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Abstract
Distributed systems for the training of deep neural net-
works (DNNs) with large amounts of data have vastly im-
proved the accuracy of machine learning models for image
and speech recognition. DNN systems scale to large clus-
ter deployments by having worker nodes train many model
replicas in parallel; to ensure model convergence, parame-
ter servers periodically synchronise the replicas. This raises
the challenge of how to split resources between workers and
parameter servers so that the cluster CPU and network re-
sources are fully utilised without introducing bottlenecks. In
practice, this requires manual tuning for each model config-
uration or hardware type.

We describe Ako, a decentralised dataflow-based DNN
system without parameter servers that is designed to satu-
rate cluster resources. All nodes execute workers that fully
use the CPU resources to update model replicas. To syn-
chronise replicas as often as possible subject to the available
network bandwidth, workers exchange partitioned gradient
updates directly with each other. The number of partitions
is chosen so that the used network bandwidth remains con-
stant, independently of cluster size. Since workers eventu-
ally receive all gradient partitions after several rounds, con-
vergence is unaffected. For the ImageNet benchmark on a
64-node cluster, Ako does not require any resource alloca-
tion decisions, yet converges faster than deployments with
parameter servers.

Categories and Subject Descriptors C.2.4 [Distributed
Systems]: Distributed applications; D.4.7 [Organization
and Design]: Batch processing systems, Distributed systems

Keywords Deep Learning, Distributed Machine Learning,
Decentralised Architecture
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1. Introduction
Deep neural networks (DNNs) [18, 22] have revolutionised
the accuracy of machine learning models in many areas,
including image classification [10, 20], speech recogni-
tion [17] and text understanding [6, 34]. This breakthrough
was made possible by scalable distributed systems [5, 12,
24, 27, 35] that train DNNs in parallel on compute clusters,
incorporating large volumes of training data in a manageable
amount of time.

A common architecture for DNN systems takes advan-
tage of data-parallelism [3, 28]: a set of worker nodes train
model replicas on partitions of the input data in parallel; the
model replicas are kept synchronised by a set of parame-
ter servers—each server maintains a global partition of the
trained model. Periodically workers upload their latest up-
dates to the parameter servers, which aggregate them and
return an updated global model.

While initial synchronisation strategies were synchro-
nous [40], potentially limiting scalability due to straggling
workers [7], the latest generation of DNN systems, such as
Parameter Server [24], Project Adam [5], Singa [27] and
Bösen [44], employs weaker consistency models between
replicas: model replicas are exchanged asynchronously with
parameter servers, while imposing an upper bound on diver-
gence (“bounded staleness”) [2, 19, 26, 49].

An open problem, which we explore experimentally
in §2.3, is that DNN systems must balance the use of com-
pute and network resources to achieve the fastest model con-
vergence. In a typical deployment, the workers are compute-
bound, and the parameter servers are network-bound [5]:
if a deployment has too few parameter servers, the model
may not converge or only converge slowly because model
replicas are not synchronised frequently enough due to the
limited network bandwidth between workers and parame-
ter servers; with too many parameter servers, compute re-
sources, which could rather be used for additional model
replicas, are wasted, leading to slower convergence.

An optimal resource allocation for workers and param-
eter servers depends on many factors, including (i) the ca-
pabilities of the node hardware, (ii) the available network
bandwidth, (iii) the size and model complexity, and (iv) the
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properties of the training data. In practice, users must de-
cide on a resource allocation empirically for a given de-
ployment, often resorting to a trial-and-error approach [47].
While such tuning may be feasible for large Internet com-
panies with resource-rich and bespoke DNN systems [1, 5,
12, 45], it remains time-consuming and cumbersome. Re-
cent work [47] models the performance of DNN systems
offline, but suffers from poor accuracy. Co-locating work-
ers and parameter servers [44] is also not a solution because
it allocates resources without awareness of the performance
impact (see §2.3).

Our goal is to design a DNN system that always utilises
the full CPU resources and network bandwidth of a cluster.
To avoid having to split resources between workers and
parameter servers, we devise an architecture that does not
have parameter servers but only homogenous workers.

The challenge is that such a decentralised DNN sys-
tem must still (i) be scalable in terms of its network us-
age for model synchronisation and (ii) be efficient with a
fast convergence time, i.e. comparable to designs with pa-
rameter servers. In particular, all-to-all synchronisation of
model replicas between workers does not scale due to its
quadratic communication cost [23, 50]. Prior work [23, 41]
proposed indirect synchronisation topologies in which traf-
fic is relayed by workers, but this impacts convergence time
due to the higher latency [41].

We describe Ako,1 a decentralised DNN system in which
homogeneous workers train model replicas and synchronise
directly with each other in a peer-to-peer fashion. Despite
not having parameter servers, Ako does not sacrifice scala-
bility or efficiency due to two features:
Scalable decentralised synchronisation (§3). Ako adopts
a new approach to synchronise model replicas termed par-
tial gradient exchange: each worker periodically computes
an updated model gradient, partitions the gradient accord-
ing to the available network bandwidth, and exchanges the
partitions with other workers. Since a worker receives a dif-
ferent gradient partition from other workers in each synchro-
nisation round, partial gradient exchange can maintain con-
vergence as workers eventually receive the complete model
gradient with bounded delay.
Decoupled CPU and network use (§4). An Ako worker de-
couples its use of CPU resources for model training from the
use of network bandwidth for replica synchronisation: paral-
lel compute tasks train the model replica as fast as possible,
generating model gradient updates. Gradient updates are ac-
cumulated asynchronously by separate network tasks when
awaiting transmission. Before transmission, the accumulated
model gradients are partitioned so that synchronisation traf-
fic fully saturates the network bandwidth while maintaining
a constant latency.

1 “to learn” in the Maori language

In §5, we evaluate a prototype version of Ako imple-
mented using the SEEP stateful distributed dataflow plat-
form [14]. For the ImageNet benchmark, we show that Ako,
without requiring any resource configuration on the cluster,
exhibits a 25% lower time-to-convergence than a hand-tuned
deployment with parameter servers. It also results in bet-
ter model convergence in comparison to TensorFlow [1] and
Singa [27]. Ako achieves this by having a higher hardware
efficiency through the full utilisation of cluster resources,
thus compensating for its lower statistical efficiency due to
only exchanging partial gradients.

