Teechain: A Secure Payment Network with Asynchronous Blockchain Access

Joshua Lind
Imperial College London

Oded Naor
Technion - Israel Institute of Technology

Ittay Eyal
Technion - Israel Institute of Technology

Florian Kelbert
Imperial College London

Emin Gün Sirer
Cornell University

Peter Pietzuch
Imperial College London

Abstract

Blockchains such as Bitcoin and Ethereum execute payment transactions securely, but their performance is limited by the need for global consensus. Payment networks overcome this limitation through off-chain transactions. Instead of writing to the blockchain for each transaction, they only settle the final payment balances with the underlying blockchain. When executing off-chain transactions in current payment networks, parties must access the blockchain within bounded time to detect misbehaving parties that deviate from the protocol. This opens a window for attacks in which a malicious party can steal funds by deliberately delaying other parties’ blockchain access and prevents parties from using payment networks when disconnected from the blockchain.

We present Teechain, the first layer-two payment network that executes off-chain transactions asynchronously with respect to the underlying blockchain. To prevent parties from misbehaving, Teechain uses treasuries, protected by hardware trusted execution environments (TEEs), to establish off-chain payment channels between parties. Treasuries maintain collateral funds and can exchange transactions efficiently and securely, without interacting with the underlying blockchain. To mitigate against treasury failures and to avoid having to trust all TEEs, Teechain replicates the state of treasuries using committee chains, a new variant of chain replication with threshold secret sharing. Teechain achieves at least a 33x higher transaction throughput than the state-of-the-art Lightning payment network. A 30-machine Teechain deployment can handle over 1 million Bitcoin transactions per second.

CCS Concepts • Security and privacy → Distributed systems security.

1 Introduction

Cryptocurrencies, such as Bitcoin [63] and Ethereum [93], offer secure payments between distrusting parties using blockchains. Existing blockchains have limited performance due to their need for consensus across all transactions: global throughput is capped at a handful of transactions per second; transactions take minutes to hours to be processed and parties must maintain a history of every transaction executed.

Payment networks, such as Lightning [71] and Raiden [87], have been proposed as a more performant second layer on top of a blockchain. They allow parties to move fund deposits from the blockchain into point-to-point payment channels. Parties then exchange payment transactions directly off-chain via these channels, without having to involve the blockchain. Before a channel is terminated, it is settled by writing its final balance as a transaction back to the blockchain. Payment networks can therefore operate with higher transaction throughput and lower latency than blockchains [20].

Protocols for payment channels must ensure that parties cannot steal funds. In particular, only the most recent channel balance must be settled on the blockchain; otherwise a malicious party can settle a channel at a previous balance. Existing protocols thus require parties to monitor the underlying blockchain [71]: if a party observes that a stale balance is settled on the blockchain, they have a bounded reaction time \(\Delta \) to invalidate the settlement. This requirement for synchronous blockchain access, i.e., parties must read blockchain transactions and write them within \(\Delta \), has drawbacks: (i) it makes payment networks vulnerable to attacks in which an adversary deliberately delays writes to [8, 22, 39–41, 73, 79] or reads from the blockchain [55] beyond \(\Delta \) to steal funds; (ii) it prevents parties from using payment networks without connectivity to the blockchain; and (iii) it complicates the cryptographic protocols and the number of messages exchanged because parties must provide each other with means to cancel stale settlements [71].

Our key idea is that, rather than requiring parties to rely on the underlying blockchain to detect misbehaviour during off-chain transactions, we explore a design for a payment network in which parties use trusted execution environments (TEEs) [17, 64] as a root-of-trust to enforce faithful protocol execution. TEEs are a hardware security feature in
modern CPUs [5, 35] that ensures the confidentiality and integrity of code and data. At the same time, we want our design to be resilient against TEE failures and attacks that compromise a subset of the TEEs [11, 62, 65, 90].

We describe Teechain, a new payment network that supports secure and performant payments on existing blockchains. Teechain only requires asynchronous blockchain access, i.e., parties are not assumed to read and write transactions on the blockchain within bounded time. Teechain uses trusted treasuries, which are protected by TEEs, to maintain fund deposits for off-chain payment channels. By relying on TEEs, treasuries can employ a new efficient off-chain payment protocol that simplifies both payment and settlement. To mitigate against TEE failures or compromises, treasuries replicate their state among a committee of treasuries. Within each committee, a treasury must have approval from a subset of other committee treasuries to make an off-chain transaction or settle a payment channel. TEEs therefore improve the efficiency of payment channels but the security of Teechain does not depend on that of individual TEEs.

Overall the design of Teechain makes three contributions:

(C1) Dynamic deposits with treasuries. Due to their binding with a blockchain, existing payment networks only support a fixed assignment of deposits to channels: parties cannot add or remove deposits after a payment channel is established. Instead, Teechain separates the ownership of fund deposits and channel assignment using treasuries. It only requires blockchain interaction during the initial creation of a fund deposit, whereby a treasury exclusively owns each deposit by storing the private keys for that deposit in a TEE. Parties can assign deposits to channels upon establishment using the treasuries, and move them in and out of channels at runtime. Since deposit assignment does not require blockchain access, new payment channels are established within seconds.

(C2) Payments with asynchronous blockchain access. After associating a fund deposit with a channel, a party makes a payment through a single integrity-protected message exchange. A payment message decrements the channel balance of its treasury and increments the balance of the recipient’s treasury. This is done by duplicating the pair of balances across both treasuries, and updating them atomically. To settle the channel, a party requests a settlement transaction from the treasury, which is a blockchain transaction with the final balance. Settlement transactions can be written to the blockchain in unbounded time because the treasuries ensure that only a single transaction can be generated for a channel.

(C3) Committee chains. As private keys maintained by treasuries to spend fund deposits are stored inside TEEs, accidental TEE failures or malicious TEE compromises could result in fund loss or theft. Teechain therefore uses committee chains, which are committees of treasuries responsible for managing deposits. To replicate deposit balances in a committee chain, Teechain employs a new force-freeze replication protocol that prevents roll-back attacks. If a treasury in the chain fails to update its balance after a payment or tries to roll-back to a stale balance, the state of all treasuries is frozen, and they can only settle their balances safely. To mitigate against compromised TEEs [90], the committee chain uses the multi-signature support [84] of the underlying blockchain: a threshold number of signatures by treasuries from the committee chain are necessary to settle a payment channel.

We implement Teechain using Intel’s SGX TEEs [34] and deploy it on Bitcoin.1 Teechain achieves substantially higher throughput due to its more efficient off-chain payment protocol compared to the Lightning Network [50], Teechain handles 33×–145× more payment transactions depending on the size of committee chains. Channel establishment takes seconds, as opposed to minutes or hours [18, 71]. Teechain also reduces the number of transactions stored on the blockchain by at least 25% compared to the Lightning Network.

2 Secure Payment Networks for Blockchains

2.1 Blockchain protocols

In cryptocurrencies such as Bitcoin [63], Ethereum [85] and Zerocash [72], a set of nodes connect over a peer-to-peer network to operate as a replicated state machine. This state machine maintains an append-only ledger that contains the history of all transactions in the system. Each transaction is a payment from one system user, a party, to another, secured cryptographically. The ledger is a chain of blocks, or blockchain, such that each block contains a list of transactions. Each transaction is a list of instructions that update the state of the blockchain. Different cryptocurrencies implement transactions that move funds differently: Bitcoin [63] follows an unspent-transaction-output (UTXO) model in which transactions consume, or use as input, a set of previously unspent transactions, where the output of those transactions are owned by the sender. A payment transaction therefore consumes unspent input transactions and generates new output transactions that recipients can spend; Ethereum [85] uses an account model in which a user’s account balance is represented as an integer stored on the blockchain and updated by transactions.

