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Abstract
Virtual machines (VMs) are used for consolidation, isolation,

and provisioning in the cloud, but applications with large

working sets are impacted by the overheads of memory ad-

dress translation in VMs. Existing translation approaches

incur non-trivial overheads: (i) nested paging has a worst-

case latency that increases with page table depth; and (ii) par-

avirtualized and shadow paging suffer from high hypervisor

intervention costs when updating guest page tables.

We describe translation pass-through (TPT), a new mem-

ory virtualization mechanism that achieves near-native per-

formance. TPT enables VMs to control virtual memory trans-

lation from guest-virtual to host-physical addresses using

one-dimensional page tables. At the same time, inter-VM

isolation is enforced by the host by exploiting new hardware

support for physical memory tagging in commodity CPUs.

We prototype TPT by modifying the KVM/QEMU hyper-

visor and enlightening the Linux guest. We evaluate it by em-

ulating the memory tagging mechanism of AMD CPUs. Our

conservative performance estimates show that TPT achieves

native performance for real-world data center applications,

with speedups of up to 2.4× and 1.4× over nested and shadow

paging, respectively.

1 Introduction
Virtualization plays a central role in cloud stacks. Many aca-

demic and industry efforts strive to bring its performance

closer to that of native (bare-metal) execution [19, 23, 27, 29,

37, 51, 55, 68]. Nevertheless, memory address translation in

virtual machines (VMs) introduces non-trivial performance

overheads. Worse, these overheads are expected to grow as

applications move to larger working set sizes [26, 45], and

architectures evolve to use deeper page tables to support more

physical memory [1].

Memory translation in VMs (also known as guests) is

performed using one of two approaches, each with its own

benefits and drawbacks. In nested paging (see Fig. 1a), as

supported by Intel EPT [51] and AMD nPT [19], VMs self-

manage page tables without involving the hypervisor (also

known as the host). Nested paging, however, introduces over-

heads during address translation: it virtualizes guest physical

addresses by combining guest page tables with an additional

nested page table controlled by the hypervisor. This results

in up to 6× more page table entry references than a native

system [19] – the MMU must issue up to 24 memory accesses

to the page tables, as opposed to 4 in a native system.

In contrast, shadow paging (see Fig. 1b) achieves near-

native translation performance. However, the guest page table

management becomes costly: the hypervisor synchronizes

each guest page table with a host (or shadow) page table,

which directly translates guest virtual addresses (GVAs) to

host physical addresses (HPAs). This avoids the translation

overheads of nested paging, but introduces expensive VM

exceptions to keep the page tables synchronized — often in

an application’s critical path.

Despite sophisticated optimizations in today’s systems,

such as lazy page table shadowing [61] and partial walk

caches [32], we observe that workloads see up to 2.4× and

1.4× slowdowns due to nested and shadow paging, respec-

tively (see §6). These overheads are expected to grow in future

systems: applications with larger working set sizes [26, 45]

will have higher TLB miss rates; emerging workloads such

as function-as-a-service (FaaS) and Kata containers [34] rely

heavily on process creation inside VMs, adding to page ta-

ble management overheads; and upcoming CPUs will feature

deeper page table hierarchies, resulting in quadratic increases

in nested page table traversal overheads [1].

We explore a new approach to memory address translation,

translation pass-through (TPT), which enables near-native

virtual memory performance in VMs. With TPT, VMs directly

control translations to their assigned physical memory, with-

out the extra level of indirection of nested paging, and without

the hypervisor interventions of shadow paging during guest

page table modifications. TPT is enabled by new functionality

in commodity CPUs for physical memory protection using

memory tags, e.g., in AMD SEV-SNP [60] to support confi-

dential computing features [22]. Our key observation is that

this new type of physical memory protection can be leveraged
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by hypervisors to efficiently enforce memory isolation be-

tween VMs, while allowing the VMs to manage direct guest-

virtual to host-physical address translation (see Fig. 1c). Thus,

TPT offers a new, more efficient point in the design space

across hardware-virtualized, paravirtualized, and shadow vir-

tual memory management.

TPT’s gains in memory translation performance come from

the fact that one-dimensional page walks in guest VMs, com-

bined with hardware memory protection checks, are faster

than the two-dimensional page walks using nested paging.

Prior work [6, 7, 16] has shown that the overheads of tag

checks can be hidden by performing them in parallel with

memory accesses and translation. Recent performance results

on AMD SEV-SNP CPUs with physical memory tags [60] cor-

roborate the low-performance overhead for real-world work-

loads. In contrast, a nested page table walk requires extra steps

that are inherently sequential, making it harder to optimize.

To realize TPT, we make the following contributions:

(1) VM isolation with hardware memory protection. TPT

leverages MMU support to maintain the host’s physical

memory frame permissions using tags. By setting per-VM

frame tags, we can safely allow VMs to manage direct guest-

physical-to-host-physical page tables: the hypervisor ensures

that a VM can only access host frames assigned to it, regard-

less of the host physical addresses in the VM’s page tables

(“Hypervisor” and “HW” layers in Fig. 1c). Existing AMD

CPUs with SEV-SNP already support the host frame per-

missions we need for TPT; we cannot use SEV-SNP as-is

because frame tags are coupled with nested paging and expen-

sive memory encryption, but we would require only simple

hardware changes: adding two registers to configure TPT, and

enabling the frame tag functionality separately from the rest

of SEV-SNP.

(2) Selective user-space translation. Enabling TPT for an

entire VM would require a fundamental redesign of the boot

process, memory management, and I/O in the guest OS. Fortu-

nately, TPT’s performance benefits are largest for user-space

applications with large working sets, but are less so for small

working-set applications or kernel-space (see §3). The guest

OS thus enables TPT only in user-space execution of some

processes, which are dynamically identified to take advantage

of it. We achieve this by introducing a new type of TPT page
table with GVA-to-HPA translations that are checked against

the VM’s host frame permissions, whereas guest kernel code

and other non-TPT-enabled processes use the traditional non-
TPT page table (similar to how PTI works [58]). This sup-

ports incremental deployments in which TPT and non-TPT

processes and VMs co-exist on a host and with minimal guest

OS changes, which simplifies the deployment of TPT.

(3) Hypervisor-compatible extensions. We describe a design

for TPT that is compatible with existing hypervisors. TPT

only requires modest changes to the KVM interface: it ex-

poses the physical memory map to enlightened guests, and
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Figure 1: Existing (nested, shadow) and proposed pass-

through paging approaches (GVA/GPA mean guest vir-

tual/physical address; HVA/HPA mean host virtual/physical

address; PW means page walk.)

extends the guest pvops backend in Linux to seamlessly in-

corporate the extra TPT page tables. Our design permits the

hypervisor to retain control over guest physical memory with-

out introducing performance penalties: the hypervisor can use

existing memory ballooning techniques, and can forcibly re-

claim host frames from uncooperative VMs. To support host

frame reclamation and VM migration, the guest OS keeps a

pair of synchronized TPT and non-TPT page tables, which

we call dual page tables, for each TPT-enabled process; using

pvops in the guest OS keeps synchronization transparent and

with low overhead. Since a dual page table is always kept in

sync, the hypervisor can force any guest process to utilize its

non-TPT page table while a host frame reclamation or VM

migration is underway.

