribute DNN training using data/oper-
ator/pipeline parallelism. They search for effective distributed
execution plans using dynamic or integer linear programming.
In future work, we want to explore the use of optimization
techniques to generate an optimal distribution policy for a
given RL algorithm. Since an FDG has more heterogeneity
than DNN dataflows, the search space is substantially larger
and based on more complex cost models.

Dataflow and actor systems. Spark [58] and Naiad [36]
express programs as dataflow graphs, sharding data across
workers. They provide high-level APIs to express computa-
tion as a single homogeneous dataflow. In contrast, FDGs
allow different dataflow models to be integrated into a single
distributed computation, as governed by distribution policies.

Ray [34] offers a general actor-based platform for dis-
tributed computing. To support RL algorithms, it uses domain-
specific libraries (RLlib/RayFlow [25, 26]) that hardcode dis-
tribution strategies, preventing it from switching strategies
based on e.g., hardware properties. Instead, MSRL proposes
FDG, a higher-level abstraction for parallelizing and distribut-
ing RL training loops, which decouples RL algorithms from
their execution through explicit distribution policies.

8 Conclusions

While DNN systems have mature dataflow abstractions that
improve execution performance, similar abstractions for RL
systems have been under-explored. We described MSRL, a
system that supports the flexible parallelization and distri-
bution of RL algorithms using fragmented dataflow graph.
Accounting for the heterogeneous nature of RL training loops,
MSRL separates the algorithm from its execution by using
distribution policies that allocate dataflow fragments to GPUs
and CPUs. Our experiments showed how distribution policies
generalize existing RL systems without overhead.

Acknowledgments. We thank the anonymous reviewers and
our shepherd, Yibo Zhu, for their helpful comments.

988 2023 USENIX Annual Technical Conference USENIX Association

References
[1] Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng

Chen, Andy Davis, Jeffrey Dean, Matthieu Devin, San-
jay Ghemawat, Geoffrey Irving, Michael Isard, Man-
junath Kudlur, Josh Levenberg, Rajat Monga, Sherry
Moore, Derek Gordon Murray, Benoit Steiner, Paul A.
Tucker, Vijay Vasudevan, Pete Warden, Martin Wicke,
Yuan Yu, and Xiaoqiang Zheng. Tensorflow: A sys-
tem for large-scale machine learning. In 12th USENIX
Symposium on Operating Systems Design and Imple-
mentation, OSDI, 2016.

[2] Atilim Gunes Baydin, Barak A. Pearlmutter, Alexey An-
dreyevich Radul, and Jeffrey Mark Siskind. Automatic
differentiation in machine learning: a survey. J. Mach.
Learn. Res., 18:153:1–153:43, 2017.

[3] Christopher Berner, Greg Brockman, Brooke Chan,
Vicki Cheung, Przemyslaw Debiak, Christy Dennison,
David Farhi, Quirin Fischer, Shariq Hashme, Christo-
pher Hesse, Rafal Józefowicz, Scott Gray, Catherine Ols-
son, Jakub Pachocki, Michael Petrov, Henrique Pondé
de Oliveira Pinto, Jonathan Raiman, Tim Salimans,
Jeremy Schlatter, Jonas Schneider, Szymon Sidor, Ilya
Sutskever, Jie Tang, Filip Wolski, and Susan Zhang.
Dota 2 with large scale deep reinforcement learning.
CoRR, abs/1912.06680, 2019.

[4] Greg Brockman, Vicki Cheung, Ludwig Pettersson,
Jonas Schneider, John Schulman, Jie Tang, and Woj-
ciech Zaremba. OpenAI Gym, 2016.

[5] Michael Chang, Sidhant Kaushik, S. Matthew Weinberg,
Tom Griffiths, and Sergey Levine. Decentralized rein-
forcement learning: Global decision-making via local
economic transactions. In Proceedings of the 37th In-
ternational Conference on Machine Learning, ICML,
2020.

[6] Tianqi Chen, Thierry Moreau, Ziheng Jiang, Lianmin
Zheng, Eddie Q. Yan, Haichen Shen, Meghan Cowan,
Leyuan Wang, Yuwei Hu, Luis Ceze, Carlos Guestrin,
and Arvind Krishnamurthy. TVM: an automated end-
to-end optimizing compiler for deep learning. In 13th
USENIX Symposium on Operating Systems Design and
Implementation, OSDI, 2018.