Users are represented by cryptographic public keys. A user’s transaction is validated with a cryptographic signature produced by the matching private key. To prevent users from double-spending, i.e., signing multiple transactions that spend the same funds, blockchains enforce that funds can only be spent once by making double-spending transactions conflict: only one transaction in a set of conflicting transactions can be written to the blockchain. Transactions may also support more elaborate conditions such as m-out-of-n multi-signatures that

1 An initial release of Teechain can be found at: https://teechain.network.
require signing by multiple users: such transactions must be signed by any \(m \) keys from a set of \(n \) keys.

In blockchains, nodes must agree on the order of transactions, i.e., they must reach consensus. The details of blockchain consensus are immaterial to this work—we treat consensus as a black box. Consensus, however, limits transaction throughput [92] and incurs high storage costs. In Bitcoin, global throughput is limited to 7 transactions per second [63], and the total size of the blockchain is 100s of GBs [18]. Due to consensus, transactions may also take arbitrarily long to be written to the blockchain—minutes or even days [8].

2.2 Payment networks and channels

Payment networks [54], such as Lightning [71] and Raiden [87], try to overcome the performance limitations of blockchains by allowing parties to exchange funds directly, off-chain. To execute a transaction, they establish a point-to-point payment channel [18, 52, 60, 70, 71]. A payment channel is a protocol between two parties, \(A \) and \(B \), that updates their balances directly through message exchange. When a payment channel is closed, the payment network settles the channel by writing the final balances of \(A \) and \(B \) back to the blockchain using a settlement transaction. Since payment networks do not write to the blockchain for each transaction, their transaction throughput is higher and latencies lower compared to on-chain payments [71]. Payment networks also reduce the number of transactions stored on the blockchain because only final balances are recorded [71, 87].

To establish a payment channel \(c \), as shown in Fig. 1, one or both of \(A \) and \(B \) write a fund deposit transactions to the blockchain. These place funds into a 2-out-of-2 multi-signature account [84] owned by both parties, and requires both \(A \) and \(B \) to cryptographically sign any transaction in order to spend the funds. \(A \) creates a fund deposit \(d \) of $1000 for \(c \) (step 1). Using the fund deposits, \(A \) and \(B \) can then execute payment transactions: a new payment transaction is generated and signed by both parties, spending from the channel deposits and reflecting the new balances. For example, \(A \) pays \(B \) $100 using \(tx_1 \) signed by both \(A \) and \(B \) (step 2), and \(B \), whose balance is now $100, sends \(A \) $50 using \(tx_2 \), also signed by both parties (step 3). Note that \(tx_1 \) and \(tx_2 \) do not require interaction with the blockchain and that each payment takes into account all previous payments and updates the current state of the payment channel. At any time, either \(A \) or \(B \) may close the channel by writing the most recent payment transaction to the blockchain: \(B \) settles the channel by writing \(tx_2 \) to the blockchain with their final balances (step 4).

Payment networks also support multi-hop payments [54, 60, 71] in which multiple payment channels, \(c_1 \) to \(c_n \), are concatenated to form a payment path. This allows for payments between parties that do not have a direct payment channel. This makes payment networks useful in practice, because it allows payments between parties without long-lived financial relationships, e.g., e-commerce buyers and sellers who conduct transactions via intermediaries [1] such as Amazon [2] and eBay [25]. Similar to a single payment channel, any party along the path can unilaterally settle its channels. The added guarantee is atomicity: either all channels \(c_1 \) to \(c_n \) are settled at the state after the multi-hop payment, or all settle before it.

2.3 Limitations of payment networks

To avoid fund theft or loss, payment networks must only settle channels with the most recent payment transaction; otherwise a malicious party can launch a roll-back attack in which they settle the channel at a previous payment transaction with a stale balance. For example, in Fig. 1, step 4, if \(B \) settled \(c \) using \(tx_1 \) instead of \(tx_2 \) it would allow \(B \) to steal $50 from \(A \).

Existing payment networks [18, 70, 71] overcome this problem by requiring parties to detect misbehaviour using information available on the blockchain: when using a payment channel, each party monitors the blockchain for a settlement transaction written by its counterparty to settle the channel. If an old settlement transaction is written, the party negates its effect by writing the most up-to-date settlement transaction to the blockchain within a bounded reaction time \(\Delta \).

For this mechanism to work, the payment network must assume that parties can read and write transactions on the blockchain within the fixed upper bound \(\Delta \). We refer to this assumption as synchronous blockchain access.

In practice, it is not always possible to ensure synchronous blockchain access during payment channel operation. The load on the blockchain may result in long queues to write transactions [8]. Moreover, an attacker may delay transaction writes deliberately, such as by controlling the order in which transactions are written [39, 40, 79], or censoring transactions [22, 41, 73]. Attackers may also partition victims from the network [55], preventing them from accessing the blockchain at all. Current payment networks therefore face a trade-off when selecting the reaction time \(\Delta \): a short \(\Delta \) allows for quick settlement but facilitates the above attacks.

The requirement for synchronous blockchain access also prevents parties from using payment channels when they are disconnected from the blockchain. This negates one of the benefits of payment networks: parties can no longer exchange payments directly with only point-to-point network connections. For example, it becomes impossible to use a payment channel between two devices that are directly connected, but...
do not have connectivity to the Internet and thus the rest of the blockchain [21].

3 Teechain Design

Next we introduce how Teechain uses trusted execution (§3.1), state the threat model (§3.2), give an overview of its design (§3.3), describe treasuries (§3.4) and committees (§3.5), and analyse how the design handles different threats (§3.6).

3.1 Trusted execution as a root-of-trust

The requirement for synchronous blockchain access in existing payment networks comes from the fact that their protocols use the blockchain as a root-of-trust: parties executing the payment protocol monitor the blockchain to discover when other parties deviate from the protocol, and react appropriately.

We explore a design that introduces a separate root-of-trust that, independently of the blockchain, ensures the faithful execution of a payment protocol. Our idea is for the payment network to use trusted execution environments (TEEs) [35, 42] during the execution of a payment protocol. TEEs are encrypted and integrity-protected memory regions, which are isolated by the CPU hardware from the rest of the software stack, including higher privileged system software. Multiple TEE implementations are commercially available, including Intel SGX [35], ARM TrustZone [5] and AMD SEV [42], with several others currently under way, such as KeyStone Enclave [43], Multizone [32] and OP-TEE [51]. Intel CPUs from the Skylake generation onwards support Software Guard Extensions (SGX) [33], a set of new instructions that permit applications to create TEEs called SGX enclaves.

By using TEEs as an independent root-of-trust, we want our design to only require asynchronous blockchain access, i.e., the payment protocol must not assume that transaction reads and writes to the blockchain complete within a fixed upper bound, but only complete eventually. To achieve asynchronous blockchain access, a payment network must protect the security of funds, regardless of blockchain access times.

We define the security of funds in terms of balance security: at any time during the payment protocol execution, each party should be able to perform a finite set of actions that eventually results in them receiving their perceived balance on the underlying blockchain. A party’s perceived balance is their initial balance on the blockchain plus any payments received in the payment network, minus any payments made. Our design must ensure balance security regardless of how long transaction reads and writes may take.

3.2 Threat model

We assume that mutually distrusting parties use a blockchain to exchange funds and that their machines have TEEs. Parties trust their own machines, including the hardware and software, but distrust the machines of others [29]. We assume that TEEs on machines are normally trustworthy, but a subset of TEEs may suffer arbitrary integrity and confidentiality compromises. They may be compromised by other parties or external attackers who want to violate balance security (§3.1).

Parties are rational, selfish and potentially malicious, i.e., they may attempt to steal funds and deviate from the payment protocol, if it benefits them. We also assume that parties may collude with one another. Parties are connected via a network, with some behind firewalls or network address translation (NAT). Parties may drop, modify and replay messages. An attacker may delay or prevent others from accessing the blockchain for an unbounded amount of time, but we assume this cannot occur indefinitely.