2. Resource Allocation in DNN Systems
Next we describe the process for training DNNs (§2.1) and
how it can be parallelised with a parameter server architec-
ture (§2.2). We then show empirically how deploying such a
system on a compute cluster is challenging: to reduce the
training time, it is necessary to find the right assignment
of CPU and network resources to workers and parameter
servers (§2.3).

2.1 A primer on deep learning
Deep neural networks (DNNs) achieve the highest accuracy
among machine learning models for pattern recognition and
classification problems [20, 35], but they are computation-
ally expensive to train. DNNs feature multiple levels of rep-
resentation, through the composition of non-linear simple
modules, and thus can express higher-level, abstract con-
cepts. A DNN is represented as a set of neurons organised in
layers, whose outputs are used as input for successive layers.
It typically has one input and one output layer with multiple
intermediate hidden layers.

The function calculated by each neuron based on an in-
put x can be expressed as:

o j(x) = ϕ (
k

∑
i=1

w ji ⋅ xi +b) (1)

where x is the input vector of size k to the neuron, w j is
the set of input weights for the neuron representing a given
problem-specific feature, b is a bias parameter, and ϕ is an
activation function.

The goal of training a DNN is to find the weights w ji
for all the neurons that produce the correct response for a
given set of data points. For simplicity, we will refer to all
the weights in the DNN as w. For complex problems, the size
of w is on the order of millions [5, 8, 12].

DNNs are trained using several epochs, i.e. doing multi-
ple passes over the data. Typically, the weights w are com-
puted by the backpropagation algorithm with gradient de-
scent [30], which updates w iteratively:

wt+1 = wt −η ⋅ ∇F(w) (2)

where wt are the current weights in iteration t, η is the
learning rate and ∇F(w) are the calculated gradients over a
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Figure 1: DNN architecture with parameter servers

cost function, generally the error. For the remainder of the
paper, we will refer to ∇F(w) just as the gradients g. To
compute the gradients, forward propagation first obtains the
output layer activations, whose error towards the real output
is used then for the backward propagation.

For gradient descent, there are several possibilities when
the weight updates can be applied. In stochastic learning,
each propagation of a data point is followed immediately by
a weight update. For efficiency, a common technique is to
use mini-batches, i.e. use stochastic learning with more than
one data point at a time.

2.2 DNN systems with parameter servers
DNNs with high accuracy require millions of features, or-
ganised into tens of layers, and they must be trained by iter-
ating repeatedly over gigabytes or terabytes of data [5, 35].
To have an acceptable time-to-convergence, i.e. the training
time required to reach a given accuracy, they must execute
on compute clusters, ranging from tens to thousands of ma-
chines [5, 12, 35].

A scalable approach for training DNNs is to use a param-
eter server architecture [24], as shown in Fig. 1. The training
data is split across worker nodes. Each worker calculates the
gradients g in parallel over its data partition, and refines a
model replica, i.e. its own weights w, according to the back-
propagation algorithm (step 1). In this example, the model
at worker j contains two weight parameters, w j,1 and w j,2,
whose gradients are represented as g j,1 and g j,2, respectively.

After a mini-batch is processed, a worker only has a
model w that is updated with its own gradient from the local
data. To obtain a global model of all data, W , the workers
synchronise their models through parameter servers. The
parameter servers update the global model W by aggregat-
ing the local gradients g (step 2), and return a new global
model W to the workers (step 3). To prevent the communi-
cation from becoming a bottleneck, each parameter server is
responsible for a disjoint part of the model Wn, only manag-
ing the weights of the corresponding layers and/or neurons.

Previous research has shown that the global model can be
updated asynchronously—with each worker synchronising
independently—and still converge [5, 12]. To avoid diver-
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Figure 2: Accuracy for different worker/parameter server
allocations in cluster

gence between workers, systems include staleness thresh-
olds, i.e. an upper bound on how many model updates can
be missed by a worker [2, 19, 26, 49].

In a distributed setting, a DNN system must therefore op-
timise two different performance aspects to reach the fastest
time-to-convergence. It must achieve:
(i) high hardware efficiency, which is the time to complete
a single iteration. With more workers, a system increases
parallelism and thus reduces iteration time; and
(ii) high statistical efficiency, which is the improvement in
the model per iteration. For this, workers must synchronise
their model replicas as often as possible to maximise global
information gain. Since the synchronisation frequency is
limited by the available network bandwidth, DNN systems
scale out via multiple parameter servers to improve statisti-
cal efficiency.

There is a trade-off between hardware efficiency and sta-
tistical efficiency when allocating resources for workers and
parameter servers in a fixed-sized compute cluster: assigning
more machines to workers improves hardware efficiency, but
it reduces statistical efficiency unless more parameter servers
are added; conversely, more parameter servers increase the
network bandwidth for model synchronisation. This permits
more frequent model updates, thus improving statistical effi-
ciency, but if the parameter servers take resources away from
the workers, hardware efficiency is reduced.

In practice, modern distributed deep learning systems [1,
4, 5, 27] require such decisions on resource allocation [47].
For a given resource budget, typically the majority of ma-
chines execute as workers while the rest form a group of dis-
tributed parameter servers, together maintaining the global
model. For example, TensorFlow [1] supports a typical re-
source split resulting in several worker machines that syn-
chronise with the centralised group of parameter servers;
Singa [27, 42, 43] supports even more advanced cluster con-
figurations with multiple parameter server groups.