[7] Michael Dennis, Natasha Jaques, Eugene Vinitsky,
Alexandre M. Bayen, Stuart Russell, Andrew Critch,
and Sergey Levine. Emergent complexity and zero-shot
transfer via unsupervised environment design. In Ad-
vances in Neural Information Processing Systems 33:
Annual Conference on Neural Information Processing
Systems, NeurIPS, 2020.

[8] Lasse Espeholt, Raphaël Marinier, Piotr Stanczyk,
Ke Wang, and Marcin Michalski. SEED RL: scalable

and efficient deep-rl with accelerated central inference.
In 8th International Conference on Learning Represen-
tations, ICLR 2020, Addis Ababa, Ethiopia, April 26-30,
2020, 2020.

[9] Lasse Espeholt, Hubert Soyer, Rémi Munos, Karen Si-
monyan, Volodymyr Mnih, Tom Ward, Yotam Doron,
Vlad Firoiu, Tim Harley, Iain Dunning, Shane Legg, and
Koray Kavukcuoglu. IMPALA: scalable distributed
deep-rl with importance weighted actor-learner architec-
tures. In Proceedings of the 35th International Confer-
ence on Machine Learning, ICML, 2018.

[10] Python Software Foundation. Process-based parallelism,
2022. [Online; accessed 10-December-2021].

[11] C. Daniel Freeman, Erik Frey, Anton Raichuk, Sertan
Girgin, Igor Mordatch, and Olivier Bachem. Brax - a
differentiable physics engine for large scale rigid body
simulation, 2021.

[12] Roy Frostig, Matthew Johnson, and Chris Leary. Com-
piling machine learning programs via high-level tracing.
In Systems for Machine Learning, 2018.

[13] Sven Gronauer and Klaus Diepold. Multi-agent deep
reinforcement learning: a survey. Artificial Intelligence
Review, pages 1–49, 2021.

[14] Sergio Guadarrama, Anoop Korattikara, Oscar Ramirez,
Pablo Castro, Ethan Holly, Sam Fishman, Ke Wang,
Ekaterina Gonina, Neal Wu, Efi Kokiopoulou, Luciano
Sbaiz, Jamie Smith, Gábor Bartók, Jesse Berent, Chris
Harris, Vincent Vanhoucke, and Eugene Brevdo. TF-
Agents: A library for reinforcement learning in ten-
sorflow. https://github.com/tensorflow/agents,
2018. [Online; accessed 25-June-2019].

[15] Abhishek Gupta, Justin Yu, Tony Z. Zhao, Vikash Ku-
mar, Aaron Rovinsky, Kelvin Xu, Thomas Devlin, and
Sergey Levine. Reset-free reinforcement learning via
multi-task learning: Learning dexterous manipulation
behaviors without human intervention. In IEEE Interna-
tional Conference on Robotics and Automation, ICRA
2021, 2021.

[16] Matteo Hessel, Manuel Kroiss, Aidan Clark, Iurii Ke-
maev, John Quan, Thomas Keck, Fabio Viola, and Hado
van Hasselt. Podracer architectures for scalable rein-
forcement learning. CoRR, abs/2104.06272, 2021.

[17] Elad Hoffer, Itay Hubara, and Daniel Soudry. Train
longer, generalize better: closing the generalization gap
in large batch training of neural networks. In Advances
in Neural Information Processing Systems 30: Annual
Conference on Neural Information Processing Systems,
2017.

USENIX Association 2023 USENIX Annual Technical Conference 989

https://github.com/tensorflow/agents

[18] Matt Hoffman, Bobak Shahriari, John Aslanides, Gabriel
Barth-Maron, Feryal Behbahani, Tamara Norman, Ab-
bas Abdolmaleki, Albin Cassirer, Fan Yang, Kate
Baumli, Sarah Henderson, Alexander Novikov, Ser-
gio Gómez Colmenarejo, Serkan Cabi, Çaglar Gülçehre,
Tom Le Paine, Andrew Cowie, Ziyu Wang, Bilal Piot,
and Nando de Freitas. Acme: A research frame-
work for distributed reinforcement learning. CoRR,
abs/2006.00979, 2020.