We implement TPT using a Linux guest and KVM/QEMU

hypervisor. We evaluate our TPT prototype using a commod-

ity x86–64 CPU — which does not perform any host frame

permission check, but can execute applications much larger

than a traditional CPU simulator —, and assume an optimized

MMU implementation that executes permission checks in

parallel with page table traversal. We also model the perfor-

mance of a naive MMU implementation where operations are

executed in sequence by injecting additional delays in page

table walks, and discuss how both approaches reasonably

model the overheads that we should expect from a hardware

implementation such as is contained in SEV-SNP.

Our results show that an optimized TPT implementation

achieves native performance, and is 2× and 1.2× faster than

nested paging and shadow paging, respectively, on a PageR-

ank benchmark. Even with a naive MMU implementation,

TPT exhibits a geometric mean slowdown of only 3% over

native execution for a series of typical cloud workloads, in-

cluding Memcached and kernel compile.

The TPT implementation is available as open source soft-

ware at https://github.com/acsl-technion/TPT.
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2 VM Address Translation
We discuss the properties of current memory virtualization

approaches (§2.1) and motivate the opportunities offered by

new hardware protection mechanisms in recent CPUs (§2.2).

2.1 Memory virtualization approaches

Current VMs use one of the three following mechanisms:

Shadow paging uses hypervisor-managed shadow page ta-
bles, shown in Fig. 1b, that directly translate a guest virtual

addresses (GVA) to host physical addresses (HPA). The guest

maintains its own page tables, but the hypervisor forces the

MMU to use shadow page tables for address translation.

Shadow paging thus offers native translation performance

with a one-dimensional page walk.

The hypervisor typically write-protects guest page tables,

such that every guest write to a guest page table traps into

the hypervisor to update the shadow page table [4]. Modern

implementations thus need to trap on guest page table writes

and on privileged guest instructions, such as TLB flushes.

Despite elaborate optimizations [61], shadow paging suffers

from these high intrinsic costs for page table manipulation.

The performance of page table manipulation is critical for

some workloads, such as function-as-a-service (FaaS). With

FaaS, process initialization is on the critical path of function

invocations, which includes page table manipulations [25].

To achieve strong isolation, FaaS runtimes are commonly

deployed in VMs, e.g., Kata containers [34,52], which makes

page table management a performance-critical operation.

Paravirtualization of MMUs, e.g., in Xen-PV [14], predates

hardware virtualization extensions. It can be seen as a variant

of shadow paging in which traps are replaced by explicit

hypercalls in the guest OS, used to request changes to the

hypervisor-managed GPA-to-HPA page tables.

Paravirtualized page tables, however, are costly: hypercall

overheads are of the same magnitude as the traps in shadow

paging, requiring context switches between VMs and the hy-

pervisor. While paravirtualization can batch modifications to

reduce overheads, lazy shadow paging can achieve similar

benefits. Therefore, only older hypervisors used paravirtual-

ized page tables by default [12,14], newer ones use optimized

shadow paging and nested paging [13, 66, 73, 75].

Nested paging is a hardware-accelerated approach that per-

forms GVA-to-HPA translation using two hierarchies of page

tables: (i) guest (VM-controlled) page tables and (ii) host

(hypervisor-controlled) page tables (see Fig. 2). The guest

page tables translate GVA-to-GPA (guest physical addresses);

the host ones translate GPA-to-HPA. Every GPA in a guest

page table requires a GPA-to-HPA translation by the MMU.

This procedure is called two-dimensional page walks [19].

A two-dimensional page walk multiplies the number of

memory accesses per address translation. In the worst case, a

single translation must access m levels of the guest page table

(horizontal dimension in Fig. 2), where the GPA of each level
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Figure 2: 2-D page table and page walk for nested paging

is first translated by accessing n levels of the host page table

(vertical dimension), plus n and m accesses to the contents of

the respective page tables: nm+n+m memory accesses in

total (e.g., 24 memory access in existing x86–64 processors

using 4 KB pages, where m = n = 4).

Several studies have reported that the overheads of two-

dimensional page walks may account for over 30% of appli-

cation execution time [19, 57]. With the growth in working

set sizes and deeper radix page tables [1], this could lead to a

quadratic increase in memory virtualization overheads.

Translation overheads can be reduced by using huge pages

on the host and/or guest page tables. This bypasses part of

the page walk, as shown in the dotted lines in Fig. 2. Their

use, however, is not always feasible and may lead to under-

utilization of memory due to internal fragmentation [54].

Hardware partial walk caches target similar optimizations

but are typically less effective due to their reliance on spatial

and temporal reuse [32].

Despite its higher translation costs, nested paging is of-

ten the preferred virtualization approach, because it enables

guests to perform page table updates without hypervisor inter-

vention while remaining compatible with full virtualization.

2.2 Hardware memory protection

Physical memory protection, recently introduced in commod-

ity CPUs, offers a new hypervisor-controlled mechanism for

memory isolation across VMs [60, 64]. AMD SEV-SNP [60]

is one example of such technology, which utilizes both mem-

ory encryption and physical memory tagging to enhance VM

isolation; other architectures, e.g., RISC-V, also offer mecha-

nisms for physical memory protection [71].

In AMD SEV-SNP, the MMU checks each host physical

memory access against a host frame permission table (called

RMP) that identifies which VM can access each host frame.

The RMP is a physically-contiguous array of memory that

contains one entry per host frame. Each entry has a unique

identifier of the VM that the host frame is assigned to. Since

the MMU checks every HPA against the RMP, this ensures

that VMs only access HPAs assigned to them.
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RMP checks only happen during a TLB miss, and AMD’s

implementation has various optimizations to reduce their over-

head: (1) RMP entries can be cached as regular data when

accessed by the MMU during a page walk, minimizing RMP

memory accesses (page table entries can be cached too); and

(2) cache lines are extended with their RMP entry to eliminate

RMP lookups on cached data.

To decide if it is possible to leverage such hardware mem-

ory protection features to accelerate address translation and

page table manipulation in VMs, we can consider existing

AMD SEV-SNP deployments. SEV-SNP is integrated into

Microsoft’s Azure cloud platform, and recent performance

results show a low overhead for SEV-SNP-enabled VMs [48].

Since SEV-SNP performs both host frame tagging and cache

line encryption, with the latter dominating performance over-

heads [49], using just host frame tagging as part of memory

translation should have an even lower overhead (see §5.4).