3.3 Design overview

Fig. 2 shows the design of Teechain. Teechain constructs a peer-to-peer payment network in which parties operate Teechain nodes, e.g., node n_A is operated by party A. Each node comprises: (i) an API for parties to interact with the payment network; (ii) an interface through which to read and write blockchain transactions; and (iii) a TEE-protected treasury that securely holds and manages parties’ funds.

Treasuries ensure the faithful execution of the payment protocol. They are external to the blockchain and manage payment channels, execute payment transactions and control the access to funds. To avoid blindly trusting treasuries to behave honestly, Teechain uses TEEs to ensure the confidentiality and integrity of treasuries. By using TEEs, Teechain achieves asynchronous blockchain access because treasuries operate correctly, autonomously and protect against misbehaviour by parties without having to interact with the blockchain.
As TEE implementations may suffer from confidentiality, integrity and availability failures [11, 62, 90], Teechain avoids trusting individual TEEs for security. Instead, Teechain operates committees of treasuries: these are groups of treasuries that manage a single collection of funds together. Fig. 2 shows a committee C_A that constitutes of the treasuries at nodes n_A, n_D and n_F. Within each committee, a treasury must have approval from a subset of other treasuries to make an off-chain transaction or settle a payment channel.

Tab. 1 shows the API that Teechain provides to parties. It supports (i) creating deposits (§4.1), (ii) operating payment channels (§4.2) and (iii) constructing committees (§5). Teechain generates unique identifiers for each deposit and channel, e.g., when a deposit is created (new_deposit), a unique identifier is returned as a handle to be used in subsequent API calls. Treasuries are identified through unique public keys.

To execute payments, Teechain forms payment channels between nodes with network connectivity. Treasuries communicate via these channels to update payment balances. Fig. 2 shows channel c_1 between A and B; and c_2 between B and C.

Multi-hop payments can be executed along payment channel paths. In Fig. 2, a payment from A to C is executed: A invokes the API to execute a multi-hop payment of $50 along path $c_1 \rightarrow c_2 \rightarrow C$ (step 1); node n_A notifies the treasuries of its committee of the upcoming balance update (step 2); the treasuries for nodes n_A and n_B update the balances of A and B in c_1 (step 3); and the treasuries for nodes n_B and n_C update the balances of B and C in c_2 (step 4). The final state is that A’s balance has been deducted $50 in c_1, B’s balance incremented by $50 in c_1, and C’s balance incremented by $50 in c_2.

3.4 Treasuries

Treasuries generate public/private key pairs for treasury addresses, which are cryptocurrency addresses owned exclusively by a treasury. They are generated securely inside each TEE, and their private keys are stored in TEE memory.

Table 1. Teechain API

<table>
<thead>
<tr>
<th>Teechain API</th>
<th>Inputs</th>
<th>Outputs</th>
<th>API Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Deposits (§4.1)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>new_deposit</td>
<td>tx, pub₁, …, pubₙ, d_id</td>
<td>T</td>
<td>Creates a new fund deposit (d_id) using a transaction (tx) and a set of treasury public keys</td>
</tr>
<tr>
<td>release_deposit</td>
<td>d_id</td>
<td>T</td>
<td>Refunds an unassociated fund deposit (d_id) by generating and returning a transaction (tx)</td>
</tr>
<tr>
<td>approve_deposit</td>
<td>d_id, pub</td>
<td>T</td>
<td>Requests approval for a deposit (d_id) from a specific treasury (pub)</td>
</tr>
<tr>
<td>Payment channels (§4.2)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>new_pay_channel</td>
<td>pub</td>
<td>c_id</td>
<td>Creates a new payment channel (c_id) with a given treasury (pub)</td>
</tr>
<tr>
<td>associate_deposit</td>
<td>d_id, c_id</td>
<td>T</td>
<td>Associates an approved fund deposit (d_id) with an existing payment channel (c_id)</td>
</tr>
<tr>
<td>dissociate_deposit</td>
<td>d_id, c_id</td>
<td>T</td>
<td>Dissociates a previously associated fund deposit (d_id) from a payment channel (c_id)</td>
</tr>
<tr>
<td>Payments (§4.2)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>pay_channel</td>
<td>val, c_id</td>
<td>T</td>
<td>Pays an amount (val) to the other user in a payment channel (c_id)</td>
</tr>
<tr>
<td>pay_multihop</td>
<td>val, c_id₁, …, c_idₙ</td>
<td>T</td>
<td>Executes a multi-hop payment of an amount (val) along a given path of payment channels</td>
</tr>
<tr>
<td>Settlement (§4.2)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>settle_channel</td>
<td>c_id</td>
<td>tx</td>
<td>Sets a payment channel (c_id) by generating a settlement transaction (tx)</td>
</tr>
<tr>
<td>eject_multihop</td>
<td>c_id</td>
<td>tx</td>
<td>Sets a payment channel (c_id) during the execution of a multi-hop payment</td>
</tr>
<tr>
<td>eject_multihop pop</td>
<td>c_id, popₜ</td>
<td></td>
<td>Sets a payment channel (c_id) using a PoPT (popt) during a multi-hop payment</td>
</tr>
<tr>
<td>assign_comm_chain</td>
<td>pub</td>
<td>T</td>
<td>Assigns this treasury to a committee chain by joining the last transaction (pub) in the chain</td>
</tr>
</tbody>
</table>

Parties can send funds to these addresses in the form of fund deposits. A call to new_deposit from Tab. 1 creates a deposit. It requires a deposit transaction tx, which sends funds to a set of treasury addresses, identified by the treasury public keys, pub₁, …, pubₙ. In Fig. 2, deposit $d₁$ sends $500 to the treasury at node n_B. Deposits can be associated by a treasury with a payment channel, thus incrementing the balance of that party in the channel. Fig. 2 shows two deposits registered with the treasury of node n_B: $d₁$ of $1000 assigned to channel $c₁$; $d₂$ of $500 assigned to channel $c₂$.

Parties must verify the integrity of treasuries before trusting them with funds; Teechain uses the remote attestation support of TEEs for verification [36, 38]. A TEE (i) measures the treasury code; (ii) cryptographically signs the measurement and the treasury’s public key; and (iii) provides the signed measurement and public key to the remote party. The remote party then verifies the attestation, i.e., the remote party ensures that the attestation is correctly signed by the TEE hardware and that the measurement corresponds to a known treasury implementation. Parties can thus verify that a specific treasury, identified by its public key, is operating genuine TEE hardware.

Users without a TEE-enabled node of their own can use a remote node to manage their funds through treasury outsourcing. For this, the party attests a remote treasury and provisions it with a secret key, giving it the same abilities as a local party. To avoid having to trust a single remote treasury, Teechain constructs committees with multiple remote treasuries (§3.5).

3.5 Committee chains

Committees are groups of treasuries that jointly manage fund deposits. For each deposit owned by a committee, a minimum number of committee members are required to sign transactions before that deposit can be spent, thus tolerating a fixed number of TEE failures. For this, Teechain uses the multi-signature support of the blockchain [84]: each fund deposit is paid into an m-out-of-n treasury address, where m treasury
signatures are required to spend the deposit. The \(n \) committee members correspond to the \(n \) public keys provided to \textit{new\textsubscript{deposit}} in Tab. 1, when the deposit is created.

All committee members must agree on the proportion of each deposit owned by the parties in a payment channel. To achieve agreement, Teechain uses a variant of \textit{chain replication} [91], which offers strong consistency without requiring all nodes to communicate directly. This is beneficial because parties may not have direct connectivity due to network address translation (NAT) and firewalls.

With chain replication, Teechain must prevent \textit{roll-back} and state \textit{forking} attacks [10] in which an attacker partitions the committee members into disjoint subgroups that can settle a channel at different balances using different deposit states. Forking a committee chain in this way would allow attackers to roll-back to old payment states to steal funds.

Teechain achieves this with a new variant of chain replication called \textit{force-freeze replication}: if any committee member fails or refuses to update to the latest agreed upon state, the replication chain is broken, freezing all nodes at the current state. This prevents future state updates and requires that all channels are settled and unused deposits released. We describe force-freeze replication in more detail in §5.