2.3 Resource allocation problem
An optimal resource allocation for workers and parameter
servers should result in the fastest time-to-convergence. Next
we show experimentally that the best allocation depends
on many factors, including the cluster size, the hardware
capabilities, and the training data.
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Figure 3: Effect of system and workload changes on best resource allocation

We deploy a DNN system with parameter servers on a
64-machine cluster, training a model for the ImageNet bench-
mark (see §5.1 for details). Fig. 2 shows the accuracy after
one hour of training for different resource allocations be-
tween workers and parameter servers on the cluster. The
result shows that the best accuracy is achieved for an allo-
cation of 48 workers and 16 parameter servers. Note that
the extreme allocations that emphasise hardware efficiency
(60 workers) or statistical efficiency (20 servers) both ex-
hibit a 38.9% and 14.5% worse accuracy, respectively, than
the best allocation.
Cluster size. The ratio of the optimal allocation between
workers and parameter servers changes with different cluster
sizes. Fig. 3(a) shows the accuracy for three allocation ratios
(3:1, 4:1 and 8:1) as the cluster size changes. While a 8:1
ratio (i.e. 2 parameter servers) yields the best accuracy for a
16-machine deployment, this is not the case when the cluster
size increases: with a 32-machine or 64-machine cluster, a
ratio of 4:1 achieves the best accuracy for this workload.
Hardware. The best allocation also depends on the machine
hardware. In Fig. 3(b), we show the accuracy of the Ima-

geNet DNN model for two different hardware configurations
(“m4.xlarge” and “c4.2xlarge” VMs) on a 64-machine Ama-
zon EC2 deployment. For the slower “m4.xlarge” VMs, an
allocation of 16 parameter servers gives the highest accuracy
of 20%, but, with the faster “c4.2xlarge” VMs, 18 parameter
servers achieve 25%.
Workload. In practice, input data changes, e.g. when new
types of training data become available, which also af-
fects the optimal allocation. Next, we vary the training
data for the ImageNet benchmark between low-resolution
(100×100 pixel) and high-resolution (200×200 pixel) im-
ages. Fig. 3(c) shows that the low-resolution images achieve
the highest accuracy with 48 workers and 16 parameter
servers. This, however, turns out to be the worst alloca-
tion for the high-resolution images, which perform best with
60 workers and only 4 servers.
Co-located deployment. A heuristic is to colocate each
worker with a parameter server on the same machine [44].
Such an approach, however, does not solve the problem: as
we show in §5.2, it exhibits worse convergence due to the
large number of global model partitions. In addition, it still
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Figure 4: Effect of memory allocation with co-location

requires a decision on how to share the resources on each
machine: besides allocating CPU threads, the memory of the
machine must be shared.

Fig. 4 shows the accuracy achieved on a co-located 32-
machine deployment after one hour of training with different
memory allocations between the workers and the parameter
servers. While each machine has 16 GB of RAM, an alloca-
tion of 3 GB for the parameter server and 12 GB to the work-
ers results in the highest accuracy (31%); an equal memory
split achieves the worst accuracy of 25%.

3. Partial Gradient Exchange
Instead of using parameter servers to synchronise the model
updates produced by workers, we adopt a decentralised syn-
chronisation scheme in which workers communicate directly
with each other, without intermediate nodes. This avoids the
challenge of having to decide on a resource split between
workers and parameter servers.

A strawman solution for decentralised synchronisation is
to use all-to-all communication between the workers, but
this does not scale: n workers would require O(n2) network
bandwidth for the synchronisation, but worker bandwidth
only grows linearly with cluster size, O(n).

To reduce the bandwidth requirement of decentralised
synchronisation, workers could propagate model updates in-
directly, i.e. with some workers relaying updates [41]. Such
an approach, however, degrades statistical efficiency because
it suffers from higher synchronisation latency, and it requires
typically additional all-to-all full model exchanges [23].

We thus want to design a new decentralised synchroni-
sation approach that (i) scales near linearly with the clus-
ter size, and (ii) also exhibits high statistical efficiency that
matches current parameter-server-based approaches.
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Figure 5: Decentralised DNN architecture with partial gra-
dient exchange

3.1 Partial gradient exchange algorithm
We describe a new approach called partial gradient ex-
change that reduces the communication cost of gradient
synchronisation. In partial gradient exchange, workers cre-
ate disjoint partitions of the full gradient update. In a sin-
gle round, a worker sends only one partition to each other
worker, with the remaining partitions transmitted in subse-
quent rounds. While gradient partitions await transmission,
workers update them locally as new gradients become avail-
able, which ensures that model updates are propagated with
low latency.

Partial gradient exchange can thus control the network
usage based on the size of the gradient partitions, while still
maintaining high statistical efficiency without centralised
parameter servers.
Gradient partitioning. Fig. 5 illustrates the synchronisation
procedure with partial gradient exchange. In step 1, each
worker j processes the m data points in its mini-batch and
creates a local gradient g j. Each worker then accumulates the
gradient with any previously-unsent local gradients g∗j (see
below), and partitions it into p disjoint gradient partitions,
(g∗j,1, . . . ,g

∗
j,p) where, in this example, p is equal to 2.

Each gradient partition, g∗j,i, i ∈ [1 . . . p], is sent to other
workers in a round-robin fashion (step 2). If p is equal to the
number of workers, each worker receives a different gradient
partition; if p is smaller, multiple workers receive the same
partition; and if p is larger, only a subset of all partitions is
exchanged in a single round.

Since all workers perform the partial gradient exchange
concurrently, the other workers also share their gradient par-
titions (step 3). The received gradient partitions are applied
to the local model w j by updating the weights. We refer to
the above three steps as a synchronisation round.
Gradient accumulation. A single synchronisation round
does not send the complete gradient for a mini-batch to all
workers. Instead, it takes p synchronisation rounds to trans-
fer the complete gradient at time t. To avoid discarding un-
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Figure 6: Accumulation of gradient partitions

sent gradients while new gradients are calculated continu-
ously, gradient partitions are accumulated across synchro-
nisation rounds. By doing this, workers eventually receive
complete gradient information from others after some delay.

Fig. 6 shows how gradients are accumulated. At time t,
each worker j computes its local gradient tg j, which is parti-
tioned. The worker checks if there are previously-generated
gradients, and as there are none, each partition is sent di-
rectly to the other workers.

