
Teechain: A Secure Payment Network with
Asynchronous Blockchain Access

Joshua Lind
Imperial College London

Oded Naor
Technion - Israel Institute of

Technology

Ittay Eyal
Technion - Israel Institute of

Technology

Florian Kelbert
Imperial College London

Emin Gün Sirer
Cornell University

Peter Pietzuch
Imperial College London

Abstract
Blockchains such as Bitcoin and Ethereum execute payment
transactions securely, but their performance is limited by the
need for global consensus. Payment networks overcome this
limitation through off-chain transactions. Instead of writing
to the blockchain for each transaction, they only settle the
final payment balances with the underlying blockchain. When
executing off-chain transactions in current payment networks,
parties must access the blockchain within bounded time to
detect misbehaving parties that deviate from the protocol. This
opens a window for attacks in which a malicious party can
steal funds by deliberately delaying other parties’ blockchain
access and prevents parties from using payment networks
when disconnected from the blockchain.

We present Teechain, the first layer-two payment network
that executes off-chain transactions asynchronously with re-
spect to the underlying blockchain. To prevent parties from
misbehaving, Teechain uses treasuries, protected by hardware
trusted execution environments (TEEs), to establish off-chain
payment channels between parties. Treasuries maintain col-
lateral funds and can exchange transactions efficiently and
securely, without interacting with the underlying blockchain.
To mitigate against treasury failures and to avoid having to
trust all TEEs, Teechain replicates the state of treasuries using
committee chains, a new variant of chain replication with
threshold secret sharing. Teechain achieves at least a 33×
higher transaction throughput than the state-of-the-art Light-
ning payment network. A 30-machine Teechain deployment
can handle over 1 million Bitcoin transactions per second.

CCS Concepts • Security and privacy → Distributed sys-
tems security.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
SOSP ’19, October 27–30, 2019, Huntsville, ON, Canada
© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-6873-5/19/10. . . $15.00
https://doi.org/10.1145/3341301.3359627

1 Introduction

Cryptocurrencies, such as Bitcoin [63] and Ethereum [93],
offer secure payments between distrusting parties using
blockchains. Existing blockchains have limited performance
due to their need for consensus across all transactions: global
throughput is capped at a handful of transactions per second;
transactions take minutes to hours to be processed and parties
must maintain a history of every transaction executed.

Payment networks, such as Lightning [71] and Raiden [87],
have been proposed as a more performant second layer on
top of a blockchain. They allow parties to move fund deposits
from the blockchain into point-to-point payment channels.
Parties then exchange payment transactions directly off-chain
via these channels, without having to involve the blockchain.
Before a channel is terminated, it is settled by writing its
final balance as a transaction back to the blockchain. Pay-
ment networks can therefore operate with higher transaction
throughput and lower latency than blockchains [20].

Protocols for payment channels must ensure that parties
cannot steal funds. In particular, only the most recent chan-
nel balance must be settled on the blockchain; otherwise a
malicious party can settle a channel at a previous balance.
Existing protocols thus require parties to monitor the under-
lying blockchain [71]: if a party observes that a stale balance
is settled on the blockchain, they have a bounded reaction
time ∆ to invalidate the settlement. This requirement for syn-
chronous blockchain access, i.e., parties must read blockchain
transactions and write them within ∆, has drawbacks: (i) it
makes payment networks vulnerable to attacks in which an
adversary deliberately delays writes to [8, 22, 39–41, 73, 79]
or reads from the blockchain [55] beyond ∆ to steal funds;
(ii) it prevents parties from using payment networks with-
out connectivity to the blockchain; and (iii) it complicates
the cryptographic protocols and the number of messages ex-
changed because parties must provide each other with means
to cancel stale settlements [71].

Our key idea is that, rather than requiring parties to rely
on the underlying blockchain to detect misbehaviour dur-
ing off-chain transactions, we explore a design for a pay-
ment network in which parties use trusted execution environ-
ments (TEEs) [17, 64] as a root-of-trust to enforce faithful
protocol execution. TEEs are a hardware security feature in

https://doi.org/10.1145/3341301.3359627

modern CPUs [5, 35] that ensures the confidentiality and
integrity of code and data. At the same time, we want our
design to be resilient against TEE failures and attacks that
compromise a subset of the TEEs [11, 62, 65, 90].