[19] Huawei. Mindspore. https://www.mindspore.cn/en,
2020.

[20] Huawei. Mindspore all gather operator.
https://www.mindspore.cn/docs/en/r1.7/api_
python/ops/mindspore.ops.AllGather.html?
highlight=allgather, 2022. [Online; accessed
18-May-2022].

[21] John Jumper, Richard Evans, Alexander Pritzel, Tim
Green, Michael Figurnov, Olaf Ronneberger, Kathryn
Tunyasuvunakool, Russ Bates, Augustin Žídek, Anna
Potapenko, Alex Bridgland, Clemens Meyer, Simon A A
Kohl, Andrew J Ballard, Andrew Cowie, Bernardino
Romera-Paredes, Stanislav Nikolov, Rishub Jain, Jonas
Adler, Trevor Back, Stig Petersen, David Reiman, Ellen
Clancy, Michal Zielinski, Martin Steinegger, Michalina
Pacholska, Tamas Berghammer, Sebastian Bodenstein,
David Silver, Oriol Vinyals, Andrew W Senior, Koray
Kavukcuoglu, Pushmeet Kohli, and Demis Hassabis.
Highly accurate protein structure prediction with Al-
phaFold. Nature, 596(7873):583–589, 2021.

[22] Vijay R. Konda and John N. Tsitsiklis. Actor-critic algo-
rithms. In Advances in Neural Information Processing
Systems 12, [NIPS Conference], 1999.

[23] Tian Lan, Sunil Srinivasa, and Stephan Zheng. Warp-
drive: Extremely fast end-to-end deep multi-agent rein-
forcement learning on a GPU. CoRR, abs/2108.13976,
2021.

[24] Mu Li, David G. Andersen, Jun Woo Park, Alexander J.
Smola, Amr Ahmed, Vanja Josifovski, James Long, Eu-
gene J. Shekita, and Bor-Yiing Su. Scaling distributed
machine learning with the parameter server. In 11th
USENIX Symposium on Operating Systems Design and
Implementation, OSDI, 2014.

[25] Eric Liang, Richard Liaw, Robert Nishihara, Philipp
Moritz, Roy Fox, Ken Goldberg, Joseph Gonzalez,
Michael I. Jordan, and Ion Stoica. Rllib: Abstractions
for distributed reinforcement learning. In Proceedings of
the 35th International Conference on Machine Learning,
ICML, 2018.

[26] Eric Liang, Zhanghao Wu, Michael Luo, Sven Mika,
and Ion Stoica. Distributed reinforcement learning is a
dataflow problem. CoRR, abs/2011.12719, 2020.

[27] Timothy P. Lillicrap, Jonathan J. Hunt, Alexander
Pritzel, Nicolas Heess, Tom Erez, Yuval Tassa, David
Silver, and Daan Wierstra. Continuous control with deep
reinforcement learning. In 4th International Conference
on Learning Representations, ICLR, 2016.

[28] Ryan Lowe, Yi Wu, Aviv Tamar, Jean Harb, Pieter
Abbeel, and Igor Mordatch. Multi-agent actor-critic
for mixed cooperative-competitive environments. In
Advances in Neural Information Processing Systems 30:
Annual Conference on Neural Information Processing
Systems, 2017.

[29] Luo Mai, Guo Li, Marcel Wagenländer, Konstantinos
Fertakis, Andrei-Octavian Brabete, and Peter R. Piet-
zuch. Kungfu: Making training in distributed machine
learning adaptive. In 14th USENIX Symposium on Oper-
ating Systems Design and Implementation, OSDI, 2020.

[30] Message Passing Interface Forum. MPI: A Message-
Passing Interface Standard Version 4.0, June 2021.

[31] Volodymyr Mnih, Adrià Puigdomènech Badia, Mehdi
Mirza, Alex Graves, Tim Harley, Timothy P. Lillicrap,
David Silver, and Koray Kavukcuoglu. Asynchronous
methods for deep reinforcement learning. In Proceed-
ings of the 33rd International Conference on Interna-
tional Conference on Machine Learning - Volume 48,
ICML’16, 2016.