3 Translation Pass-Through Design

Our design goals and key insights for TPT are as follows:

Native performance. Our solution should offer efficient trans-

lation in both current and future systems, where we expect ex-

isting memory virtualization approaches to not scale (see §2).

Our insight is that, unlike the quadratic overhead of nested

paging, VM translation with host physical memory tagging

adds a single access to the tag for each page table level. Prior

work has shown that such overheads can be largely hidden at

the micro-architectural level [6, 7, 16] (see §5.4), and exist-

ing commercial results seem to indicate the same [48]. Thus,

we make a choice to use tagged physical memory to achieve

native translation performance in VMs.

Compatibility with hypervisors/guests. To facilitate adop-

tion, our solution should avoid major changes to existing hy-

pervisors and guest OSs. Achieving this is challenging, as

memory translation is deeply ingrained in hypervisor and

guest OS implementations. Paravirtualization is often used

in virtualized environments in which full hardware virtualiza-

tion is too complex to implement or too expensive [30,50,59].

Nevertheless, a fully paravirtualized memory management in-

terface, such as Xen-PV [74], would require extensive changes

to the guest OS, including the boot sequence, I/O layer, and

kernel memory management.

To sidestep this complexity, our observation is that TPT’s

translation approach can be confined to user-space applica-

tions, which experience the highest gains. It can be enabled

dynamically for each guest process at runtime. As we show

in §5.2, TPT is not expected to benefit kernel performance.

By limiting TPT use to user-space, we avoid changes to I/O

management, guest system boot or guest memory manage-

ment, and maintain compatibility with existing hypervisor

interfaces and host memory management features, such as

VM migration or host frame reclamation.
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Figure 3: TPT prototype design (Extensions to hardware, hy-

pervisor, and guest are shaded. Memory fast-path translation

are blue arrows. Page table management are yellow arrows.)

3.1 Design overview

Fig. 3 shows the main components of our TPT prototype. As

a starting point, we assume that the guest OS and hypervisor

use nested paging by default; however, our design is general

and also applicable to shadow paging (e.g., Linux supports

both) or a hybrid system [27, 50]. Further, we assume the

availability of hardware memory protection using host frame

tags as used internally in AMD SEV-SNP (see §2).

By default, every guest process has a single non-TPT page

table (as usual; see “Virt App” in Fig. 3), until the TPT proto-

type enables TPT on that process. At this point, the guest OS

constructs and maintains dual page tables for that process, by

keeping both a TPT and non-TPT page table in sync (see “TPT

App”). We could instead have one or the other depending on

whether we enabled TPT on each process, but maintaining

dual page tables is inexpensive (evaluated in §6.3), keeps

change complexity low, and makes host frame revocation sim-

ple to implement: e.g., during host frame reclamation or VM

migration, the hypervisor can force all processes to use their

non-TPT page table until the guest OS has “repaired” the

corresponding TPT page tables (see § 3.2, 3.4 and 4.2).

The guest OS uses the non-TPT page table as the canonical

representation of address translation. It only maintains a TPT

page table for user-mode execution of processes for which it

explicitly requested TPT (step 1 ). When running with TPT,

the guest updates both page tables, thus keeping them in sync.

To populate the TPT page table, the guest OS retrieves GPA-

to-HPA translations from the “guest address map” (step 3 ).

The guest address map is a data structure used by a VM to

know the mapping between its GPAs and the corresponding

HPAs. The hypervisor maintains one guest address map for

each VM, maps it as a read-only guest physical memory range

when a VM boots, and updates it each time the hypervisor

changes a guest-to-host physical memory assignment for that

VM (step 4 ). This approach minimizes changes to the hy-

pervisor since we can reuse GPA faults and existing balloon

drivers to manage host frames, and to update the correspond-

ing guest address map and host frame permission table.
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The design of dual page tables assumes that each hardware

thread has registers pointing to both page tables (TPT and

non-TPT), and that the hypervisor may force a VM to use its

non-TPT page tables despite also having TPT page tables. We

describe the necessary hardware extensions in §4.

3.2 Dual page tables in the guest OS

Every hardware thread has hardware support to access the

dual page tables, by using separate page table pointer registers.

This ensures compatibility: non-TPT VMs require no changes

at all, and TPT-enabled VMs boot without changes — i.e., no

TPT page-table is used. A TPT VM then dynamically enables

TPT by providing a TPT page table, and can also disable it.

The guest OS enables TPT on a per-process basis, and for

user-level code only, where TPT is most effective (see §5.2).

TPT can be activated for a process based on an explicit user

request. One could extend this with automated runtime poli-

cies, although this is out of the scope of this paper; e.g., by

monitoring performance metrics such as TLB-miss rates, RSS

values, and page-walk cycles.

The guest OS always operates on the canonical non-

TPT page table, with its GVA-to-GPA translations, to avoid

changes on existing components such as memory manage-

ment abstractions and algorithms, e.g., to perform reverse

virtual address lookups. Each time a non-TPT page table is

modified, the guest OS efficiently reflects the changes to the

corresponding TPT page table, if any. Entries in a TPT page

table take the canonical GPA and translate it to the correspond-

ing HPA using the added guest address map in step 3 , which

provides “GPA→HPA” translations specific to this VM.

3.3 Page walks and host frame permissions

The hypervisor assigns a unique identifier to each VM, which

is used in the host frame permissions table to mark which host

frames are assigned to each VM. When the MMU traverses

a TPT page table, it raises an exception into the hypervisor

whenever the tag for the VM does not match that of an ac-

cessed host frame.

Note that a 4-level page walk in TPT incurs up to 9 mem-

ory accesses, but allows micro-architectural optimizations to

hide permission checks (see §5.4). If we instead look at a

5-level page table, nested paging goes from 24 to 35 memory

accesses, but TPT only goes from 9 to 11 memory accesses,

highlighting the advantage of TPT when moving to upcoming

architectures with larger physical memory spaces [1].

The behavior of a non-TPT page table is unchanged (see

“GVA→GPA” in Fig. 3): a TLB miss triggers a traversal from

the MMU, which performs a two-dimensional traversal when

using a nested page table set by the hypervisor.

3.4 Host frame management in the hypervisor

The hypervisor tracks GPA→HPA assignments as usual: guest

accesses to an unassigned guest frame trigger allocation and

mapping into a host frame, i.e., via guest access to an un-

mapped page in the EPT.

These host frame assignments are captured by the hyper-

visor’s TPT memory manager (“TPT-MM” in step 4 ). It

then updates the host frame permissions used by the MMU in

step 2 and the per-VM guest address map used by the guest

OS in step 3 (see §4.2 for more details).

The hypervisor reclaims host frames from a VM by using

the existing balloon driver. When frames are released to the

hypervisor, the latter updates the guest address map and host

frame permissions accordingly, followed by the invalidation

of the TLB entries using existing mechanisms – nested paging

uses instruction INVEPT in x86–64, whereas shadow paging

uses a reverse map to invalidate individual pages.