We describe Teechain, a new payment network that
supports secure and performant payments on existing
blockchains. Teechain only requires asynchronous blockchain
access, i.e., parties are not assumed to read and write transac-
tions on the blockchain within bounded time. Teechain uses
trusted treasuries, which are protected by TEEs, to maintain
fund deposits for off-chain payment channels. By relying on
TEEs, treasuries can employ a new efficient off-chain pay-
ment protocol that simplifies both payment and settlement.
To mitigate against TEE failures or compromises, treasuries
replicate their state among a committee of treasuries. Within
each committee, a treasury must have approval from a subset
of other committee treasuries to make an off-chain transac-
tion or settle a payment channel. TEEs therefore improve the
efficiency of payment channels but the security of Teechain
does not depend on that of individual TEEs.

Overall the design of Teechain makes three contributions:
(C1) Dynamic deposits with treasuries. Due to their bind-
ing with a blockchain, existing payment networks only sup-
port a fixed assignment of deposits to channels: parties cannot
add or remove deposits after a payment channel is established.
Instead, Teechain separates the ownership of fund deposits
and channel assignment using treasuries. It only requires
blockchain interaction during the initial creation of a fund
deposit, whereby a treasury exclusively owns each deposit
by storing the private keys for that deposit in a TEE. Parties
can assign deposits to channels upon establishment using the
treasuries, and move them in and out of channels at runtime.
Since deposit assignment does not require blockchain access,
new payment channels are established within seconds.
(C2) Payments with asynchronous blockchain access. Af-
ter associating a fund deposit with a channel, a party makes
a payment through a single integrity-protected message ex-
change. A payment message decrements the channel balance
of its treasury and increments the balance of the recipient’s
treasury. This is done by duplicating the pair of balances
across both treasuries, and updating them atomically. To set-
tle the channel, a party requests a settlement transaction from
the treasury, which is a blockchain transaction with the final
balance. Settlement transactions can be written to the block-
chain in unbounded time because the treasuries ensure that
only a single transaction can be generated for a channel.
(C3) Committee chains. As private keys maintained by trea-
suries to spend fund deposits are stored inside TEEs, acci-
dental TEE failures or malicious TEE compromises could
result in fund loss or theft. Teechain therefore uses committee
chains, which are committees of treasuries responsible for
managing deposits. To replicate deposit balances in a commit-
tee chain, Teechain employs a new force-freeze replication

protocol that prevents roll-back attacks. If a treasury in the
chain fails to update its balance after a payment or tries to
roll-back to a stale balance, the state of all treasuries is frozen,
and they can only settle their balances safely. To mitigate
against compromised TEEs [90], the committee chain uses
the multi-signature support [84] of the underlying blockchain:
a threshold number of signatures by treasuries from the com-
mittee chain are necessary to settle a payment channel.
We implement Teechain using Intel’s SGX TEEs [34] and
deploy it on Bitcoin.1 Teechain achieves substantially higher
throughput due to its more efficient off-chain payment pro-
tocol between treasuries: compared to the Lightning Net-
work [50], Teechain handles 33×–145× more payment trans-
actions depending on the size of committee chains. Chan-
nel establishment takes seconds, as opposed to minutes or
hours [18, 71]. Teechain also reduces the number of transac-
tions stored on the blockchain by at least 25% compared to
the Lightning Network.

2 Secure Payment Networks for Blockchains

2.1 Blockchain protocols

In cryptocurrencies such as Bitcoin [63], Ethereum [85] and
Zerocash [72], a set of nodes connect over a peer-to-peer
network to operate as a replicated state machine. This state
machine maintains an append-only ledger that contains the
history of all transactions in the system. Each transaction is a
payment from one system user, a party, to another, secured
cryptographically. The ledger is a chain of blocks, or block-
chain, such that each block contains a list of transactions.

Each transaction is a list of instructions that update the
state of the blockchain. Different cryptocurrencies implement
transactions that move funds differently: Bitcoin [63] fol-
lows an unspent-transaction-output (UTXO) model in which
transactions consume, or use as input, a set of previously un-
spent transactions, where the output of those transactions are
owned by the sender. A payment transaction therefore con-
sumes unspent input transactions and generates new output
transactions that recipients can spend; Ethereum [85] uses
an account model in which a user’s account balance is repre-
sented as an integer stored on the blockchain and updated by
transactions.