[32] Volodymyr Mnih, Adrià Puigdomènech Badia, Mehdi
Mirza, Alex Graves, Timothy P. Lillicrap, Tim Harley,
David Silver, and Koray Kavukcuoglu. Asynchronous
methods for deep reinforcement learning. In Proceed-
ings of the 33nd International Conference on Machine
Learning, ICML, 2016.

[33] Volodymyr Mnih, Koray Kavukcuoglu, David Silver,
Andrei A. Rusu, Joel Veness, Marc G. Bellemare,
Alex Graves, Martin A. Riedmiller, Andreas Fidjeland,
Georg Ostrovski, Stig Petersen, Charles Beattie, Amir
Sadik, Ioannis Antonoglou, Helen King, Dharshan Ku-
maran, Daan Wierstra, Shane Legg, and Demis Hassabis.
Human-level control through deep reinforcement learn-
ing. Nat., 518(7540):529–533, 2015.

[34] Philipp Moritz, Robert Nishihara, Stephanie Wang,
Alexey Tumanov, Richard Liaw, Eric Liang, Melih Eli-
bol, Zongheng Yang, William Paul, Michael I. Jordan,
and Ion Stoica. Ray: A distributed framework for emerg-
ing AI applications. In 13th USENIX Symposium on
Operating Systems Design and Implementation, OSDI,
2018.

990 2023 USENIX Annual Technical Conference USENIX Association

https://www.mindspore.cn/en
https://www.mindspore.cn/docs/en/r1.7/api_python/ops/mindspore.ops.AllGather.html?highlight=allgather
https://www.mindspore.cn/docs/en/r1.7/api_python/ops/mindspore.ops.AllGather.html?highlight=allgather
https://www.mindspore.cn/docs/en/r1.7/api_python/ops/mindspore.ops.AllGather.html?highlight=allgather

[35] Paul Muller, Shayegan Omidshafiei, Mark Rowland,
Karl Tuyls, Julien Pérolat, Siqi Liu, Daniel Hennes, Luke
Marris, Marc Lanctot, Edward Hughes, Zhe Wang, Guy
Lever, Nicolas Heess, Thore Graepel, and Rémi Munos.
A generalized training approach for multiagent learning.
In 8th International Conference on Learning Represen-
tations, ICLR, 2020.

[36] Derek Gordon Murray, Frank McSherry, Rebecca Isaacs,
Michael Isard, Paul Barham, and Martín Abadi. Naiad:
a timely dataflow system. In ACM SIGOPS 24th Sympo-
sium on Operating Systems Principles, SOSP ’13, 2013.

[37] Ranjit Nair, Milind Tambe, Makoto Yokoo, David V.
Pynadath, and Stacy Marsella. Taming decentralized
pomdps: Towards efficient policy computation for mul-
tiagent settings. In IJCAI-03, Proceedings of the Eigh-
teenth International Joint Conference on Artificial Intel-
ligence, 2003.

[38] NVIDIA. CUDA Toolkit: Develop, optimize and de-
ploy gpu-accelerated apps, 2022. [Online; accessed
10-December-2021].

[39] NVIDIA. NCCL: Nvidia collective communications
library, 2022. [Online; accessed 10-December-2021].

[40] NVIDIA. Nvlink and nvswitch. https://www.nvidia.
com/en-au/data-center/nvlink, 2023. [Online; ac-
cessed 10-Sep-2022].

[41] OpenAI. ChatGPT: Optimizing Language Models
for Dialogue. https://openai.com/blog/chatgpt,
2022.

[42] Adam Paszke, Sam Gross, Francisco Massa, Adam
Lerer, James Bradbury, Gregory Chanan, Trevor Killeen,
Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban
Desmaison, Andreas Köpf, Edward Z. Yang, Zachary
DeVito, Martin Raison, Alykhan Tejani, Sasank Chil-
amkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and
Soumith Chintala. Pytorch: An imperative style, high-
performance deep learning library. In Advances in
Neural Information Processing Systems 32: Annual
Conference on Neural Information Processing Systems,
NeurIPS, 2019.