In some cases, the hypervisor must forcibly reclaim host

frames without guest OS cooperation (e.g., the VM is unco-

operative or its balloon driver is slow to respond). We design

a protocol between the guest OS and hypervisor to handle

this case: (1) the hypervisor forcibly disables the use of TPT

page tables on that VM and injects a “TPT status” exception

onto it. Since the guest has dual page tables, the processor

will exclusively use the non-TPT page tables; (2) the hypervi-

sor reclaims any host frames it needs from the VM as usual,

removes them from the guest address map, and resets the

host frame permissions; (3) the hypervisor resumes guest OS

execution; (4) the guest OS gets the injected interrupt and

“repairs” the affected page tables to ensure that they do not

use the reclaimed host frames; and (5) the guest OS issues a

hypercall to notify the hypervisor it can re-enable TPT.

VM migration is handled similarly. The hypervisor dis-

ables TPT during migration and notifies the guest OS upon

completion by injecting the “TPT status” exception. At this

point, the guest OS repairs its TPT page tables based on the

new guest address map contents, and re-enables TPT.

Note that this protocol is only needed for TPT-enabled

guest processes, which we expect to be a small fraction of

all VMs and guest processes. It also only triggered in already

expensive cases, such as forceful host frame reclamation, and

VM migration. Failure to unmap reclaimed host frames is not

a security issue: the VM does not have access to such frames

through the host frame permissions, and guest access to an

unassigned frame results in an exception in the hypervisor,

which can allocate a new frame or terminate the VM.

3.5 I/O host frames and pass-through devices

The host frame permission table only covers the system’s

main memory address range, which prevents support for pass-

through devices on TPT processes (e.g., a DPDK application

with VM device pass-through [2, 24]).

To support such additional physical memory address ranges,

TPT includes new privileged address range registers, which

are configured by the hypervisor to grant a VM access to the

selected ranges (selected during VM boot). These ranges are

assigned to the executing VM, and the hypervisor exposes

their HPAs through the guest address map. This mechanism

operates similarly to x86 MTRRs [32] and AMD’s IORRs [8].
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Name Description

TPT-cr3 Root TPT page table location (zero disables TPT)

cpuid leaf Discovery for TPT support

tag_{base,end} MSR w/ physical addr. of host frame permissions table

VMCS TPT-tag Tag associated with VM (zero disables TPT)

VMCS TPT-IORR Address range regs. for VM permissions to HPA ranges

TPT-fault Exception for invalid permission access

TPT_enable Hypercall to request TPT enable

TPT_status Hypervisor-injected int. to signal TPT status change

TPT_addrmap Virtual PCIe device with guest address map

Table 1: TPT interface added to CPU (Guest ISA (top); hy-

pervisor ISA (middle); guest/hypervisor interface (bottom).)

4 Implementation
We implement a prototype of TPT for Linux 5.16 that con-

sists of 1,700 lines of code (LoC) for the guest OS extensions,

500 LoC in the KVM hypervisor, and 700 LoC in QEMU

to configure and start VMs (counted using CLOC [21]). Our

prototype targets x86-64, but most changes are architecture-

agnostic. Table 1 summarizes the changes visible at the ISA

and guest/hypervisor interface, where VMCS identifies the

VM hardware configuration fields. In particular, dual page

tables are implemented by setting both cr3 and the new

TPT-cr3 (which can be disabled by the hypervisor by set-

ting VMCS field TPT-tag to zero).

4.1 Hypervisor extensions

Our hypervisor is based on Linux KVM/QEMU and supports

shadow and nested paging by default.

Host frame permissions. The host frame permission table

is located in contiguous host physical memory, spanning as

many entries as frames in the host physical memory range.

With 32-bit tags (already used by AMD SEV-SNP [60]), that

corresponds to a 0.1% memory overhead.

The table is configured by the hypervisor, which

sets registers tag_{base,end} (similar to AMD

RMP_{BASE,END} [8]). In addition, the hypervisor pro-

vides a unique TPT identifier for each VM in VMCS field

TPT-tag (checked against host frame permission table

entries), or sets it to zero to disable TPT (e.g., when migrating

a VM or forcing page reclamation).

Extra memory ranges are permissioned by the hypervisor

via VMCS TPT-IORR (e.g., for user-level device passthrough;

see §3.5), which are used when the requested address is out-

side the DRAM’s physical address space.

Guest address map. The hypervisor generates a mapping for

every VM to translate the VM’s GPAs to their corresponding

HPAs. Upon booting the VM, the hypervisor constructs the

guest address and maps it as a read-only guest physical mem-

ory range in the VM. Each map is an array in the host virtual

memory that covers the guest physical memory range and

extra pass-through device ranges assigned to the VM (con-

figured via QEMU). This map is exposed as a virtual PCIe
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Figure 4: Dual page tables in guest OS (Changes in non-TPT

page tables are synchronized to TPT page tables via pv_ops.)

device to VMs (TPT_addrmap), and the size of each map entry

is 8 B per 4 KiB frame, resulting in 0.2% memory overhead.

We extend KVM’s tdpmmu [63] to update the guest ad-

dress map’s contents when modifying GPA mappings without

allocating hypervisor memory on unmapped guest sub-ranges.

4.2 Guest OS extensions

The guest OS changes are largely restricted to a new TPT-

specific paravirtualization backend. The new features are ac-

tivated when the guest OS kernel detects TPT support by

the hypervisor (via a new cpuid leaf, configured by the hy-

pervisor). After the discovery of TPT, the guest OS maps

the TPT_addrmap device as a write-back (cacheable) memory

range as its guest address map.1

To enable TPT for a process, the guest user writes to a new

procfs entry, which triggers the construction of dual page

tables. After the TPT page table has been created, the kernel

puts the TPT page table into the new TPT-cr3 register to

activate it when a process is rescheduled.

Dual page tables. Our guest OS maintains dual page tables,

shown in Fig. 4, and the TPT page tables only cover addresses

accessible in user-mode. The guest disables TPT every time

it enters kernel-mode and re-enables it when exiting back into

user-mode by writing into TPT-cr3 (similar to existing PTI

logic [58]). Note that the regular cr3 register always points

to the non-TPT page table, in case the hypervisor forcibly

disables TPT (see §3.4 and §4.3).

To synchronize the dual page tables, the guest patches the

page table operations via a new pv_ops backend when it de-

tects TPT support. pv_ops is an existing Linux kernel API

that abstracts core kernel operations in a guest OS to work op-

timally across different hypervisors, and is used by default on

1We modify the kernel’s iomap to support cacheable accesses with the

right PAT [56] memory attributes. Note that the virtual device’s contents are

backed by host memory.
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Figure 5: MMU logic to select TPT/non-TPT translation

most VMs. These core operations include page table manipu-

lations, and the overhead of enabling this API is negligible –

Linux leverages dynamic code patching to optimize calls to

the hypervisor backend selected at boot time.