Users are represented by cryptographic public keys. A
user’s transaction is validated with a cryptographic signature
produced by the matching private key. To prevent users from
double-spending, i.e., signing multiple transactions that spend
the same funds, blockchains enforce that funds can only be
spent once by making double-spending transactions conflict:
only one transaction in a set of conflicting transactions can be
written to the blockchain. Transactions may also support more
elaborate conditions such asm-out-of-n multi-signatures that

1An initial release of Teechain can be found at: https://teechain.network.

https://teechain.network

require signing by multiple users: such transactions must be
signed by anym keys from a set of n keys.

In blockchains, nodes must agree on the order of transac-
tions, i.e., they must reach consensus. The details of block-
chain consensus are immaterial to this work—we treat con-
sensus as a black box. Consensus, however, limits transaction
throughput [92] and incurs high storage costs. In Bitcoin,
global throughput is limited to 7 transactions per second [63],
and the total size of the blockchain is 100s of GBs [18]. Due
to consensus, transactions may also take arbitrarily long to be
written to the blockchain—minutes or even days [8].

2.2 Payment networks and channels

Payment networks [54], such as Lightning [71] and
Raiden [87], try to overcome the performance limitations
of blockchains by allowing parties to exchange funds directly,
off-chain. To execute a transaction, they establish a point-to-
point payment channel [18, 52, 60, 70, 71]. A payment chan-
nel is a protocol between two parties, A and B, that updates
their balances directly through message exchange. When a
payment channel is closed, the payment network settles the
channel by writing the final balances of A and B back to the
blockchain using a settlement transaction. Since payment net-
works do not write to the blockchain for each transaction,
their transaction throughput is higher and latencies lower
compared to on-chain payments [71]. Payment networks also
reduce the number of transactions stored on the blockchain
because only final balances are recorded [71, 87].

To establish a payment channel c, as shown in Fig. 1, one or
both of A and B write fund deposit transactions to the block-
chain. These place funds into a 2-out-of-2 multi-signature
account [84] owned by both parties, and requires both A and
B to cryptographically sign any transaction in order to spend
the funds. A creates a fund deposit d of $1000 for c (step 1).
Using the fund deposits, A and B can then execute payment
transactions: a new payment transaction is generated and
signed by both parties, spending from the channel deposits
and reflecting the new balances. For example, A pays B $100
using tx1 signed by both A and B (step 2), and B, whose
balance is now $100, sends A $50 using tx2, also signed by
both parties (step 3). Note that tx1 and tx2 do not require
interaction with the blockchain and that each payment takes
into account all previous payments and updates the current
state of the payment channel. At any time, either A or B may
close the channel by writing the most recent payment transac-
tion to the blockchain: B settles the channel by writing tx2 to
the blockchain with their final balances (step 4).

Payment networks also support multi-hop payments [54,
60, 71] in which multiple payment channels, c1 to cn , are con-
catenated to form a payment path. This allows for payments
between parties that do not have a direct payment channel.
This makes payment networks useful in practice, because it
allows payments between parties without long-lived financial

Write
deposit: d

$1000
1

2

3

... Blockchain

Send $50: tx2
 A: $950

B: $50

BA

Send $50: tx2
 A: $950
 B: $50

Send $100: tx1
 A: $900
 B: $100

Write
settle: tx2

A: $950 B: $50
4

Figure 1. Payment channel in operation

relationships, e.g., e-commerce buyers and sellers who con-
duct transactions via intermediaries [1] such as Amazon [2]
and eBay [25]. Similar to a single payment channel, any party
along the path can unilaterally settle its channels. The added
guarantee is atomicity: either all channels c1 to cn are settled
at the state after the multi-hop payment, or all settle before it.

2.3 Limitations of payment networks

To avoid fund theft or loss, payment networks must only settle
channels with the most recent payment transaction; otherwise
a malicious party can launch a roll-back attack in which they
settle the channel at a previous payment transaction with a
stale balance. For example, in Fig. 1, step 4 , if B settled c
using tx1 instead of tx2 it would allow B to steal $50 from A.

Existing payment networks [18, 70, 71] overcome this
problem by requiring parties to detect misbehaviour using in-
formation available on the blockchain: when using a payment
channel, each party monitors the blockchain for a settlement
transaction written by its counterparty to settle the channel. If
an old settlement transaction is written, the party negates its
effect by writing the most up-to-date settlement transaction
to the blockchain within a bounded reaction time ∆.

For this mechanism to work, the payment network must
assume that parties can read and write transactions on the
blockchain within the fixed upper bound ∆. We refer to this
assumption as synchronous blockchain access.