In the next synchronisation round t+1, each worker pro-
duces a new gradient (t+1)g j. Since there exist previous gra-
dients tg j, they are accumulated through addition, (t+1)g∗j =
tg j +

(t+1)g j, before being partitioned and sent to the other
workers. After this synchronisation round, the gradients tg j
computed at time t have been transmitted to the other work-
ers, thus completing the t mini-batch.

In the following synchronisation rounds, the process is
analogous, limiting the accumulation to the last p generated
gradients to avoid the transmission of already-sent gradients.
This can be seen in Fig. 6 for the synchronisation round t+2,
in which only the last p=2 generated gradients, (t+1)g j and
(t+2)g j, are accumulated.

Since the communication is asynchronous, accumulated
gradient partitions may not be received in their expected
synchronisation rounds. Although this introduces staleness
in the local model, it does not compromise convergence, as
we explain in §3.3.
Algorithm. We formalise partial gradient exchange in Alg. 1.
Each worker executes two functions, generateGradients and
updatePartialModel, asynchronously.

The generateGradients function computes the local gra-
dient tg j from the training data d and the local weights tw j
(line 4). It then updates the local weights (line 5) and ac-
cumulates the last p-generated gradients in an incremen-
tal fashion (line 6). After that, a worker creates (line 7)
and disseminates (line 10) the gradient partitions to the
other workers. This process is repeated until convergence
is reached (line 2): the procedure is stopped when the val-
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Algorithm 1: Partial gradient exchange

1 function generateGradients ( j, d, t, η , τ)
input : worker index j, mini-batch data points d,

gradient computation timestamp t, learning
rate η , staleness bound τ

2 while ¬converged do
3 if c j ≤ min (s j,1, . . . ,s j,n)+ p+ τ then
4

tg j ← computeGradient (tw j,d)
5

(t+1)w j ←
tw j + η ⋅ tg j

6
tg∗j ←

(t−1)g∗j +
tg j −

(t−p)g j

7 (tg∗j,1, . . . ,
tg∗j,p) ← partitionGrad (tg∗j , p)

8 for i = 1 . . .n in parallel do
9 k ← i mod p

10 sendGradient (i, tg∗j,k)
11 c j ← c j + 1

12 function updatePartialModel ( j, i, g j,p, η)
input : receiver worker index j, origin worker index i,

gradient partition g j,p, learning rate η

13 w j,p ← w j,p + η ⋅g j,p
14 s j,i ← s j,i + 1

idation accuracy has not improved after a fixed number of
evaluation rounds.

The updatePartialModel function is executed when an
accumulated gradient partition is received by a worker. It
updates the local model w j,p asynchronously (line 13).

3.2 Number of gradient partitions
The number of gradient partitions p impacts the statistical
efficiency of partial gradient exchange. There is a trade-off:
when p is small, a worker exchanges large gradient parti-
tions, synchronising local models more quickly but requir-
ing more network bandwidth; when p is large, a worker uses
less bandwidth but requires more synchronisation rounds to
receive a full mini-batch gradient update.

The best choice of p therefore depends on the available
network bandwidth, and workers can use a cost model to
select p when training begins: let m be the local model size,
and n the number of workers, the amount of data to send the
full gradient update to all workers is m(n−1). With partial
gradient exchange, the amount becomes m

p (n−1) as only one
partition is sent to each worker.

Assuming a rate γ at which workers compute new gradi-
ent partitions, which is profiled during system start-up, par-
tial gradient exchange requires a bandwidth usage of γ m (n−1)

p
to be sustainable, i.e. have a constant transmission delay.
Given an available bandwidth B at each worker (e.g. 1 Gbps),
and assuming full-bisection bandwidth, the workers thus se-
lect the partition number p as:

p = ⌈γ m (n−1)
B

⌉ (3)

3.3 Bounding staleness
The gradients computed by each worker may use weights
from previous mini-batches, which introduces staleness [39].
This staleness has two sources: (i) a simple delay due to
the asynchronous updates to the local models [3] because a
worker computes new gradients without receiving updates
from all the other workers; and (ii) a distributed aggregated
delay [2] because a worker only completes a mini-batch af-
ter it has received all p gradient partitions, requiring multiple
synchronisation rounds.

To guarantee convergence, partial gradient exchange thus
imposes a staleness bound, analogous to the stale syn-
chronous parallel (SSP) model [7]: it limits the generation of
new local gradients when a worker has advanced in the com-
putation further than τ compared to all other workers (line 3
in Alg. 1). To do so, each worker j maintains multiple stale-
ness clocks s j,n, one for each other worker n, and a local stal-
eness clock c j. The local clock is incremented after each pro-
duced gradient (line 11); the other workers’ staleness clocks
are incremented when partial updates are received (line 14).

As there is no global model state in partial gradient ex-
change, for workers to check the staleness bound and iden-
tify the least progressed worker, they must maintain the
clock information of other worker to compute the clock dif-
ferential. The staleness bound check also depends on the
number of partitions p because p synchronisation rounds
are necessary to fully propagate a model. Therefore the used
staleness bound is p+ τ (line 3). Since updates are incorpo-
rated into the local model as soon as they are available, par-
tial gradient exchange reduces empirical staleness, similar to
the eager stale synchronous parallel model [11], leading to
faster convergence.

4. Ako Architecture
We describe the architecture and implementation of Ako,
a decentralised DNN system that uses partial gradient ex-
change for synchronisation. To combine parallelism for
model training with low communication latency for syn-
chronisation, the architecture of an Ako worker follows a
stateful distributed dataflow model [14]: as shown in Fig. 7,
execution is broken into a series of short, data-parallel tasks.
Tasks can update in-memory state and exchange data with
each other, and also over the network.

We first summarise Ako’s design goals (§4.1) and then
give implementation details (§4.2).