3.6 Threat analysis

Malicious parties. Teechain assumes parties are rational and selfish, i.e., parties behave in their best financial interest (§3.2). We consider two possible cases: (i) \(A \) is a malicious local party; and (ii) \(B \) is a malicious remote party. In the case of a local malicious party \(A \), Teechain requires parties to encrypt and sign all API calls made to a local (or outsourced) treasury (Tab. 1). A only has access to their own funds but cannot affect other funds, as enforced by the local treasury.

In the case of a malicious remote party \(B \) who wishes to steal \(A \)’s funds, \(B \) must either interact with the Teechain API to force a protocol deviation or drop/replay/modify messages on the network. Teechain secures funds with treasuries and uses TEEs to ensure faithful protocol execution. Treasuries use encrypted, authenticated and freshness-protected messages.

Compromised treasuries. Current TEE implementations are vulnerable to attacks, e.g., through side-channels [11, 62, 90], and Teechain assumes that treasury compromises are possible (§3.2). We consider two cases of a compromised treasury \(T \), which wishes to attack \(A \): (i) \(T_L \) is a local treasury that \(A \) interacts with directly (i.e., the treasury at node \(n_A \) in Fig. 2); and (ii) \(T_R \) is a remote treasury on another node in the Teechain network.

A compromised local treasury \(T_L \) cannot steal \(A \)’s funds due to Teechain’s \(m \)-out-of-\(n \) committees for deposits. To steal a deposit, \(T_L \) would need to compromise \(m \) – 1 treasuries in the committee. To prevent \(T_L \) from deceiving \(A \) when interacting with the Teechain API, Teechain requires the results of API calls to be signed by all \(n \) committee treasuries, except when an API call returns a blockchain transaction, which only requires \(m \) signatures. If \(T_L \) fails to coordinate correctly with the committee, \(A \) settles channels and returns deposits.

Mitigating a compromised remote treasury \(T_R \) is similar to the local case above: committees protect deposits, and thus \(T_R \) needs to compromise \(m \) – 1 other treasuries. Note that, although the requirement for \(n \) signatures on API calls means that \(T_R \) can force channel settlements, it does not gain financially from this. Similar to prior work [12], Teechain assumes committee members are paid fees for participation.

Global TEE compromises. To mitigate global TEE compromises, in which many treasuries are compromised simultaneously, Teechain is designed to be TEE-agnostic, thus avoiding dependencies on a single TEE implementation. This allows parties in the network to protect deposits using committees of \textit{heterogeneous} TEEs. Under global TEE compromises, e.g., when a specific TEE vendor leaks hardware private keys or a batch of TEEs are found to be faulty, parties can lower their risk by including sufficiently heterogeneous TEEs in their committee chains.

Compromises to the attestation mechanism of a particular TEE implementation, e.g., as done by the Foreshadow [90] attack against the Intel attestation service, do not affect funds held by committees. As described in §3.4, remote attestation ensures that a specific treasury, identified by its public key, operates genuine TEE hardware. Even if remote attestation has been compromised, an attacker can only create new malicious treasuries, but cannot spoof other treasuries or committee members in the network. To steal funds, an attacker would need to bias the selection of future committee members. We discuss committee member selection in §5.2.

4 Payment Protocol

This section describes Teechain’s deposit allocation (§4.1), its payment channel protocol (§4.2), its multi-hop payment protocol (§4.3), and sketches their security proofs (§4.4).

4.1 Allocating dynamic deposits

Deposits can be created at any time and associated/dissociated with payment channels dynamically. Alg. 1 shows the protocol executed by treasuries for the API calls from Tab. 1.

To construct a new deposit \(d \), parties invoke \textit{new\textsubscript{deposit}} (Alg. 1, line 1) and present a deposit transaction \(tx \) and the list of treasury public keys forming the committee that \(tx \) sends funds to. The treasury then verifies that \(tx \) sends funds to an \(m \)-out-of-\(n \) multi-signature address using the committee members’ public keys, \(pub_1, \ldots, pub_n \), and notifies the committee of the new \(tx \) (see §5). The treasury then constructs a new deposit \(d \), forwards \(tx \) to the blockchain, and returns \(d \)’s unique identifier to the requester (line 6), signed by all committee members—we omit signature collection for brevity.

A payment channel \(c \) may contain zero or more deposits through deposit association. The sum of the deposits associated with \(c \) must be equal to the sum of the balances of \(A \)
To execute a payment along a channel, the sender calls `pay_channel` (line 39), which specifies the amount to send and the channel identifier. The sender’s treasury first ensures that the sender has sufficient funds before decrementing the sender’s balance and increasing the recipient’s balance locally (lines 42 and 43). It then forwards the payment to the recipient’s treasury to update balances. If the payment is not received by the recipient, e.g., due to a network failure, the sender settles the channel and writes the balances to the blockchain to allow the remote party to see the final state of the channel. This prevents balance inconsistencies.

As deposits can only be associated with a single channel, participants may suffer from `deposit lock-in`: when a large deposit is added to a channel but only a small fraction is spent, it leaves the remaining locked-in until the channel is settled. In a channel `c` with deposit `d_x` of amount `a_x`, after payments of value `v_x` have been made, the locked-in funds `f_x` are `a_x - v_x`. If `f_x` is large, there is a high fund lock-in. To avoid this, participants can perform `deposit rebalancing`: they associate another deposit `d_y` of value `v_y`, where `v_x > v_y ≥ p_x`, with `c` and dissociate `d_x` from `c`. This reduces the lock-in.

At any time, either party may settle the channel using `settle_channel` (line 45). If the balances of the parties are neutral, i.e., equivalent to their deposits as if no payments were made, the treasuries can terminate the channel off-chain by simply dissociating all deposits from the channel. Off-chain termination avoids writing a settlement transaction to the blockchain (see §6.4); otherwise, the local treasury generates a blockchain transaction `tx` using the deposits and balances in the channel, collects signatures from the committee members, and writes `tx` to the blockchain.

4.2 Using payment channels

To create payment channels between treasuries without blockchain interaction, participants call `new_pay_channel` and provide the public key of the treasury with which to create the channel (Alg. 1, line 19). The two treasuries then establish a secure communication channel using authenticated Diffie-Hellman [47] for key provisioning and remote attestation. Using the secure channel, the treasuries assign a unique channel identifier to the channel `c`, initialize both participant’s balances to 0, and return the channel identifier.

Algorithm 1: Teechain payment protocol executed by the treasury at each node (Based on the API shown in Table 1. For brevity, we omit the collection of committee member signatures at the end of each API call (see §3.6).)

1. on `new_deposit(tx, pub, ...pub)`:
 1. verify `tx` (tx, `pub`, ...`pub`)
 2. `d ← create_new_deposit(tx)`
 3. deposits[`d_id`] ← `{ store dep`
 4. write_to_blockchain(tx)
 5. return `d_id` /* return deposit id */

2. on `release_deposit(d_id)`:
 1. `d ← deposits[d_id]`
 2. `c ← channels[c_id]`
 3. `assert(d chan = ∅)` /* unassoc */
 4. `tx ← gen_deposit_refund(d)`
 5. `d chan ← c` /* add assoc */
 6. `c my_bal ← c my_bal + d val`
 7. `send_assoc_to_remote(d, c)`
 8. write_to_blockchain(tx)
 9. return `tx` /* return refund */

3. on `approve_deposit(d_id, pub)`:
 1. `d ← deposits[d_id]`
 2. `c ← channels[c_id]`
 3. `assert(d chan = ∅)` /* unassoc */
 4. `tx ← gen_deposit_refund(d)`
 5. `d chan ← c` /* add assoc */
 6. `c my_bal ← c my_bal + d val`
 7. `send_assoc_to_remote(d, c)`
 8. write_to_blockchain(tx)
 9. return `tx` /* return refund */