Every page table modification on a vanilla Linux guest

uses GVAs and GPAs and goes through the pv_ops mecha-

nism. TPT’s pv_ops backend performs all requested changes

as usual on the non-TPT page tables, but also synchronizes

changes to user-accessible addresses with the corresponding

TPT page table. Maintenance of dual page tables is therefore

transparent to the guest kernel, and requires no more than 3

additional memory accesses to update the TPT page tables.

First, the necessary GPA-to-HPA translation is retrieved from

the guest address map. Next, the TPT page table entry is

located by accessing the extended mapping field in struct
page of the non-TPT page table. Finally, the TPT page table

entry is updated with its new HPA value.

In most cases, the guest OS accesses a GPA before mapping

it into a page table (e.g., when zeroing it), ensuring that a trans-

lation is available in its guest address map. In the few cases

in which a GPA is not allocated to a HPA, the guest touches

the page to force its presence, going through the pre-existing

guest physical memory page-in logic of the hypervisor.

Huge page support. TPT supports huge page translation

optimizations, which are used if a page is huge on both the

guest and the host (note that the same happens with nested

and shadow paging). Our backend adds 12 pv_ops functions

to support TPT with huge pages.

4.3 MMU extensions

Fig. 5 shows how the hardware extensions for TPT work on

a TLB miss. If TPT-cr3 is supplied by the guest OS and the

VMCS TPT-tag has not been zero-ed by the hypervisor (dis-

abling TPT), the MMU uses the TPT approach for translation;

otherwise, it falls back to using the VM’s regular page table

walk, e.g., via nested paging, as shown in the figure.

With TPT, the MMU takes each address in the page table

from TPT-cr3 as a HPA. The MMU obtains the HPA’s as-

signed tag from the host frame permission table. It extracts the

frame number from the HPA and uses it to index into the per-

mission table. If the retrieved value matches the VMCS field

TPT-tag (cached in an internal register), the MMU continues

to the next page table level; otherwise, it raises a TPT-fault
exception in the hypervisor. If the HPA falls into any of the

VMCS TPT-IORR ranges, the MMU considers the HPA valid

before accessing the host frame permission table.

Note that various micro-architectural optimizations are pos-

sible to perform host frame permission checks during TPT

page table traversals, which are discussed in §5.

5 Discussion
Next, we discuss design alternatives, the limitations of the

design, and how different design choices relate to them.

5.1 TPT with Xen-PV

TPT is not based on Xen-PV [74] due to performance and

compatibility considerations.

To update guest page tables, Xen-PV employs a mechanism

called direct-paging that exposes the GPA-to-HPA mappings

per guest, similar to TPT’s guest address map. However, un-

like the TPT model, Xen-PV guests must perform costly hy-

percalls to update their own page tables. Xen-PV also requires

all guest code to execute in ring-3, which introduces hyper-

call and VM traps to execute privileged guest instructions.

Furthermore, Xen-PV exposes a machine-wide HPA-to-GPA

mapping to all of its guests, which is required for page table

management operations, and thus reduces inter-VM isolation.

From a compatibility perspective, TPT’s KVM-based de-

sign is non-disruptive and allows gradual adoption: TPT’s

hypervisor supports both TPT and non-TPT guests, and TPT

guests can run on non-TPT hypervisors (without TPT’s ben-

efits). TPT supports full hardware-based virtualization, and

provides a modular and adaptable implementation.

5.2 Impact of TPT on kernel-mode

Our guest OS prototype uses TPT page tables during user-

mode execution only. This is because Linux kernel-mode

accesses have very small translation overheads: it maps all

kernel memory using 1 GiB pages [28], making TPT’s bene-

fits in kernel mode marginal. In addition, kernel-mode TPT

support would be more complex and intrusive: e.g., kernel

mode has a linear map for the entire physical address space,

and handles physical addresses, such as DMA and contiguous

memory allocator (CMA), making the addition of two physi-

cal addressing modes (GPA and HPA) more cumbersome. We

leave the exploration of kernel-mode TPT to future work.

We quantify the potential impact of kernel-mode support

for TPT by measuring the performance of randomly accessing

100 GiB of memory in kernel-mode. We compare shadow

paging (with direct GVA-to-HPA translations) and nested

paging (with 1 GiB guest kernel pages) and confirm that TPT

would provide limited benefits: nested is only 9% and 3%

slower than shadow paging when using typical 4 KiB and

2 MiB host pages, respectively, whereas we see overheads of

1.5×–2.5× with the same random access pattern in a user-

space application (which does not use 1 GiB pages).

USENIX Association 2023 USENIX Annual Technical Conference    759



5.3 Impact of TPT on memory de-duplication

By using a single, per-VM tag, TPT cannot support memory

de-duplication across TPT processes on different VMs (e.g.,

via Linux KSM [9]). The same problem exists in AMD SEV-

SNP, but is less severe in TPT because only TPT-enabled

processes are subject to this limitation: all other processes

and kernel-mode pages can still benefit from KSM. It would

also be possible to change the hardware to assign multiple

TPT-tag values to a single VM, and use tag mismatch excep-

tions to soft-multiplex a larger number.

5.4 Host frame permission check performance

TPT uses per-VM tags to check host frame permissions, some-

thing that is inspired by AMD’s SEV-SNP [60]. TPT’s hard-

ware extensions are feasible with minor changes to AMD’s

SEV-SNP (described §4.3). Similar changes can be applied

to other existing and upcoming architectures that support effi-

cient host memory tag checks such as CHERI [72], RISC-V

with PMP [71], and Arm [10, 33].

A naive MMU implementation would perform page table

walks and host frame permission checks in sequence, issuing

up to 9 memory accesses – a 2.7× improvement over the

24 accesses of nested paging. In practice, there are several

micro-architectural optimizations to hide tag accesses and

checks: (i) partial walk caches will skip intermediate host

frame permission checks; (ii) tags can be embedded into the

data they describe to avoid accesses; (iii) tags can be cached to

reduce access times; and (iv) host frame permission accesses

and checks can be overlapped with page table traversal. More

specifically, AMD SEV-SNP embeds host frame tags into the

data they tag within the cache hierarchy (reducing the number

of accesses), and caches the tag table’s contents in the regular

cache hierarchy (reducing access latency). Note that some

MMU implementations already use the L2$ to cache page

table entries, and others have evaluated using a separate tag

cache [33]. An optimized MMU implementation would hide

permission check accesses by executing them in parallel to

page table traversal, which can continue speculatively.

5.5 Security considerations

A malicious or faulty guest in TPT could produce page tables

in which any of their levels point to an HPA not assigned to

the executing VM (defined as an “incorrect HPA” from here

on). An instruction that accesses memory through an incorrect

HPA is never committed, but speculatively executing page

table walks and permission checks in parallel could lead to

potential side-channel attacks, where the page walker logic is

used to prime cache lines not assigned to the executing VM.