4.1 Design goals

(1) Full utilisation of CPU and network resources. We
want each worker to fully utilise all CPU cores for train-
ing the local model (for highest hardware efficiency), while
also saturating the available network bandwidth for synchro-
nisation (for highest statistical efficiency). Fig. 7 shows how
workers decouple compute tasks that train the local model
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from network tasks that exchange gradients, thus utilising
all resources.
(2) Low model contention. Both compute and network
tasks must access the local model without contention. Work-
ers represent the model as a list of matrices, each corre-
sponding to a layer. Tasks can therefore modify distinct
components independently.
(3) Low-latency synchronisation. Since the statistical ef-
ficiency depends on the latency of the gradient exchange,
workers must exchange gradients with low delay. For this,
workers use parallel network tasks to prepare and transmit
updates as soon as they are generated.
(4) Support for complex processing pipelines. Real-world
DNN systems include multiple pre- and post-processing
steps, such as image resizing or model validation. Ako’s
dataflow-based architecture means that it is easy to extend
with custom processing tasks.

4.2 Architecture and implementation
Next we describe the implementation of an Ako worker. As
shown by the numbered steps in Fig. 7, a worker uses a pool
of compute tasks to (1) compute gradients, and a pool of
network tasks to (2) accumulate gradients, (3) partition gra-
dients, (4) send gradients to other workers, and (5) receive
gradients from other workers.
(1) Gradient computation. Compute tasks train the model
in parallel. Each compute task has exclusive access to a
partition of the input data as well as lock-free access to the
local model.

The gradients generated by different parallel compute
tasks must be aggregated at the end of a mini-batch in order
to update the local model. After aggregating its generated
gradient, a compute task checks if the mini-batch is finished,
and if so, updates the model. Note that this occurs concur-
rently with other compute tasks reading the model. While
such lock-free concurrent access leads to inconsistencies, it
does not degrade statistical efficiency significantly [29].

Workers control the staleness across all distributed model
replicas in a decentralised fashion. Each worker maintains
a staleness counter that represents the difference in the gra-
dient production of all workers: the counter is increased for
each locally-generated gradient and decreased for each par-
tial gradient update received from other workers. To control
staleness, a compute task does not generate new gradients
when its staleness counter is higher than the staleness thresh-
old τ (see §3.3).
(2) Gradient accumulation. The computed gradients at the
end of a mini-batch are accumulated by a pool of network
tasks (see §3.1). Each worker maintains (i) the accumulated
gradient from the previous round and (ii) an accumulation
queue, which stores the last p generated gradients ordered
by their creation round.

Every time a gradient is produced, a network task up-
dates the accumulated gradient by adding the new gener-
ated gradient to the accumulated gradient and subtracting the
old (t−p)g j gradient at the head of the accumulation queue.
The queue is then updated, removing its head and adding the
new gradient to its tail.
(3) Gradient partitioning. Before the accumulated gradi-
ents are sent over the network, a network task partitions them
using range-partitioning, with the position index in the in-
ternal representation of the convolutional kernels and fully-
connected layer neurons as the partitioning key (see §3.1).
The number of partitions is calculated according to the cost
model from §3.2.
(4) Gradient sending. After that, a network task sends the
gradient partitions, tagged by the partitioning range, to other
workers. Each worker has a unique identifier, and the par-
titions are sent round-robin. After the number of synchro-
nisation rounds equals the number of partitions, complete
gradients have been received by all workers.
(5) Gradient receiving. Concurrently, workers receive gra-
dient partitions from other workers, which must be merged
to achieve convergence. Network tasks apply the gradients
immediately to the corresponding parts of the local model
without locking. Given that updates are applied at a fine
granularity, tasks are likely to update different parts of the
DNN model, which reduces the probability of lost updates.

4.3 Fault tolerance
When a worker fails, it loses its partial model, the staleness
counter and the contents of the accumulation queue. In addi-
tion, since it can no longer contribute gradients to the other
workers, the failed worker can disrupt the other workers’
staleness counters if it takes time to recover. Next we de-
scribe how Ako handles worker failures.

Ako’s workers rely on checkpointing to save their partial
models and the staleness counters, similar to SEEP [14] or
TensorFlow [1]. Gradient exchanges that have not yet been
applied before the failure, as well as the content of the accu-

90



mulation queue can be safely discarded due to the stochastic
nature of the training process [13]. This simplifies failure
recovery at the cost of additional iterations to achieve con-
vergence. Finally, SEEP’s master node also notifies workers
of failures so that failed workers are removed from the stal-
eness counters. Entries to the counters are re-added when
workers recover.

5. Evaluation
The goals of our experimental evaluation are (i) to explore
Ako’s scalability and convergence compared to parameter
server architectures (§5.2); (ii) to observe its statistical (§5.3)
and hardware efficiency (§5.4); (iii) to explain the efficiency
results by examining Ako’s resource utilisation (§5.5); and
(iv) to investigate the impact of gradient partitions (§5.6) and
accumulation (§5.7) in partial gradient exchange on training
performance.

5.1 Experimental set-up

Datasets and DNNs. We train DNN models on two well-
known datasets for visual classification: (i) MNIST [21] con-
tains 28×28 pixel grey-scale images of handwritten dig-
its with 10 classes. The dataset has 60,000 training im-
ages, and 10,000 images for testing; (ii) ImageNet [31]
has more than 14 million high-resolution images divided
into 1000 classes, each with a ground truth label. We ran-
domly select 100 classes to obtain a subset of approximately
120,000 images as this reduces the convergence time in ex-
periments.

We train DNNs with 3 convolutional (interleaved with
max-pooling) and 2 fully-connected layers: for MNIST,
we use 10/20/100 convolutional kernels with 200 neurons,
while the ImageNet model consists of 32/64/256 kernels and
800 neurons. Prior to training, the datasets are partitioned
evenly across the workers. The model parameters are ini-
tialised using warm-start [12].
System comparisons. We compare (i) Ako with partial gra-
dient exchange to (ii) an architecture with distributed param-
eter servers (PS) and (iii) a decentralised architecture with
all-to-all communication between workers (All-to-All). To be
comparable, all approaches are implemented on top of the
SEEP stateful distributed dataflow platform [14] with the
same optimisations. To put the absolute performance of Ako
into perspective, we also compare against a CPU-based dis-
tributed TensorFlow (TF) and Singa (SG) deployments on
the same hardware.