4. on `associate_deposit(d_id, c_id)`:
 1. `my_bal ← create_channel_with(pub)`
 2. `c my_bal, c rem_bal ← (0, 0)`
 3. `channels[c_id] ← c`
 4. `return c_id` /* return channel id */

5. on `associate_deposit(d_id, c_id)`:
 1. `d ← deposits[d_id]`
 2. `c ← channels[c_id]`
 3. `assert(d chan = ∅)` /* unassoc */
 4. `tx ← gen_deposit_refund(d)`
 5. `d chan ← c` /* add assoc */
 6. `c my_bal ← c my_bal + d val`
 7. `send_assoc_to_remote(d, c)`
 8. write_to_blockchain(tx)
 9. return `tx` /* return refund */

6. on `new_pay_channel(val, c_id)`:
 1. `c ← channels[c_id]`
 2. `assert(c my_bal ≥ val)`
 3. `c my_bal ← c my_bal − val`
 4. `c rem_bal ← c rem_bal + val`
 5. `send_pay_to_remote(c, val)`
 6. `return tx` /* return refund */

7. on `settle_channel(c_id)`:
 1. `c ← channels[c_id]`
 2. `neutral_balance(c)`
 3. `if neutral_balance(c)` then
 4. `dissociate_all_deposits(c);`
 5. `channels[c_id] ← ∅`
 6. `return ∅`
 7. `else`
 8. `terminate_on-chain`
 9. `tx ← get_settle_for_bals(c)`
 10. `send_settle_to_remote(c, tx)`
 11. `channels[c_id] ← ∅`
 12. `write_to_blockchain(tx)`
 13. `return tx`

8. on `pay_channel(val, c_id)`:
 1. `c ← channels[c_id]`
 2. `assert(c my_bal ≥ val)`
 3. `c my_bal ← c my_bal − val`
 4. `c rem_bal ← c rem_bal + val`
 5. `send_pay_to_remote(c, val)`
 6. `return tx` /* return refund */

9. on `new_multihop(val, c_id, ...c_id)`:
 1. `c_i ← channels[c_id]`
 2. ...
 3. `c n ← channels[c_id]`
 4. `lock(val, c_1, c_2, ... c_n)` /* Alg 2 */
 5. `wait_for_unlock()`
 6. `return T` /* payment done */

10. on `receive_multihop(c_id)`:
 1. `c ← channels[c_id]`
 2. `s ← c.state`
 3. if `s = lock` then
 4. `s = postpay`
 5. `return settle_channel(c_id)`
 6. `return c.F` /* settle all */

11. on `pay_multihop(c_id, popt):`
 1. `s ← popt.state`
 2. if `s = lock` then
 3. `s = postpay`
 4. `return settle_prepay(c_id)`
 5. `s = unlock`
 6. `return settle_postpay(c_id)`

and `B` in `c`, i.e., deposits are distributed to `A` and `B`. Before a deposit `d` can be associated with `c`, it must be approved by the remote party in `c` (e.g., `B` if `A` requests approval) using `approve_deposit` (line 14). Approval contacts the remote party via its treasury and queries if the deposit is eligible for association with `c`. Deposit approval therefore allows `A` and `B` to define which deposits can be associated with `c`. Due to our assumption of asynchronous blockchain access, this may take unbounded time. Deposits need to be approved only once.

Approved deposits can be `associated` with a single channel using `associate_deposit`, and `dissociated` using `dissociate_deposit` (lines 24 and 32). When deposit `d` is associated with `c` by `A`, the treasuries increase `A`’s balance by the deposit amount (lines 30 and 31); dissociation decrements `A`’s balance (lines 36 and 38). Disassociation can only be done if the participant’s balance is greater than or equal to the deposit amount. Unassociated deposits are deposits not associated with any channel. They can be returned upon request through `release_deposit` (line 7): a new transaction `tx` is generated and signed by the appropriate committee treasuries, and written to the blockchain; `d` is then removed from the treasury.
Teechain enforces that settlement transactions in state pre-payment (Alg. 1, line 66), the first settlement transaction tx to be written to the blockchain determines the state at which all channels are settled. If a channel in a different state tries to settle afterwards, the transaction is rejected by the blockchain. The party can present tx to its treasuries as PoPT through eject_multihop (Alg. 1, line 72), which generates a settlement transaction without conflict. Conflicts prevent Teechain from assuming how long settlements take to be written to the blockchain.

For blockchains with expressive transactions [85], smart contracts can be used to ensure conflicts between settlement transactions in different states. Channels in a multi-hop payment can simply transition from pre to post in a single step.

For other blockchains, e.g., Bitcoin, Teechain must enforce transaction conflicts manually. Teechain constructs an intermediate path settlement transaction \(\tau \) that settles all channels in state post using a single blockchain transaction. \(\tau \) conflicts with individual settlement transactions in pre and post because it spends the same deposits. Teechain uses \(\tau \) to transition channels from state pre to post by moving to an intermediate state inter between the transition first. Channels in state inter can only settle using \(\tau \). If a party decides to settle a channel while it is in state inter, they settle all channels in the path. Therefore, during the transition from pre to inter, either the first channel settlement transaction tx written to the blockchain is in pre, in which case \(\tau \) cannot be written to the blockchain and all channels settle at pre by presenting \(\tau \) as PoPT; or \(\tau \) is \(\tau \), in which case all channels are settled in post using \(\tau \). The transition from inter to post is analogous.

Payment execution. Fig. 3 shows the messages exchanged by the treasuries when \(A \) executes a multi-hop payment to \(C \) via \(B \). Alg. 2 shows the corresponding protocol steps. Teechain requires three network round trips to complete the payment: step 1 locks the channel and ensures sufficient balances (Alg. 2, line 1); step 2 constructs \(\tau \) with all treasuries writing their channel balances and signatures (line 9); Teechain then updates the channel balances (from pre to post).
unlocks the channels (line 46).

As multi-hop payments lock channels, this prevents concurrent payments. Teechain therefore dynamically constructs new channels for concurrent payments using unassociated deposits, as needed. This is feasible because Teechain can create channels and assign deposits with low latency. Teechain coalesces no longer needed payment channels by: (i) executing multi-hop payments in a cycle along the channels until they are at a neutral balance; and (ii) terminating the channels off-chain through deposit dissociation (see §4.2). We evaluate dynamic channel construction in §6.3.

4.4 Payment protocol security

Teechain’s payment protocol (Algs. 1 and 2) achieves balance security (§3.1) under asynchronous blockchain access, i.e., parties can always receive their funds on the blockchain, regardless of blockchain access times or other parties’ actions. We sketch a proof below and defer to a technical report [53] for more details. We first show that Teechain achieves asynchronous blockchain access, and then prove balance security.

When Teechain writes to \((\text{new_deposit}, \text{release_deposit}, \text{settle_channel}, \text{eject_multihop})\) or reads from the blockchain \((\text{approve_deposit})\), the protocol makes no assumption about the duration of these operations. For example, when ejecting from a multi-hop payment prematurely \((\text{eject_multihop})\), Teechain uses the first settlement transaction written to the blockchain to determine the state at which all channels in a payment path are settled (§4.3). By considering all blockchain interactions on a case-by-case basis (Algs. 1 and 2), we can see Teechain operates with asynchronous blockchain access.

Payment channel security. We now prove that Teechain achieves balance security using the Universal Composability (UC) framework [13]. Our definition of balance security (§3.1) under UC is similar to prior work [24, 54, 60]. We model committees as a single treasury executing the protocol.

Under UC, we consider a real world, in which parties run the Teechain protocol \(\pi_{\text{Teechain}}\) (Alg. 1), and an ideal world, in which parties interact with an ideal functionality, \(\mathcal{F}_{\text{Teechain}}\), a trusted third party that implements Teechain’s API (Alg. 1). Adversarial behavior is introduced in the ideal world by a simulator \(\hat{\mathcal{S}}\) with appropriate adversarial abilities (§3.2).