Single-VM case. We can terminate any such VM that accesses

incorrect HPAs, thus avoiding data leakage within a multi-

core VM (e.g., to prime/probe cache lines separately).

Inter-VM case. Leakage could happen across colluding VMs:

one VM may use the page walker to prime a cache line based

on confidential data, and the other VM uses a prime/probe

side-channel attack based on the line primed by the first

VM [43, 78]. This is a super-set of the single-VM case above.

Such inter-VM side-channels already exist in current sys-

tems, since the micro-architectural mechanisms are the same.

We can use VM termination, together with existing mitiga-

tions to resolve them, and therefore enable aggressive host

frame permission check implementations: (1) immediate VM

termination ensures that a channel has minimal bandwidth,

and an operator can throttle VM creation when frame tag mis-

match exceptions rise; (2) integrating VM tags into the cache

hierarchy, as done by SEV-SNP, links permission checks and

cache accesses, reducing the window of vulnerability to a

single memory access (every page table walk access is tag-

checked when the cache line is loaded); and (3) existing

mitigation techniques are applicable to TPT, such as cache

partitioning [42], or controlling the flow of micro-architectural

information during speculative execution [36, 76].

Note that the guest address map exposes HPAs set by the

hypervisor in response to memory usage of all VMs. This

could be used as a side or covert channel between VMs, but

the same is valid for memory ballooning or guest physical

memory paging. The same, existing mitigations should be

applied in all three cases, such as event frequency modulation.

6 Evaluation
Our evaluation demonstrates the performance gains of TPT

over traditional virtualization mechanisms. To evaluate our

TPT prototype, we conduct a functional emulation of its hard-

ware capabilities on a commodity x86–64 machine, and as-

sume that VMs only map and access their assigned pages.

Our evaluation platform cannot enforce frame tag checks

in hardware, and we instead model the performance impact

of the frame tag check hardware for two extreme points in

the micro-architectural implementation space of the MMU

(see TPT-opt and TPT-naive below). Using this approach,

we assess the end-to-end impact of the proposed approach

on large-scale workloads, since traditional CPU simulators

would make their evaluation unfeasible. While AMD SEV-

SNP already implements frame tag checks, we were unable

to repurpose it to more directly evaluate TPT; this is because

frame tag checks are coupled with nested paging and memory

encryption, both of which introduce substantial overheads that

we could not isolate.

6.1 Experimental methodology

Testbed. We use a server with 2× Intel Xeon Silver 4216 CPU

and 512 GiB of memory (2× 256 GiB DDR4 2,933 GHz). It

has an SR-IOV capable NIC (Mellanox ConnectX-4 Lx),

which exposes dedicated virtual functions (VFs) for the host

and VMs. Intel virtualization support (VT-x) and Intel virtual-

ization for direct I/O access (VT-d) are enabled for VMs to

have direct access to their dedicated VFs (using vfio-pci
pass-through). Hyperthreading is disabled, the frequency gov-

ernor is set to “performance”, and “turbo” is disabled for
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stable results. Both VMs and hypervisor run Ubuntu 20.04

with Linux kernel 5.16. VMs are managed by QEMU with

KVM acceleration, have 16 vCPUs with 156 GiB of memory,

and each vCPU is pinned to a separate physical core.

We use NUMA node 0 to evaluate both native and vir-

tualized executions. NUMA node 1 executes client agents

(without virtualization) for workloads that require requests

over the network, which are passed to the physical NIC, and

routed via the NIC’s internal switch to the correct VF.

Hardware emulation and performance modeling. We emu-

late the proposed hardware extensions for TPT on the x86-64

platform in two ways:

(1) Host frame tag checks. Our base results execute on the

commodity machine “as-is” and assume an optimized MMU

implementation where host frame permission checks have no

performance impact (TPT-opt below). This is a reasonable

approximation as SEV-SNP has micro-architectural optimiza-

tions to hide the latency of host frame permission accesses

(see §5.4), whereas traversal and check operations can be exe-

cuted in parallel without compromising security (see §5.5).

We also model the performance of a naive MMU imple-

mentation where traversals and checks execute sequentially

(TPT-naive below), resulting in an extra memory access on

every page-walk cache miss. We obtain a conservative perfor-

mance estimate of the naive MMU implementation by placing

TPT page tables on a different NUMA node from the one with

executing cores; this effectively doubles the access latency,

from 81 ns to 161 ns, respectively, according to MLC [69]. A

similar technique was used to model larger latencies in prior

works [40,77]. This is a reasonable approximation on existing

hardware since SEV-SNP avoids tag accesses by extending

cache lines, and hides tag accesses by caching them (others

have also proposed separate caches to avoid capacity con-

flicts [33]). Note that we cannot model the added memory

bandwidth consumed by tag accesses, but other tagged sys-

tems show overheads below 2% on most applications, and as

low as 8% in the worst case [33].

(2) MMU walker logic. Current platforms lack the necessary

hardware for registers cr3 and TPT-cr3 and the additional

MMU logic we propose to manage them, as shown in Fig. 5.

We therefore emulate these extensions in software; we modify

the hypervisor to intercept cr3 operations in TPT processes,

select between cr3 or TPT-cr3, and enable EPT or TPT trans-

lation modes, respectively.

We add support in KVM for per-vCPU EPT control, and

patch the guest OS PTI [58] assembly thunks to perform the

following hypercalls when executing TPT processes:

(i) Kernel-to-user: disable EPT on the vCPU, set the guest’s

cr3 to TPT-cr3, intercept and emulate guest cr3 reads to

return the guest’s original cr3 value (sometimes performed

in exception handling during guest execution).

(ii) User-to-kernel: enable EPT on the vCPU, restore the

guest’s original cr3 value, and disable cr3 read interception.

Figure 6: Relative slowdown for different translation mech-

anisms over native 4K
4K in memory access micro-benchmark

(Lower is better.)

With a hardware implementation, the decision to use cr3
or TPT-cr3 would be performed by hardware with negligible

cost. However, our software emulation has additional over-

heads for performing the additional hypercalls (via VMCALL
and VMEXIT), which may dominate execution time on system

call- or interrupt-heavy workloads (PTI is also only enabled

for TPT).

We therefore report execution times after subtracting the

software emulation overheads (time spent on new hypercalls

performing EPT and cr3 manipulations) from the application

execution time. Note that most benchmarks do not invoke the

hypercalls during the evaluation phase, and thus we do not re-

move the emulation overhead in such cases. For experiments

that need the emulation hypercalls, such as the page table ma-

nipulation micro-benchmarks, we configure them to execute

in a single physical CPU to maintain modeling correctness.

Configurations. We evaluate TPT’s performance against the

following system configurations:

(a) Native: Native execution, which serves as our ideal, upper

bound on performance.