In practice, it is not always possible to ensure synchronous
blockchain access during payment channel operation. The
load on the blockchain may result in long queues to write
transactions [8]. Moreover, an attacker may delay transac-
tion writes deliberately, such as by controlling the order in
which transactions are written [39, 40, 79], or censoring trans-
actions [22, 41, 73]. Attackers may also partition victims
from the network [55], preventing them from accessing the
blockchain at all. Current payment networks therefore face a
trade-off when selecting the reaction time ∆: a short ∆ allows
for quick settlement but facilitates the above attacks.

The requirement for synchronous blockchain access also
prevents parties from using payment channels when they are
disconnected from the blockchain. This negates one of the
benefits of payment networks: parties can no longer exchange
payments directly with only point-to-point network connec-
tions. For example, it becomes impossible to use a payment
channel between two devices that are directly connected, but

Payment Channel: c2
pay_multihop(50, {c1, c2})

Blockchain
Interface

AP
I

Payment Channel: c1

B

Send $50
 A: $950

B: $50
3

Send $50
 B: $450
 C: $50

4

A

1

C

Teechain committee: CA

Teechain node: nB2

Treasury
Treasury

Blockchain
Interface

AP
I

Treasury

Teechain node: nE

Blockchain
Interface

AP
I

Treasury

Teechain node: nD

Blockchain
Interface

AP
I

Teechain node: nA

TEE
Treasury

Treasury

Deposit: d1
2-out-of-3

Amount: 1000
Assigned: c1
A: 950, B: 50

Deposit: d2

Amount: 500
Assigned: c2
B: 450, C: 50

Blockchain
Interface

AP
I

Teechain node: nC

TEE
Treasury

TEE
Treasury

Figure 2. Teechain overview (Teechain nodes operate treasuries to store and manage funds. Users construct payment channels
between nodes to exchange funds directly, and execute multi-hop payments along concatenated payment channels. Committee
chains with multiple treasuries replicate and protect state.)

do not have connectivity to the Internet and thus the rest of
the blockchain [21].

3 Teechain Design
Next we introduce how Teechain uses trusted execution (§3.1),
state the threat model (§3.2), give an overview of its de-
sign (§3.3), describe treasuries (§3.4) and committees (§3.5),
and analyse how the design handles different threats (§3.6).

3.1 Trusted execution as a root-of-trust

The requirement for synchronous blockchain access in exist-
ing payment networks comes from the fact that their protocols
use the blockchain as a root-of-trust: parties executing the pay-
ment protocol monitor the blockchain to discover when other
parties deviate from the protocol, and react appropriately.

We explore a design that introduces a separate root-of-trust
that, independently of the blockchain, ensures the faithful
execution of a payment protocol. Our idea is for the payment
network to use trusted execution environments (TEEs) [35,
42] during the execution of a payment protocol. TEEs are
encrypted and integrity-protected memory regions, which are
isolated by the CPU hardware from the rest of the software
stack, including higher privileged system software. Multiple
TEE implementations are commercially available, including
Intel SGX [35], ARM TrustZone [5] and AMD SEV [42],
with several others currently under way, such as KeyStone
Enclave [43], Multizone [32] and OP-TEE [51]. Intel CPUs
from the Skylake generation onwards support Software Guard
Extensions (SGX) [33], a set of new instructions that permit
applications to create TEEs called SGX enclaves.

By using TEEs as an independent root-of-trust, we want
our design to only require asynchronous blockchain access,
i.e., the payment protocol must not assume that transaction
reads and writes to the blockchain complete within a fixed
upper bound, but only complete eventually. To achieve asyn-
chronous blockchain access, a payment network must protect
the security of funds, regardless of blockchain access times.

We define the security of funds in terms of balance secu-
rity: at any time during the payment protocol execution, each
party should be able to perform a finite set of actions that
eventually results in them receiving their perceived balance
on the underlying blockchain. A party’s perceived balance

is their initial balance on the blockchain plus any payments
received in the payment network, minus any payments made.
Our design must ensure balance security regardless of how
long transaction reads and writes may take.

3.2 Threat model

We assume that mutually distrusting parties use a blockchain
to exchange funds and that their machines have TEEs. Parties
trust their own machines, including the hardware and soft-
ware, but distrust the machines of others [29]. We assume
that TEEs on machines are normally trustworthy, but a sub-
set of TEEs may suffer arbitrary integrity and confidentiality
compromises. They may be compromised by other parties or
external attackers who want to violate balance security (§3.1).