[43] Chao Qu, Shie Mannor, Huan Xu, Yuan Qi, Le Song,
and Junwu Xiong. Value propagation for decentralized
networked deep multi-agent reinforcement learning. In
Advances in Neural Information Processing Systems 32:
Annual Conference on Neural Information Processing
Systems 2019, NeurIPS, 2019.

[44] Ray. Ray ppo setting. https://github.com/
ray-project/ray/blob/master/rllib/tuned_

examples/ppo/halfcheetah-ppo.yaml, 2020.
[Online; accessed 10-Sep-2022].

[45] Michael Schaarschmidt, Sven Mika, Kai Fricke, and
Eiko Yoneki. RLgraph: Modular Computation Graphs
for Deep Reinforcement Learning. In Proceedings of
Machine Learning and Systems, MLSys, 2019.

[46] Julian Schrittwieser, Ioannis Antonoglou, Thomas Hu-
bert, Karen Simonyan, Laurent Sifre, Simon Schmitt,
Arthur Guez, Edward Lockhart, Demis Hassabis, Thore
Graepel, et al. Mastering atari, go, chess and shogi by
planning with a learned model. Nature, 588(7839):604–
609, 2020.

[47] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec
Radford, and Oleg Klimov. Proximal policy optimiza-
tion algorithms. CoRR, abs/1707.06347, 2017.

[48] Tom Shanley. Infiniband. Addison-Wesley Longman
Publishing Co., Inc., USA, 2002.

[49] David Silver, Aja Huang, Chris J. Maddison, Arthur
Guez, Laurent Sifre, George van den Driessche, Ju-
lian Schrittwieser, Ioannis Antonoglou, Vedavyas Pan-
neershelvam, Marc Lanctot, Sander Dieleman, Do-
minik Grewe, John Nham, Nal Kalchbrenner, Ilya
Sutskever, Timothy P. Lillicrap, Madeleine Leach, Ko-
ray Kavukcuoglu, Thore Graepel, and Demis Hassabis.
Mastering the game of go with deep neural networks
and tree search. Nat., 529(7587):484–489, 2016.

[50] Peng Sun, Jiechao Xiong, Lei Han, Xinghai Sun, Shux-
ing Li, Jiawei Xu, Meng Fang, and Zhengyou Zhang.
Tleague: A framework for competitive self-play based
distributed multi-agent reinforcement learning. CoRR,
abs/2011.12895, 2020.

[51] Richard S Sutton and Andrew G Barto. Reinforcement
learning: An introduction. MIT press, 2018.

[52] Emanuel Todorov, Tom Erez, and Yuval Tassa. Mu-
joco: A physics engine for model-based control. In
2012 IEEE/RSJ International Conference on Intelligent
Robots and Systems, pages 5026–5033. IEEE, 2012.

[53] Colin Unger, Zhihao Jia, Wei Wu, Sina Lin, Mandeep
Baines, Carlos Efrain Quintero Narvaez, Vinay Ramakr-
ishnaiah, Nirmal Prajapati, Patrick S. McCormick, Ja-
maludin Mohd-Yusof, Xi Luo, Dheevatsa Mudigere,
Jongsoo Park, Misha Smelyanskiy, and Alex Aiken.
Unity: Accelerating DNN training through joint opti-
mization of algebraic transformations and paralleliza-
tion. In 16th USENIX Symposium on Operating Systems
Design and Implementation, OSDI, 2022.

USENIX Association 2023 USENIX Annual Technical Conference 991

https://www.nvidia.com/en-au/data-center/nvlink
https://www.nvidia.com/en-au/data-center/nvlink
https://openai.com/blog/chatgpt
https://github.com/ray-project/ray/blob/master/rllib/tuned_examples/ppo/halfcheetah-ppo.yaml
https://github.com/ray-project/ray/blob/master/rllib/tuned_examples/ppo/halfcheetah-ppo.yaml
https://github.com/ray-project/ray/blob/master/rllib/tuned_examples/ppo/halfcheetah-ppo.yaml