For Ako and All-to-All, all machines in the cluster exe-
cute workers. PS support an arbitrary number of machines
to act as parameter servers, each maintaining a model parti-
tion that asynchronously synchronises with workers. We ex-
plore different allocations of workers and parameter servers:
we denote a deployment with w workers and p parameter
servers as PS[w+p], and mark the best configuration, as de-

termined empirically through exhaustive search, with an as-
terisk (PS*[w+p]).

For PS, we also consider a co-located deployment [44] in
which each worker executes a parameter server (PS[w+w]).
As there are two processes sharing memory on each ma-
chine, we manually choose an allocation that yields the best
training performance.

For TF and SG, we use a parameter server architec-
ture to train DNNs with the asynchronous Downpour al-
gorithm [12]. The global model parameters in TF are rep-
resented as a set of TF variables, i.e. persistent mutable
tensors, which can be assigned to different nodes to scale
the parameter servers. In general, a DNN layer is defined as
one variable in the TensorFlow computation graph [36–38],
and, at runtime, variables are assigned to parameter servers
using a round-robin strategy [15].

Similar to prior work [9, 11, 19], we empirically set the
staleness bound τ according to the used dataset and DNN
model. As a heuristic, we increase τ proportionally to the
number of used workers.
Performance metrics. We validate the DNN models based
on the top-1 accuracy with the corresponding validation
data. We measure the model training performance in terms
of convergence and quantify training progress based on the
validation accuracy over time. In addition, we collect the
number of epochs required to achieve a predefined accu-
racy goal for assessing the statistical efficiency of different
approaches.
Cluster hardware. Based on the workload, we use two clus-
ters with different sizes and hardware capabilities: (i) we
train with the MNIST dataset and conduct the hardware util-
isation study on a private 16-machine cluster with 4-core
Intel Xeon E3-1220 CPUs at 3.1 Ghz with 8 GB of RAM
and 1 Gbps Ethernet; (ii) for ImageNet, we use a 64-machine
Amazon EC2 cluster with “m4.xlarge” Intel Xeon instances,
each with 4 vCPU cores at 2.4 Ghz and 16 GB of RAM.

5.2 What is the convergence and scalability?
We evaluate the convergence speed of Ako in comparison
to the other approaches on both the MNIST and ImageNet

datasets. We also explore the scalability by training each of
the models with different cluster sizes.
MNIST. We train a DNN for the MNIST dataset and vary
the cluster size between 2, 4 and 8 machines. We collect the
validation accuracy over 20 minutes of training. For the PS

approach on 4 machines, we use a PS*[3+1] deployment; on
8 machines, we consider PS*[7+1] and PS[6+2]. We pick the
best configuration to compare to the other approaches.

After 10 minutes of training, Fig. 8(a) shows that Ako

achieves a similar convergence to PS* and slightly better
convergence than All-to-All with 8 machines. Fig. 8(b) shows
the convergence over time on the 8-machine cluster across
the three approaches (with different PS allocations). The plot
confirms the results from Fig. 8(a): Ako exhibits similar con-
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Figure 9: Model convergence with different cluster sizes (ImageNet)

Dataset Accuracy TensorFlow All-to-All Ako

MNIST 99% > 20 min 14 min 7 min

ImageNet 30% 3.3 h > 4 h 1.5 h

Table 1: Time to reach target validation accuracy

vergence to the best allocation for PS, which is PS*[7+1],
and converges faster than the All-to-All approach. Synchro-
nisation in Ako and PS does not require as much communi-
cation as for All-to-All, whose convergence is affected by the
higher synchronisation delay.

With 8 machines, we also compare Ako to distributed
TensorFlow and Singa when training under the same DNN
workload. We deploy two parameter server configurations
for both TensorFlow and Singa, TF*[7+1], TF[6+2], SG*[7+1]
and SG[6+2], with training performed using asynchronous
Downpour [12].

Fig. 8(c) shows that Ako converges faster than both con-
figurations of TF and SG. Also summarised in Table 1, it
takes Ako 7 minutes and TF* more than 20 minutes to
achieve a target of validation accuracy of 99%. We spec-
ulate that the difference in convergence speeds between Ako
and the two systems results from the synchronisation un-
der Downpour, which allows workers to process an entire
mini-batch before updating the global model.
ImageNet. Next we train a more complex DNN with the Im-

ageNet dataset on 16, 32 and 64 machines. We collect the
validation accuracy after 2 hours and also observe conver-
gence over time.

Fig. 9(a) shows that, after 2 hours of training, Ako achieves
a higher validation accuracy than PS* on 32 and 64 ma-
chines. In contrast, the All-to-All approach converges more

slowly due to its high synchronisation cost. With more ma-
chines, convergence improves for Ako and PS but not for
All-to-All. PS claims a larger fraction of the machines for pa-
rameter servers, whereas Ako makes use of all machines as
workers, speeding up convergence.

Any Ako worker can be used for validation as differ-
ences between them are negligible. After training on the 16-
machine cluster with a fixed number of epochs, the average
accuracy across workers is 20.2%, with a variance of 0.15%.

Fig. 9(b) explores convergence over time on 64 machines
with different resource configurations. Overall, Ako requires
less training time than PS* to reach the same accuracy after
the early phase of learning: Ako has 64 workers to finish each
epoch, but PS* has only 48 workers as the other machines
are used as parameter servers. The difference in the number
of iterations between the two strategies grows as training
continues, which leads to different convergence rates.

Other configurations for PS, including (i) too few pa-
rameter servers (PS[56+8]) and (ii) co-located parameter
servers (PS[64+64]), exhibit even worse convergence: the
network contention at the parameter servers in PS[56+8]
prohibits a tight synchronisation among workers; gather-
ing all the global model partitions across 64 servers in
PS[64+64] also causes additional delay.