(b) Shadow: VM with shadow paging.

(c) EPT: VM with nested paging using Intel’s extended page

tables (EPT) mechanism.

(d) TPT-opt: VM with an optimized TPT implementation.

(e) TPT-naive: VM with a naive TPT implementation.

We evaluate each of the configurations under differ-

ent host/guest page sizes: (1) 4K
4K : guest OS uses base

pages (4 KiB), and host backs VM with base pages (4 KiB);

(2) 4K
2M : guest OS uses base pages (4 KiB) and host backs

VM with huge pages (2 MiB); and (3) 2M
2M : guest uses huge

pages (2 MiB) by enabling transparent huge pages (THP), and

host backs VM with huge pages (2 MiB).

6.2 Memory translation

We create a single-thread memory micro-benchmark to assess

TPT’s impact on memory performance under different scenar-

ios. Our benchmark allocates a 100 GiB buffer to serve as the

target for memory read operations at a 64-bit granularity.

First, we evaluate the performance of sequential and ran-
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Shadow EPT TPT-opt TPT-naive

18.8× 5× 6.68× 6.68×

Table 2: Relative slowdown for different translation mecha-

nisms over native 4K
4K when manipulating the guest page table

using mprotect (Lower is better.)

dom memory accesses. Fig. 6 shows the relative slowdown

of the evaluated system configurations over the native exe-

cution time. TPT-opt’s performance matches that of Native,

regardless of the memory page size, under both sequential and

random access patterns. This is expected, as TPT-opt elimi-

nates all virtualization-induced memory translation overheads

due to its use of direct GVA-to-HPA page tables.

We also observe that EPT has the worst performance under

the random access pattern due to its two-dimensional page

walk on each TLB miss. Huge pages reduce, but do not elimi-

nate the overhead of EPT, as the page walk is shortened due

to the smaller size of the two-dimensional page walk [47].

TPT-naive only underperforms in random memory ac-

cesses under the 4K
4K configuration, where it exhibits a 1.25×

relative slowdown over TPT-opt and Native. This is the result

of the longer page walk duration on TLB misses, but it is still

2× faster than EPT under the same configuration.

Shadow exhibits a slowdown of 1.41× and 1.25× over Na-

tive for sequential and random memory accesses, respectively.

The overheads stem from the extra time spent in the hyper-

visor due to page faults, which cause expensive VMEXITs.

Although the guest OS page tables are populated, the shadow

page tables are maintained by the host and updated lazily and

on-demand: accesses to newly-mapped pages incur a page

fault that is handled by the hypervisor, which in turn updates

the shadow page tables and resumes guest execution.

Conclusions: TPT-opt exhibits native performance, outper-

forming both Shadow and EPT.

6.3 Page table management overheads

Raw page table manipulation. We evaluate the performance

of page table modification under all configurations, as each

incurs overheads from different sources. We measure the time

taken to downgrade a single page from read-write to read-only

via the mprotect system call.

Table 2 shows the results, normalized to Native execution.

Shadow exhibits a slowdown of more than 18× over Native,

as downgrading permissions in the page tables require TLB

invalidations that are trapped by the host to amend the shadow

page tables. EPT does not require interventions by the host

and incurs a slowdown of 5× for a single page permission

modification. This is the result of a single TLB entry invalida-

tion in the guest (using instruction INVLPG), which invalidates

all paging-structure translation caches of the current context,

including the partial-walk caches (PWC) [8, 32, 47]. We cor-

roborate this finding by observing an increase in the number

of cycles the hardware page table walkers are active under the

Figure 7: Spawn micro-benchmark for different translation

mechanisms (Higher is better.)

Workload Description RSS

kcbench Kernel compilation benchmark (v4.19) [35] 1 GiB

XSBench Monte Carlo neutron transport algorithm [65] 99 GiB

Canneal Optimization for chip design (PARSEC [20]) 109 GiB

GUPS Random integer updates in memory (HPCC [44]) 129 GiB

PR Page Rank (GAPBS [17]) on kron graph2 72 GiB

BFS BFS Algorithm (GAPBS) on kron graph 70 GiB

CC CC Algorithm (GAPBS) on kron graph 70 GiB

Memcached Facebook ETC [11] (3×108 keys; mut. client [39]) 108 GiB

Table 3: Application workloads and memory footprint

EPT configuration over Native (not shown).

TPT-opt exhibits a small overhead over EPT due to the ad-

ditional operations to keep dual page tables in sync. Note that

TPT-opt is also subject to the same cache invalidation over-

heads triggered by INVLPG, and TPT-naive has no additional

overheads because page table contents are always accessed

via non-TPT page tables in kernel space.

We perform the same experiment to measure the perfor-

mance of mapping anonymous memory, by evaluating the

mmap system call with the MAP_POPULATE flag. We do not ob-

serve a performance difference between the configurations, as

the majority of time is spent on physical memory allocations

and zeroing page contents.

TPT’s extra logic to manipulate dual page tables has a

small performance impact, and does not affect the end-to-end

results on our evaluated applications (see §6.4). Such low

overheads to synchronize modifications across page tables

are corroborated by prior work [3, 53].

Process spawning. We evaluate the performance of Spawn

from the Unixbench benchmark suite [67]. Spawn is a

fork/wait-type workload, which measures the number of times

a process can fork and reap a child that immediately exits.

Fig. 7 shows that EPT, TPT-opt, and TPT-naive are sub-

jected to the adverse effects of PWC flushes as the fork
system call performs TLB invalidations. The additional oper-

ations in TPT (maintaining dual page tables) lead to a 1.06×
slowdown over EPT. In comparison, shadow incurs a 5.18×
slowdown over EPT due to VMEXITs induced by TLB invali-

dation and page faults.

2Kron graph [38] scale: 229, average degree: 16
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Figure 8: Relative slowdown on applications benchmarks over native 4K
4K (Lower is better.)

Figure 9: Memcached throughput-latency for different trans-

lation mechanisms (Lower is better.)

Conclusions: TPT enables substantially faster page table ma-

nipulations compared to Shadow by eliminating VMEXITs. It

exhibits higher page table manipulation costs over EPT and

native, but they have negligible impact on end-to-end applica-

tion performance, as shown in §6.4.

6.4 Application benchmarks

We evaluate TPT on the application benchmarks listed in Ta-

ble 3, which are commonly used to evaluate of data centers

workloads [27, 53]. All benchmarks, apart from Memcached

and kcbench, execute with 8 threads. We execute Memcached

with a single thread because we do not have enough client

cores to saturate more server threads. For maximum perfor-

mance, Memcached uses the VMA [41] library for user-level

I/O. We evaluate kcbench with a single thread because we

need to model performance in the face of emulation hypercalls

(as explained in §6.1).