To prove that Teechain achieves balance security, we show that (i) the real and ideal worlds are indistinguishable to an external observer \(\mathcal{E}\). This implies that any attack violating balance security in the real world is also possible in the ideal one; and (ii) \(\mathcal{F}_{\text{Teechain}}\) achieves balance security in the ideal world. This proves that \(\pi_{\text{Teechain}}\) also achieves balance security.

We prove indistinguishability between the real and ideal worlds through a series of five hybrid steps, starting at the real world \(H_0\), and ending in the ideal world \(H_5\). In each step, a key element is changed and indistinguishability is proven. As commonly done [6, 88], in \(H_0\), the desired behavior of TEEs and the blockchain are replaced by two ideal functionalities, \(\mathcal{F}_{\text{TEE}}\) and \(\mathcal{F}_B\), respectively (defined in [66, 69]). In \(H_1\) and \(H_2\), \(\mathcal{S}\) simulates \(\mathcal{F}_{\text{TEE}}\) and \(\mathcal{F}_B\), respectively, and in \(H_3\) and \(H_4\), incorrectly signed messages to \(\mathcal{F}_{\text{TEE}}\) and \(\mathcal{F}_B\), are dropped, to tolerate attacks on the signing schemes. Finally, in \(H_5\), we prove equivalence between \(\pi_{\text{Teechain}}\) and \(\mathcal{F}_{\text{Teechain}}\) to \(\mathcal{E}\).

Next, we prove that \(\mathcal{F}_{\text{Teechain}}\) achieves balance security by showing that a party can always eventually place transactions on the blockchain that grant it an amount equal to its perceived balance. This is done by ordering \(\mathcal{F}_{\text{Teechain}}\) to create transactions that close all open channels, remove all unassociated deposits, and place them on the blockchain. Since Teechain does not make blockchain timing assumptions, denial-of-service attacks [31, 55], do not violate balance security.

Multi-hop payment security. We show that the multi-hop protocol also maintains balance security. As shown in Fig. 3, consider a payment from \(A\) to \(C\) via \(B\) of amount \(val\) at the following times: \(A\) begins step lock of the protocol at \(t_1\); at \(t_2 > t_1\), \(C\) begins step lock; at \(t_3 > t_1\) \(C\) completes step unlock; and at \(t_4 > t_3\), \(A\) completes the protocol with unlock.

For \(A\), the perceived balance for the channel is: before \(t_1\) as if \(val\) was not paid; after \(t_4\), as if \(val\) was paid; between \(t_1\) and \(t_4\), either is acceptable. For \(C\), the same as \(A\) but \(t_1\) replaced with \(t_2\) and \(t_4\) with \(t_3\). The perceived balance of the intermediate \(B\) is not affected. \(A\) considers the payment complete if \(C\) considers it complete; funds are not lost or created.

We show that \(A\) and \(C\) can unilaterally reclaim their perceived balance. Note that single channel payments do not interfere with multi-hop payments, because all channels are locked (§4.3). At any point, \(A\) and \(C\) can settle the channels in either the pre- or post-payment states, either with single settlement transactions or using \(\mathcal{T}\) (see Alg. 2). For example, if a node is in state lock, the others are either in unlock or lock or in unlock or sign. In all cases, if a node settles, the rest of the nodes can only settle in the same state (pre- or post-payment), in accordance with balance security.

5 Committee Chains

This section describes force-freeze replication in committee chains (§5.1), committee configurations (§5.2), and persistent storage for committee members (§5.3).

5.1 Force-freeze replication

To maintain consensus among committee members, Teechain uses force-freeze replication, a new variant of chain replication [91]. The nodes form a chain, with the primary at the head, and the last backup at the tail. On an update, the primary propagates the update down the chain. Each node forwards the update to its backup, and waits for an acknowledgement before executing the update. When the primary receives an acknowledgement, the entire chain has updated. This provides strong consistency among the nodes.

Traditional chain replication [91] continues to execute state updates even after nodes have failed to update. Applying this naively to treasuries in a committee, would make Teechain
To ensure balance security (§3.1) despite compromised treasuries, Teechain uses committees chains of size n for each deposit, and requires at least m treasuries in a committee to sign a blockchain transaction before that deposit can be spent. To violate balance security, an attacker must compromise at least m treasuries in a committee, or cause $(n - m) + 1$ treasuries to fail, e.g., crash or stop responding.

The values of m and n affect security: (i) 1-out-of-1 deposits provide no fault tolerance against crash failures or compromises; (ii) 1-out-of-n committee chains provide crash fault tolerance for treasuries but do not tolerate their compromises; and (iii) in the general case, as m increases, more signatures are appended to each transaction, impacting their size. We explore this trade-off in §6.4.

As deposits must be approved before association with pay- ment channels (§3.4), parties can choose the values of n and m for their deposits and channels. For small deposits, a 1-out-of-1 committee chain may be sufficient as there is little loss if a failure occurs; for medium deposits, 1-out-of-n may be desirable to tolerate crash failures; and for large deposits, e.g., 2-out-of-3 committee chains are required to tolerate attacks. Larger committees, e.g., with more than five members, may only be required for high-value deposits.

To prevent an attacker from biasing the selection of committee members, parties select the committee treasuries themselves on deposit creation (new_deposit, Tab. 1). Selection criteria may include treasury reputation, trusted TEE vendors and implementations, blacklisted treasuries, and TEE heterogeneity. To avoid Sybil attacks [19], Teechain can leverage several techniques, such as requiring treasuries to provide a proof-of-stake [7], operate in a permissioned setting [4], or use a reputation system.

Payment channels may contain multiple deposits, each with a separate committee chain. These chains do not have to be updated atomically: for payments that span multiple deposits, the committee chains must be identical, and thus the state updates can be batched. If a large payment spans deposits of multiple committee chains, the payment is broken down into smaller payments, only affecting one deposit at a time. Having many deposits, each with distinct committee members, affects performance (see §6.1).

5.3 Committee chains with secure persistent storage

In addition to committee chains, Teechain also supports the optional use of secure persistent storage for crash fault tolerance. After a failure, a treasury can reload its state, settle channels and return deposits. To overcome roll-back attacks, state freshness must be guaranteed by the TEE hardware [3], e.g., through hardware monotonic counters [37].

Current Intel SGX implementations throttle accesses to hardware monotonic counters to tens of increments per second [56, 78], which limits performance. As a mitigation, Teechain batches transactions at the client side, similar to other payment networks [71] that merge payments from the same sender/recipient pairs. Current SGX implementations also limit the number of writes for hardware counters to 1 million [56]. For the majority of parties in Teechain, this should be high enough. When the limit is reached, Teechain forces treasuries to settle channels and return deposits.

6 Evaluation

We explore the performance of payment channels (§6.1), multi-hop payments (§6.2), payment networks (§6.3), and blockchain storage costs (§6.4).
We implement Teechain using Intel SGX for the Bitcoin blockchain. We use the Linux Intel SGX SDK version 2.1 [34] and a subset of Bitcoin core [83]. A release of our implementation is available at: https://teechain.network. Teechain consists of 20,000 lines of C/C++ code inside the TEE, and 65,000 lines of untrusted code. As the Linux SGX SDK does not support monotonic counters on all hardware [34], we emulate them with a delay of 100 ms [56, 78].

Our implementation is hardened against side-channel attacks. Although TEE compromises are mitigated by committee chains (§5), Teechain uses timing and memory-access side-channel resistant libraries for sensitive data: (i) secp256k1, a constant time and memory library for elliptic curve operations [82]; (ii) a side-channel resistant implementation of Elliptic-Curve Diffie-Hellman [86]; and (iii) AES-GCM using AES-NI [86], immune to software side channels [34].

To measure performance, we define throughput as the number of transactions sent per second, and latency as the time from when a payment is issued until an acknowledgement is received. At the time of writing, the only payment network with a public implementation is the Lightning Network (LN) [71]. We compare Teechain against the Lightning Network Daemon (LND) [50]. Both Teechain and LN can optionally batch transactions at the client side, merging multiple payments into a single payment with increased latency.