[54] Oriol Vinyals, Igor Babuschkin, Wojciech M. Czarnecki,
Michaël Mathieu, Andrew Dudzik, Junyoung Chung,
David H. Choi, Richard Powell, Timo Ewalds, Petko
Georgiev, Junhyuk Oh, Dan Horgan, Manuel Kroiss,
Ivo Danihelka, Aja Huang, Laurent Sifre, Trevor Cai,
John P. Agapiou, Max Jaderberg, Alexander Sasha
Vezhnevets, Rémi Leblond, Tobias Pohlen, Valentin
Dalibard, David Budden, Yury Sulsky, James Molloy,
Tom Le Paine, Çaglar Gülçehre, Ziyu Wang, Tobias
Pfaff, Yuhuai Wu, Roman Ring, Dani Yogatama, Dario
Wünsch, Katrina McKinney, Oliver Smith, Tom Schaul,
Timothy P. Lillicrap, Koray Kavukcuoglu, Demis Hass-
abis, Chris Apps, and David Silver. Grandmaster level
in starcraft II using multi-agent reinforcement learning.
Nat., 575(7782):350–354, 2019.

[55] Ronald J. Williams. Simple statistical gradient-
following algorithms for connectionist reinforcement
learning. Mach. Learn., 8:229–256, 1992.

[56] XLA and TensorFlow teams. XLA: Optimizing com-
piler for machine learning, 2022. [Online; accessed
10-December-2021].

[57] Chao Yu, Akash Velu, Eugene Vinitsky, Jiaxuan Gao,
Yu Wang, Alexandre Bayen, and YI WU. The surprising
effectiveness of ppo in cooperative multi-agent games.
In Advances in Neural Information Processing Systems.
Curran Associates, Inc., 2022.

[58] Matei Zaharia, Reynold S. Xin, Patrick Wendell, Tatha-
gata Das, Michael Armbrust, Ankur Dave, Xiangrui

Meng, Josh Rosen, Shivaram Venkataraman, Michael J.
Franklin, Ali Ghodsi, Joseph Gonzalez, Scott Shenker,
and Ion Stoica. Apache spark: a unified engine for big
data processing. Commun. ACM, 59(11):56–65, 2016.

[59] Kaiqing Zhang, Zhuoran Yang, Han Liu, Tong Zhang,
and Tamer Basar. Fully decentralized multi-agent rein-
forcement learning with networked agents. In Proceed-
ings of the 35th International Conference on Machine
Learning, ICML, 2018.

[60] Lianmin Zheng, Zhuohan Li, Hao Zhang, Yonghao
Zhuang, Zhifeng Chen, Yanping Huang, Yida Wang,
Yuanzhong Xu, Danyang Zhuo, and Joseph E Gonza-
lez. Alpa: Automating inter-and intra-operator paral-
lelism for distributed deep learning. arXiv preprint
arXiv:2201.12023, 2022.

[61] Ming Zhou, Ziyu Wan, Hanjing Wang, Muning Wen,
Runzhe Wu, Ying Wen, Yaodong Yang, Weinan Zhang,
and Jun Wang. Malib: A parallel framework for
population-based multi-agent reinforcement learning.
CoRR, abs/2106.07551, 2021.

[62] Matthieu Zimmer, Claire Glanois, Umer Siddique, and
Paul Weng. Learning fair policies in decentralized coop-
erative multi-agent reinforcement learning. In Proceed-
ings of the 38th International Conference on Machine
Learning, ICML, 2021.

992 2023 USENIX Annual Technical Conference USENIX Association

A Supported Distribution Policies

Distribution policy Deployment Description

[DP-SingleLearnerCoarse]

replicate: (actor, env)
split: (learner)

e.g., Acme [18], Sebulba [16]

Gather

Actor

Replay
buffer

GPU
Worker 1

Actor

Replay
buffer

GPU

Environ
ment

CPU
Worker 2

Worker 3

Learner
Replay
buffer

GPU CPU
Broadcast

Environ
ment

CPU

Actor

Replay
buffer

GPU
Environ

ment

CPU
Worker 4

DP-SingleLearnerCoarse replicates the actor and environ-
ment fragments: W1–W3 co-locate 1 GPU fragment with
an actor for DNN policy inference and 1 CPU fragment
for the environment execution. A single GPU fragment
with a learner performs policy training (W4), gathering
batched training data, training the policy and broadcasting
updates.