Fig. 8 shows the relative slowdown of all the evaluated con-

figurations over Native 4K
4K . TPT-opt matches the performance

of Native for all workloads, under all page size configurations.

EPT exhibits significant slowdowns in workloads with ran-

dom memory accesses, such as GUPS and PR. Overheads

for Shadow are apparent in workloads that perform memory

mappings, such as process spawning (kcbench), and dynamic

memory allocation with page table modifications (CC and

GUPS). TPT-naive exhibits a slowdown only on GUPS with

the 4K
4K configuration, of 1.25×. GUPS is a random mem-

ory access benchmark, which correlates with our previous

results for the random access micro-benchmark in Fig. 6. The

geometric mean of the slowdown for TPT-naive is of just 3%.

Huge pages reduce the virtualization overheads of both

EPT and Shadow, as well as improve the performance of Na-

tive execution, because they reduce TLB misses and page

walk costs. Huge pages substantially decrease overheads in

EPT as they reduce the number of steps on each dimension of

the walk. EPT, however, still exhibits noticeable slowdowns

with huge pages over TPT-opt and Native. Shadow’s over-

heads with huge pages decrease, as 2 MiB mappings, com-

pared to 4 KiB ones, induce less VMEXITs to sync the shadow

page tables with the guest’s page table mappings.

Memcached. We single out the Memcached benchmark, be-

cause it is latency-sensitive. Fig. 9 shows the throughput-

latency graph of the 99th percentile of Memcached serving

Facebook’s ETC requests, with an SLA of 500 μs (following

previous work [18]). Although the ETC access distribution is

skewed, the keys are small in size and randomly distributed.

This affects the overall access distribution of the workload,

which exhibits a random memory access pattern.

EPT performs the worst due to the random memory ac-

cesses. Shadow, Native, and TPT-opt perform similarly in

both page size configurations. This is expected because no

new memory allocations occur during the measured portion of

the workload. TPT-naive under the 4K
4K configuration crosses

the SLA with 4% lower throughput than TPT-opt. The mean

latency exhibits the same behavior as the 99th percentile, al-

though the knee of the curves occurs at a higher throughput.

Conclusions: The performance of TPT matches Native, and

systematically outperforms Shadow and EPT on all bench-

marks where page table management or memory access per-

formance dominates, respectively, even with huge pages.

6.5 Impact of 1 GiB huge pages

We now evaluate the same applications in §6.4 with EPT 2M
1G ,

using 1 GiB host pages (typically unfeasible in a production

system). The applications in Fig. 8 with 1 GiB pages only

show a 2.5% speedup (geometric mean) compared to our

previous EPT 2M
2M results, which would correspond to a 1.16×

slowdown over Native and TPT-opt. In turn, Memcached’s

throughput only increases by 2.5% with 1 GiB pages, which

USENIX Association 2023 USENIX Annual Technical Conference    763



corresponds to a 1.04× slowdown over TPT-opt and Native.

Conclusions: Unlike TPT, 1GiB huge pages do not eliminate

nested paging overheads completely.

6.6 Memory overheads

Guest. Non-TPT processes have no memory overheads, but

TPT processes incur a small overhead to hold the TPT page

tables. The TPT page tables only map the user space pages

of the process and do not map the entire system memory and

kernel space. A process with a sequential memory mapping of

n pages incurs an additional (1−� page_size
2MiB �) · � n

236 �+� n
227 �+

� n
218 �+ � n

29 �. For example, a mapping of 1 GiB with 4 KiB

pages incurs an extra 2 MiB-worth of TPT page tables.

Host. TPT’s guest address map requires 8 B of host memory

per GFN to hold the HFN. Therefore, a 64 GiB VM consumes

256 KiB or 128 MiB of host memory if the host utilizes 2 MiB

or 4 KiB pages respectively (less than 0.2% in both cases).

Conclusions: TPT only adds small memory overheads in

guests and hosts, making it practical for adoption.

7 Related Work
Prior work either attempts to improve existing virtualization

mechanisms [27, 31, 46, 50, 53, 70], thus inheriting their short-

comings, or introduces invasive hardware changes, potentially

changing the behavior of VMs compared to native execu-

tion [5–7, 15, 19, 23, 45, 55, 62].

Hardware-based virtualization. DVMT [6] proposes a soft-

ware MMU architecture where applications/VMs can use their

own address translation structures. DVMT also uses tag-based

frame protection for isolation, but retains a two-dimensional

translation approach in VMs, albeit with customizable trans-

lation structures on each dimension.

Sha et al. [19] propose new paging schemes for processors

with software MMUs. The schemes reduce the page walk cost

in nested paging by incorporating flat nested page table [5],

or reduce the cost of updating guest page tables in shadow

paging by intercepting TLB flushes. However, it introduces

a software MMU and constraints to guest physical address

space size, making it difficult to apply to modern machines

and large memory sizes, respectively.

Several studies propose to redesign paging structures. Com-

promis [23] uses direct segments, but requires the reservation

of variable-length physical memory areas for segments, which

significantly compromises the flexibility of memory manage-

ment in hypervisors. Chang et al. [55] propose to flatten 2

levels of page tables to reduce the cost of page walks by half.

This approach increases the cost and complexity of managing

page tables, and its cost reduction is limited. Nested Elastic

Cuckoo Page Tables [62] utilize hashed page tables to reduce

the nested page walk cost. However, replacing the existing

radix page tables with hashed page tables requires significant

changes to existing software and hardware ecosystems.

Caching and prefetching are also effective at hiding trans-

lation latency. Thomas et al. [15] explored new MMU caches,

including today’s partial walk caches in AMD and Intel pro-

cessors. ASAP [45] reduces address translation latency by

storing multiple page tables contiguously and introducing a

hardware prefetcher for page walks. Caching does not fully

eliminate the memory translation costs, and prefetching can

result in mispredictions and numerous memory accesses to

the page table when accessing large virtual memory areas.

MMU caches and prefetching are directly applicable to TPT.

Improving virtualization. Agile paging [27] combines

shadow and nested paging to reduce the hypervisor inter-

vention cost on page table updates. It requires more memory

accesses per TLB miss than native machines and TPT.

On-demand virtualization [31] enables virtualization dy-

namically to migrating bare-metal machines, and disables

virtualization after the migration. This approach only applies

to bare-metal machine migration, and cannot be generalized:

it does not support more than a single VM in a bare-metal

machine, and cannot enforce isolation between the VM and

the hypervisor, because it relies on identity mappings (1:1)

for nested translation between the VM and the hypervisor.

8 Conclusions
TPT is a new approach to memory virtualization, which

achieves near-native translation performance for memory-

intensive applications in VMs. In TPT, VMs regain control

over their translation structures, while maintaining memory

isolation across VMs by leveraging emerging physical mem-

ory protection technologies. TPT is compatible with both

TPT and non-TPT guests, and can be selectively applied to

processes running within any TPT-aware VM.
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