Fig. 9(c) shows the convergence over time for Ako with
different cluster sizes. Given that partial gradient exchange
selects a number of gradient partitions that keeps the com-
munication cost constant, Ako scales gracefully. With 64 ma-
chines, each worker partitions gradients into 20 partitions
before sending them to the other workers. The communi-
cation cost thus remains constant, avoiding bottlenecks that
would increase the synchronisation delay.
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Figure 11: Average network usage with 16 machines (ImageNet)

Next we compare Ako with distributed TensorFlow on
the same 64-machine cluster training ImageNet. We consider
two TensorFlow configurations, TF[62+2] and TF[60+4],
because our DNN has five layers, each of which is defined
as a TensorFlow variable in the graph.

Fig. 10(a) shows that Ako exhibits competitive conver-
gence from the beginning of training. To get to a valida-
tion accuracy of 30%, Ako takes 1.5 hours while TF takes
more than 3 hours (see Table 1). When converged, Ako

also achieves a higher validation accuracy. Our experiment
demonstrates that the performance of Ako is en par with
that of a standard deployment of a state-of-the-art distributed
deep learning platform.

5.3 What is the statistical efficiency?
Next we assess how progressive epochs under partial gradi-
ent exchange contribute to the convergence for ImageNet on
64 machines. We define three validation accuracy goals (5%,
10% and 20%), and observe the number of epochs required
to achieve them.

Fig. 10(b) shows that the PS approach requires the fewest
passes over the training data for a given accuracy when
the number of server nodes is high enough for the cen-
tralised parameter synchronisation: 16 servers for 48 work-
ers in PS*[48+16], and 64 servers for 64 workers in the co-
location case (PS[64+64]).

Ako requires extra epochs for the same accuracy, mak-
ing it less statistically efficient than PS—gradients are par-
titioned before exchange, which means that workers receive
incomplete gradients but with low latency; only after multi-
ple rounds, they obtain complete gradients.

With too few parameter servers (PS[56+8]), the efficiency
of the parameter server approach declines and becomes the
same as that of All-to-All, which suffers from diverging mod-
els due to insufficient synchronisation.

5.4 What is the hardware efficiency?
Given that Ako trains the DNN model for ImageNet faster
than PS*, the best distributed parameter server configura-
tion, while having lower statistical efficiency, it must have
higher hardware efficiency. To confirm this, we collect the
time per epoch across the approaches together with their
break-down into (i) gradient computation and (ii) model syn-
chronisation time.

Fig. 10(c) shows that Ako has a shorter epoch time than
PS, regardless of its configuration; as expected, the decen-
tralised All-to-All approach takes the longest time.

All approaches except All-to-All spend most of their epoch
time on gradient computation. Compared to the other ap-
proaches, the optimal PS*[48+16] configuration requires
longer to do this because it has only 48 workers for pro-
cessing. In fact, its gradient computation time alone exceeds
Ako’s overall epoch time.

Comparing PS* to the co-located set-up (PS[64+64]),
the later takes more time for the model synchronisation.
This is due to the fact that its workers must synchronise
with all 64 machines to obtain a new version of the model,
prolonging the epoch time compared to PS*[48+16].

5.5 What is the resource utilisation?
We now investigate how Ako utilises the CPU resources and
network bandwidth of the cluster compared to the other ap-
proaches. We deploy the ImageNet DNN model with Ako on
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Figure 12: Effect of gradient partitions

our 16-machine cluster, and compare to the best PS*[12+4]
configuration and the All-to-All approach. We measure the
average CPU utilisation across the cluster and the accumu-
lated network bandwidth usage between all machine pairs.

The average CPU usage of the workers for Ako, PS*[12+4]
and All-to-All is 87%, 84% and 85%, respectively; the dis-
tributed parameter servers have an average utilisation of
17%, underutilising their CPU resources. Updating the
global model parameters does not require as much CPU re-
sources as the matrix multiplications and convolutions per-
formed by the workers.

Fig. 11 shows the accumulated network usage in MBs.
For Ako, the network usage between all machine pairs is
high, fully saturating the network while still achieving a low
synchronisation delay. All-to-All also fully saturates the net-
work, but suffers from a high delay due to the introduced
queuing. PS* has a much lower network usage, with substan-
tial network bandwidth between workers left unused. The
peak network usage of Ako is lower than that of All-to-All be-
cause it partitions gradients before exchange according to its
cost model. Ako’s workers exchange gradients as frequently
as possible while respecting the capacity limit of the net-
work. In a cloud environment in which the network band-
width depends on the type of VM, the selected number of
gradient partitions will be such as to maximise the usage of
the available bandwidth.

While gradient partitioning avoids network contention,
the gradient accumulation queue must be maintained to
ensure the complete propagation of gradients. Although
the size of the queue leads to higher memory usage and
depends on the model size, the additional memory usage
is typically acceptable: many well-known models such as
GoogleNet [35] and AlexNet [20] are on the order of MBs
because they do not require high numeric precision [16].

5.6 What is the effect of gradient partitions?
Next we investigate the effectiveness of how Ako chooses
the number of gradient partitions according to its cost
model (§3.2). We execute the ImageNet DNN model with
Ako on our 16-machine cluster across different partition
numbers, and measure the validation accuracy and the work-
ers’ bandwidth usage.

Fig. 12(a) shows that 3 gradient partitions yield the high-
est accuracy, which is the partition number predicted by the
cost model. With only 2 partions, the partition size becomes
larger. This is beneficial for the learning progress because
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Figure 13: Benefit of gradient accumulation

it improves statistical efficiency—it takes fewer rounds to
exchange the complete gradient. However, the gradient ex-
change has higher latency due to network contention, which
increases the divergence of the local models during train-
ing. Having more than 3 partitions also reduces the accuracy
because the information exchange between the workers be-
comes less effective, which reduces the statistical efficiency.

Fig. 12(b) compares the measured and predicted network
usage according to the cost model. For almost all partition
numbers, the measured bandwidth usage is close to the pre-
dicted one. The difference is largest with 2 partitions because
the predicted usage by the model goes beyond the 1 Gbps
bandwidth available in the cluster.