[DP-SingeLearnerFine]

replicate: fused actor/env
split: learner

e.g., SEED RL [8]

Gather

Actor

Replay
buffer

Environment

CPU
Worker 1

Actor

Replay
buffer

Environment

CPU
Worker 2

Actor

Replay
buffer

Environment

CPU
Worker 3

Learner
Replay
buffer

GPU CPU

Scatter Worker 4

DP-SingleLearnerFine fuses the actor and environment
into 1 fragment (W1–W3) but handles policy inference at
the learner (W4), i.e., actors do not contain DNNs. W4
executes policy inference and training in 1 GPU fragment;
W1–3 only have CPU fragments. W4 scatters actions to
W1–W3 and gathers data for policy training.

[DP-MultiLearner]

replicate: fused actor/learner, env Learner

Actor
Replay
buffer

GPU
Worker 1

Learner
Actor

Replay
buffer

GPU
Worker 2

CPU

Worker 4Allreduce

Environ
ment

CPU

Learner

Actor
Replay
buffer

GPU
Worker 3

Environ
ment

CPU

Environ
ment

Learner
Actor

Replay
buffer

GPU CPU

Environ
ment

DP-MultiLearner performs data-parallel training with mul-
tiple learners, supporting fully decentralised MARL train-
ing [5,43,59,62]. DP-MultiLearner co-locates 2 fragments:
a GPU fragment that fuses the actor and learner, accelerat-
ing policy inference, training and replay buffer manage-
ment, and a CPU fragment for environment execution.

[DP-GPUOnly]

replicate: fused actor/learner/env Learner

Actor
EnvironmentGPU

Worker 1
CPU

Learner

Actor
GPU
Worker 2

CPU

Learner

Actor
GPU
Worker 4

CPU

Allreduce

Learner

Actor
EnvironmentGPU

Worker 1
CPU

Environment

Environment

DP-GPUOnly fuses the training loop into 1 GPU fragment.
To enable communication among GPU fragments, DP-
GPUOnly uses Allreduce operators compiled into the
computational graph with NCCL2 [39]. DP-GPUOnly is
a distributed implementation of the single-node systems
(e.g., WarpDrive [23]).

[DP-Environments]

replicate: fused actor/learner
split: env

e.g., MALib [61]

Worker 1
CPU

Learner

Actor
Replay
buffer

GPU
Worker 3

CPU

Environ
ment 1

Environ
ment 2

Learner

Actor
Replay
buffer

GPU
Worker 2

CPU

Learner

Actor
Replay
buffer

GPU
Worker 4

CPU
GatherGather Scatter Scatter

DP-Environments has a dedicated worker for environment
execution. W1 has CPU fragments to execute environment
instances on multiple CPU cores; W2–W4 fuse the actor
and learner to accelerate policy inference and training. W1
gathers the inferred actions and scatters the states and
rewards.

[DP-Central]

replicate: fused actor/learner, env
split: param server/policy pool

Parameter
serverPolicy pool

Worker 1
CPU

Learner

Actor
Replay
buffer

GPU
Environ

ment

Worker 2
CPU

Learner

Actor
Replay
buffer

GPU
Environ

ment

Worker 2
CPU

Learner

Actor
Replay
buffer

GPU

Environ
ment

Worker 4
CPU

Scatter
GatherGather

Scatter

DP-Central supports a central policy pool [61] or param-
eter server [24] on a separate worker (W1). W2–W4 co-
locate GPU fragments for policy inference and training
and CPU fragments for environment execution.

USENIX Association 2023 USENIX Annual Technical Conference 993

	Introduction
	Distributed Reinforcement Learning
	Reinforcement learning
	Requirements for distributed RL systems
	Design space of existing RL systems

	Fragmented Dataflow Graphs
	Overview
	Trade-offs with fragmented dataflow graphs

	Using MSRL
	MSRL APIs
	Distribution policies

	MSRL Architecture
	Generating FDGs
	Executing fragments

	Evaluation
	Experimental set-up
	Performance with FDGs against baselines
	Trade-offs between distribution policies
	Scalability

	Related Work
	Conclusions
	Supported Distribution Policies