6.1 Performance of payment channels

We want to answer three questions: (i) what is the throughput of a payment channel? (ii) how do committee chains affect performance? (iii) what is the benefit of transaction batching?

We deploy Teechain on 33 SGX-capable machines in the UK, the US and Israel. Fig. 4 shows the network topology and hardware set-up. We construct a payment channel between US and UK. To evaluate treasury outsourcing, IL acts as a non-SGX client using US as a remote treasury.

In all experiments, committee chains have the same length, as the performance is bound by the slowest party. We vary n for m-out-of-n committee chains. Note that m does not affect channel throughput because all n committee members must replicate the state regardless. When batching transactions, we batch for 100 ms before sending a transaction. Teechain requires one round-trip for a payment, while LN requires two [71]. Teechain can pipeline payments but LN only supports sequential transactions and must batch by default.

Tab. 2 shows the observed throughput and latency. LN achieves a maximum throughput of 1,000 tx/sec with a latency of 387 ms (99th percentile at 420 ms). With a committee chain of $n=1$, Teechain has two orders of magnitude higher throughput with a latency of 86 ms (no batching). With $n=2$ (i.e., an extra committee member in Israel), the throughput of Teechain is 34x compared to LN, with similar latencies. Adding more members to each party’s committee chain only increases latency, and throughput remains unchanged. Using persistent storage, performance is capped by the TEE hardware counters, resulting in 10 tx/sec, which can be overcome by transaction batching. Teechain achieves better performance than LN when batching.

Tab. 3 shows the performance of different API calls. LN channel creation takes approx. 60 mins, as a transaction must be placed onto the blockchain and confirmation takes 6 Bitcoin blocks. Since Teechain decouples channels and deposits, channel creation takes only 2.8 secs; we assume deposits are already on the blockchain. Creation of an outsourced payment channel takes 4.3 secs, as the client (IL) must also verify the

Table 2. Channel performance

<table>
<thead>
<tr>
<th>Payment channel</th>
<th>Throughput (tx/sec)</th>
<th>Latency (ms) [99th %]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lightning Network</td>
<td>1,000</td>
<td>387 [420]</td>
</tr>
</tbody>
</table>
| Teechain
| $n = 1$ | 130,311 | 86 [93] |
| $n = 2$ (IL) | 34,115 | 292 [301] |
| $n = 3$ (IL, UK) | 33,180 | 415 [432] |
| $n = 4$ (IL, US, UK) | 33,178 | 677 [691] |
| $n = 1$ (batching) | 150,311 | 191 [196] |
| $n = 3$ (batching) | 135,331 | 516 [530] |
| $n = 3$ (outsourced) | 33,178 | 483 [494] |
| Persistent storage
| $n = 1$ | 10 | 288 [294] |
| $n = 1$ (batching) | 145,786 | 401 [408] |

Table 3. API performance

<table>
<thead>
<tr>
<th>API operation</th>
<th>Latency (ms) [99th %]</th>
</tr>
</thead>
</table>
| Lightning Network
| new_pay_channel | 60 min. [N/A] |
| assign_comm_chain | 2,810 [4,205] |
| associate_deposit
| $n = 1$ | 101 [110] |
| $n = 2$ (IL) | 289 [297] |
| $n = 3$ (IL & UK) | 422 [429] |
| $n = 4$ (IL, US & UK) | 677 [681] |
| Persistent storage | 302 [309] |
| Teechain
| new_pay_channel | 2,765 [3,910] |
| assign_comm_chain | 2,765 [3,910] |
| associate_deposit
| $n = 1$ | 101 [110] |
| $n = 2$ (IL) | 289 [297] |
| $n = 3$ (IL & UK) | 422 [429] |
| $n = 4$ (IL, US & UK) | 677 [681] |
| Persistent storage | 302 [309] |
6.2 Performance of multi-hop payments

Next we evaluate the performance of multi-hop payments and investigate: (i) how does latency increase with the number of hops in a payment path? and (ii) how do committee chains affect multi-hop performance?

For our experiments, we limit the maximum number of hops in a payment path to 11, as longer payment paths are unlikely to be seen in practice. Recent work [74] studying LN shows that the average number of hops between two parties is approximately 3.

We construct the 11 payment channels, all of which are transatlantic in the topology from Fig. 4. We send transactions along the path $UK \rightarrow US \rightarrow IL \rightarrow UK$. For UK and IL, we split the payment channels equally between the machines to spread load. All experiments use the same payment channels and committee chains of the same length. Committee members are deployed in different failure domains.

We measure the latency of multi-hop payments. We vary the number of hops and the number of committee members per committee chain for each node. Fig. 5 shows that LN scales linearly with chain length, taking 1 sec to complete a payment across 2 hops (2 channels) and 6 secs for 11 hops. Teechain also scales linearly but with a different slope: with $n=1$, the latency is about $2x$ that of LN; using $n=3$, payments across 2 hops take 5 secs; payments across 11 hops take 26 secs. The $3-4x$ overhead compared to LN is a due to the extra network round trips for multi-hop payments.

To update all channels in a multi-hop payment consistently, both Teechain and LN do not pipeline payments. Therefore, throughput is $1/\text{latency}$. Teechain and LN batch transactions: throughput becomes the batch size divided by the latency to complete the payment. We compare the throughput for Teechain and LN, with each Teechain node using committee chains of $n=3$. Teechain batches 135,000 tx/sec; LN batches 1,000 tx/sec (see §6.1). With this, the throughput of Teechain for 2 hops is 14,062 tx/sec, and for 11 hops is 3,649 tx/sec. For LN, throughput for 2 hops is 862 tx/sec, and 139 tx/sec for 11 hops. Teechain thus outperforms LN by 16–26x.

In summary, Teechain requires three network round trips to complete a payment, while LN requires only 1.5. Teechain must synchronize nodes off-chain with extra messages to support asynchronous blockchain access. In addition, Teechain is network-bound: chain replication increases latency.

6.3 Performance of payment networks

We evaluate the performance of a complete Teechain payment network and investigate how its throughput is affected by (i) the network topology and (ii) the committee chains.

We use 30 machines located in the UK (see Fig. 4). As there exist no public micro-payment datasets, we use the transactions from the Bitcoin blockchain. We filter out transactions that we cannot replay, such as those that spend to/from multisignature addresses. For transactions with multiple inputs and outputs, we choose only one. The resulting dataset has over 150 million payments from a source to a recipient address.

We construct two payment network topologies: (i) a complete graph, in which all node pairs have direct payment channels; and (ii) a hub-and-spoke topology (see Fig. 6), in which the nodes are connected with 3 tiers of connectivity: tier 1 nodes have the highest connectivity and tier 3 nodes the lowest. We emulate wide-area network links by adding 100 ms latency between machines.

To execute payments, we assign Bitcoin addresses to the machines. For the complete graph, we randomly and evenly assign Bitcoin addresses; for the hub-and-spoke graph, we distribute the addresses in a skewed fashion, with larger nodes being assigned more addresses than smaller nodes (50% of addresses to tier 1 nodes, 35% to tier 2, and 15% to tier 3). For each graph deployment, we compare the throughput with differently-sized committee chains, for $n=1$ to $n=3$ committee members per deposit. We vary the number of nodes in the deployment from 5 to 30 machines.

Fig. 7 shows the throughput for the complete graph topology. For all committee chain lengths, throughput scales linearly with the number of hops. Committee chains of length $n=1$ perform best (2.2 million tx/sec with 30 machines); committee chains with $n > 1$ limit throughput (1 million tx/sec). There is little difference (9%) between $n=2$ committee members and $n=3$; throughput is bottlenecked by the time to replicate state.
Next we consider the hub-and-spoke graph topology. Multi-hop payments use the shortest path—if there are multiple paths, only one is chosen. As multi-hop payments lock channels during execution, payments compete with one another. To overcome this, Teechain uses dynamic channel creation to allow concurrent payments between endpoints (see §4.3).