5.7 What is the benefit of gradient accumulation?
In partial gradient exchange, the accumulation of gradient
updates ensures the eventual completeness of gradients sent
to workers. We conduct an experiment to evaluate how this
improves training quality on the ImageNet DNN model with
8 machines. We measure the validation accuracy of Ako with
and without gradient accumulation.

Fig. 13 shows the convergence over time. Without accu-
mulation, the resulting model exhibits worse accuracy over
time with slower convergence: the best accuracy on valida-
tion is only around 20%, while gradient accumulation im-
proves this to nearly 40%. If workers do not receive com-
plete gradient updates, the statistical efficiency of the system
is reduced.

6. Related work
DNN systems with parameter servers. Scalable deep neu-
ral network (DNN) systems, such as DistBelief [12], Ten-
sorFlow [1], Project Adam [5], Singa [27, 42, 43], Posei-
don [48] and SparkNet [25], speed up the distributed train-
ing of DNN models using parameter servers. To avoid net-
work bottleneck while synchronising multiple workers with
a centralised global model, parameter servers are scaled to
gain higher accumulative bandwidth [24].

TensorFlow [1] expresses DNNs as dataflow graphs that
train under a parameter server architecture. For distributed
parameter servers, TensorFlow uses a round-robin strategy
that assigns different DNN layers to parameter server nodes.
This assignment can lead to imbalances in the computa-
tional load and network utilisation among servers because
the model is partitioned at a relatively coarse granularity. In

94



addition, the scaling of parameter servers can be limited by
the number of mutable tensors (i.e. variables) in graph.

While scaling parameter servers relieves network con-
tention, there are further techniques to reduce network com-
munication, including data compression [1, 24] and filter-
ing [24]. In Bösen [44], messages are prioritised—ones that
lead to more significant model progress are transmitted first.
In exchange for more efficient network usage, such tech-
niques, however, increase CPU utilisation.

Poseidon [48] uses Bösen’s parameter server architecture
with a hybrid synchronisation model: workers establish di-
rect connections to offload network communication from the
parameter server. While Poseidon reduces the size of model
updates by exchanging sufficient factors [46] for dense fully-
connected layers, its communication cost can grow quadrat-
ically with respect to the number of nodes. In general, dis-
tributed parameter servers can adopt a hybrid architecture to
increase the accumulative bandwidth at the server side, but
this further complicates resource allocation decisions.

Singa [27, 42, 43] is a deep learning platform that sup-
ports multiple partitioning and synchronisation schemes,
thus enabling users to easily use different training regimes
at scale. Through the concept of logical groups of execution
units, Singa supports complex cluster topologies, e.g. one
with multiple server groups. This flexibility allows users
to tune configurations for given problems and the available
cluster resources, but requires them to make configuration
decisions empirically. Ako is a step towards removing some
of this configuration complexity.

To address resource allocation issues in DNN systems
trained with parameter servers, Yan et al. [47] propose to
model system performance and then search the possible
configuration space. This allows users to estimate system
scalability with different parallelisation and synchronisation
strategies. It is unclear, however, how bounded staleness can
be included in the modelling and affects its accuracy. In
addition, such an offline approach may struggle to account
for dynamic effects such as stragglers, leading to inaccurate
predictions.

Rather than assigning servers and workers to different
machine groups, Bösen [44] uses collocation, i.e. each node
contains both servers and workers. This type of allocation
requires gradients to be aggregated to different model par-
titions across nodes before redistributing the updated model
parts back to all workers. Although this approach maximises
the accumulative network bandwidth for parameter servers,
the two-step all-reduce procedure adds substantial delays
when the system scales, even under bounded staleness.
DNN systems without parameter servers. Several DNN
systems make use of decentralised training to simplify the
deployment in distributed environments while maximising
data parallelism. Since direct communication between nodes
can grow quadratically when adding more workers, this re-
quires scalable synchronisation strategies.

Wang et al. [41] propose a decentralised protocol for
parameter sharing with custom synchronisation topologies.
Network contention is reduced by having a subset of work-
ers relay gradients to the rest of the topology. As a result,
model updates propagate more slowly, resulting in a higher
convergence time.

Similarly, in MALT [23], workers exchange gradients
with a subset of workers selected by a Halton sequence.
Due to the synchronisation delay, this suffers from slower
convergence, especially for complex neural network models.
In contrast, workers in Ako always exchange partial model
updates with all others.

In CNTK [32, 33], gradients are aggregated across all
nodes, followed by model redistribution. To reduce the band-
width requirement for densely-connected speech DNNs,
gradient values are quantised aggressively before being ex-
changed over the network. To ensure model convergence, the
resulting quantisation error must be added to the gradients
in the following rounds, compensating for the inaccuracy.
By representing gradients as 1-bit values, the work shows
that there is little negative impact on model accuracy as the
quantisation error feedback is treated as type of delayed up-
date. In a similar fashion, delayed updates in Ako result from
gradient partitioning.

Mariana [50] synchronises multiple GPGPU workers in
a linear topology. By sending gradients and model updates
synchronously via adjacent workers, there is only minimal
network contention, but this approach increases synchroni-
sation delay due to the larger hop count.

Deep Image [45] uses a custom-built supercomputer with
GPGPUs for DNN training. Workers are responsible for in-
dividual model partitions, and exchange updates through a
butterfly network topology. In contrast, Ako does not parti-
tion the model, but instead performs full gradient synchroni-
sation over multiple rounds.

7. Conclusions
To achieve the best performance, distributed DNN systems
must fully utilise the cluster CPUs for model training and the
cluster bandwidth for model synchronisation. Today’s DNN
architectures, however, rely on distributed parameter servers,
which makes it hard for users to allocate cluster resources to
them in an optimal way, i.e. without introducing compute or
network bottlenecks.

We described Ako, a decentralised DNN system that
does not require parameter servers, yet scales to large de-
ployments with competitive performance. Ako achieves this
through a new scalable synchronisation approach, partial
gradient exchange, in which gradient updates propagate to
all workers but only using constant bandwidth by sending
partitions. We showed experimentally that an implementa-
tion of Ako with asynchronous compute and network tasks
has better performance on a fixed-sized cluster than one with
parameter servers.
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