Fig. 8 shows how the throughput increases as intermediate nodes (i.e., tier 1 and 2) are permitted to create more dynamic channels. Without dynamic channels, i.e., G = 1, with n = 3 committee chains, the network achieves around 210 tx/sec, with an average latency of 720 ms. With G > 1, throughput scales almost linearly with the number of channels, for both n = 1 and n = 3. We obtain diminishing returns as G increases further because tier 3 nodes become congested.

In summary, payment throughput is lower in the hub-and-spoke topology compared to the complete topology by several orders of magnitude. This is a result of locking channels for multi-hop payments: while dynamic channel creation alleviates contention, best performance requires high connectivity.

Given that Teechain and LN exhibit different performance for single and multi-hop payments, any in-depth comparison requires careful treatment of many aspects, including the employed payment routing algorithm, the choice of transaction batching interval in LN, the number of dynamic channels created in Teechain, and the used contention avoidance algorithm [54]. We defer more experiments to future work.

6.4 Blockchain cost

We evaluate and compare: (i) the number of transactions placed on the blockchain; and (ii) the blockchain cost. We define the blockchain cost as the amount of data placed on the blockchain to open and close a payment channel. Unlike existing solutions, Teechain can assign multiple deposits to a single channel. For a fair comparison, we assume at most 2 deposits per channel, and we abstract from particular blockchains by counting the pairs of public keys and signatures [12]. We compare with the Lightning Network (LN) [71], Duplex Micropayment Channels (DMC) [18] and Scalable Funding of Micropayment Channels (SFMC) [12].

Tab. 4 shows the number of transactions and the blockchain costs

<table>
<thead>
<tr>
<th>Payment channel</th>
<th>Bilateral No. txs</th>
<th>Cost</th>
<th>Unilateral No. txs</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>LN [71]</td>
<td>4</td>
<td>6</td>
<td>4</td>
<td>6</td>
</tr>
<tr>
<td>DMC [18]</td>
<td>2</td>
<td>4</td>
<td>3 + d</td>
<td>2(3 + d)</td>
</tr>
<tr>
<td>SFMC [12]</td>
<td>2/n</td>
<td>2p/n</td>
<td>(1 + i)/n</td>
<td>(1 + i)(p/n) + (3 + d) + 2(3 + d)</td>
</tr>
<tr>
<td>Teechain</td>
<td>1 + (n/2)</td>
<td>3</td>
<td>2 + (n/2)(n/2) + (n/2) + m1 + m2</td>
<td></td>
</tr>
</tbody>
</table>

Table 4. Number of transactions and blockchain costs

For DMC, the number of transactions required ranges from 2 to 3 + d, where d ≥ 1 defines the DMC transaction chain length. In LN, 4 transactions must be placed onto the blockchain, which result in a cost of 6 across bilateral and unilateral termination. For SFMC, the number of transactions ranges from 2/n to (1 + i)/n + (3 + d), where n is the total number of constructed payment channels and i and d define the funding and transaction chain’s lengths, respectively. Since each SFMC transaction requires p signatures and is shared between the n payment channels, the blockchain cost is 2p/n if all parties collaboratively close payment channels; (1 + i)(p/n) + 2(3 + d) if closed unilaterally.

Teechain constructs funding deposits using m-out-of-n transactions. If the channel has a single deposit and is settled off-chain, only one transaction is required, with a cost of 1 + (n/2), i.e., the cost of a signature and public key to spend funds into the treasury address, and n public keys for committee members; otherwise, with 2 deposits assigned to a channel, Teechain requires 3 transactions, with the cost including the two funding deposits and the settlement transaction.

We observe that, with a 2-out-of-3 multi-signature for each funding deposit, Teechain places 25%–75% fewer transactions on the blockchain than LN, and is up to 58% more efficient for bilateral termination. For DMC and bilateral closures, Teechain places 50% fewer transactions and 37% less data on the blockchain than DMC. While Teechain outperforms SMFC when closing channels unilaterally, SMFC uses fewer transactions under bilateral closure if n = 1 and p/n > 1. SFMC amortises transactions across multiple parties
and channels at the cost of having to trust all involved parties. Teechain does not make this assumption.

7 Related Work

Payment channels and networks. Unilateral payment channels were first discussed in [30]. Duplex Micropayment Channels [18] use time-locked transactions to prevent old channel states from being published. Lightning Network (LN) [71] supports multi-hop payments but requires users to monitor the blockchain. Pisa [58] builds on LN and allows third parties to monitor the blockchain on behalf of other users. REVIVE [44] rebalances payment channels, but locks the funds during the rebalancing process. Sprites [60] can add and remove funds to channels dynamically, but requires smart-contracts [80]. State channels [24, 59] is a generalization of payment networks, but also requires smart-contracts. Fulgor and Rayo [54] attempt to add concurrency and privacy to existing payment networks.

All of these proposals assume synchronous blockchain access. To the best of our knowledge, Teechain is the first system to avoid this assumption.

Blockchain layer scaling. Prior work addresses the scalability and performance limitations of blockchains by departing from chain structures [49, 76, 85], changing block generation [26, 67, 70], operating in a permissioned setting [4, 28] and using classical consensus [14, 57, 61]. Other approaches operate global committees [27, 68, 81] or shard transactions to concurrent blockchains [45, 46] in order to scale. Unlike these, Teechain executes payments without the blockchain, and users can choose whether or not to use Teechain in conjunction with a blockchain.

Fundamentally, on-chain protocols must reach consensus (global or per shard) [92] for each transaction and thus cannot achieve the performance of Teechain: by operating multiple concurrent and independent committees, Teechain can scale throughput with the number of users and committees in the network. As with any second-layer solutions, Teechain places deposit and settlement transactions on the blockchain and thus benefits from improved blockchain performance.

Trusted hardware and blockchains. Prior work proposes electronic payment systems [77] based on secure co-processors [23], smart cards [16], and trusted hardware modules [9]. They utilize dedicated hardware to enforce double-spend protection. However, these solutions do not integrate asynchronously with a blockchain and make weaker security assumptions, such as assuming no hardware compromises.

Microsoft’s Confidential Consortium Framework (CCF) [75] operates a permissioned blockchain using TEEs to enable high throughput and confidentiality for transactions. Unlike Teechain, CCF does not operate on top of an existing permissionless blockchain, but instead assumes a permissioned setting in which the identities of all members of the CCF consortium are known.

TEEChan [52] uses TEEs to realize single-hop payment channels with limited lifetimes. It provides limited fault tolerance, requires synchronous blockchain access, does not support multi-hop payments, and cannot create payment channels instantly or dynamically assign deposits. TownCrier [94] enables a secure data-feed for blockchain contracts; Tesseract [6] is a secure multi-blockchain cryptocurrency exchange; Ekiden [15] offers a platform for privacy-preserving smart contracts; Obscuro [89] constructs a Bitcoin privacy mechanism; and Paralysis Proofs [95] allows consensus reconfiguration with a blockchain. Apart from the different goals, Teechain uses a more refined security model: clients use a remote TEE to prevent fraud and a local TEE for availability.

8 Conclusion

Teechain is the first payment network to operate with asynchronous blockchain access and offer dynamic deposits. Teechain mitigates against TEE compromises through a novel combination of force-freeze replication and m-out-of-n signatures to construct committee chains. We evaluate Teechain using Intel SGX on Bitcoin; our results show orders of magnitude performance gains compared to the state of the art.

9 Acknowledgements

We thank the anonymous reviewers and our shepherd, David Andersen, for their feedback and suggestions. This project received funding from the European Union Horizon 2020 research and innovation programme under the SecureCloud project (690111); the Israel Science Foundation; the US-Israel Binational Science Foundation (BSF); the US National Science Foundation (NSF); the Israel Cyber Bureau; Engima MPC Inc; and a Mel Berlin Cyber-Security Scholarship. We also thank Intel for their donation of SGX servers.

References