Parties are rational, selfish and potentially malicious, i.e.,
they may attempt to steal funds and deviate from the pay-
ment protocol, if it benefits them. We also assume that parties
may collude with one another. Parties are connected via a
network, with some behind firewalls or network address trans-
lation (NAT). Parties may drop, modify and replay messages.
An attacker may delay or prevent others from accessing the
blockchain for an unbounded amount of time, but we assume
this cannot occur indefinitely.

3.3 Design overview

Fig. 2 shows the design of Teechain. Teechain constructs
a peer-to-peer payment network in which parties operate
Teechain nodes, e.g., node nA is operated by party A. Each
node comprises: (i) an API for parties to interact with the
payment network; (ii) an interface through which to read
and write blockchain transactions; and (iii) a TEE-protected
treasury that securely holds and manages parties’ funds.

Treasuries ensure the faithful execution of the payment
protocol. They are external to the blockchain and manage pay-
ment channels, execute payment transactions and control the
access to funds. To avoid blindly trusting treasuries to behave
honestly, Teechain uses TEEs to ensure the confidentiality
and integrity of treasuries. By using TEEs, Teechain achieves
asynchronous blockchain access because treasuries operate
correctly, autonomously and protect against misbehaviour by
parties without having to interact with the blockchain.

Table 1. Teechain API

Teechain API Inputs Outputs API Description

Deposits (§4.1)
new_deposit tx, pub1 . . . pubn d_id Creates a new fund deposit (d_id) using a transaction (tx) and a set of treasury public keys
release_deposit d_id tx Refunds an unassociated fund deposit (d_id) by generating and returning a transaction (tx)
approve_deposit d_id, pub ⊤∣⊥ Requests approval for a deposit (d_id) from a specific treasury (pub)

Payment channels (§4.2)
new_pay_channel pub c_id Creates a new payment channel (c_id) with a given treasury (pub)
associate_deposit d_id, c_id ⊤∣⊥ Associates an approved fund deposit (d_id) with an existing payment channel (c_id)
dissociate_deposit d_id, c_id ⊤∣⊥ Dissociates a previously associated fund deposit (d_id) from a payment channel (c_id)

Payments (§4.2)
pay_channel val, c_id ⊤∣⊥ Pays an amount (val) to the other user in a payment channel (c_id)
pay_multihop val, c_id1 . . . c_idn ⊤∣⊥ Executes a multi-hop payment of an amount (val) along a given path of payment channels

Settlement (§4.2)
settle_channel c_id tx Settles a payment channel (c_id) by generating a settlement transaction (tx)
eject_multihop c_id tx Settles a payment channel (c_id) during the execution of a multi-hop payment
eject_multihop popt c_id, popt tx Settles a payment channel (c_id) using a PoPT (popt) during a multi-hop payment

Chain replication (§5)
assign_comm_chain pub ⊤∣⊥ Assigns this treasury to a committee chain by joining the last treasury (pub) in the chain

As TEE implementations may suffer from confidentiality,
integrity and availability failures [11, 62, 90], Teechain avoids
trusting individual TEEs for security. Instead, Teechain oper-
ates committees of treasuries: these are groups of treasuries
that manage a single collection of funds together. Fig. 2 shows
a committee CA that constitutes of the treasures at nodes nA,
nD and nE . Within each committee, a treasury must have ap-
proval from a subset of other treasuries to make an off-chain
transaction or settle a payment channel.

Tab. 1 shows the API that Teechain provides to parties.
It supports (i) creating deposits (§4.1), (ii) operating pay-
ment channels (§4.2) and (iii) constructing committees (§5).
Teechain generates unique identifiers for each deposit and
channel, e.g., when a deposit is created (new_deposit), a unique
identifier is returned as a handle to be used in subsequent API
calls. Treasuries are identified through unique public keys.

To execute payments, Teechain forms payment channels
between nodes with network connectivity. Treasuries commu-
nicate via these channels to update payment balances. Fig. 2
shows channel c1 between A and B; and c2 between B and C.

Multi-hop payments can be executed along payment chan-
nel paths. In Fig. 2, a payment from A to C is executed: A
invokes the API to execute a multi-hop payment of $50 along
path c1–c2 to C (step 1); node nA notifies the treasuries of
its committee of the upcoming balance update (step 2); the
treasuries for nodes nA and nB update the balances of A and
B in c1 (step 3); and the treasuries for nodes nB and nC up-
date the balances of B and C in c2 (step 4). The final state
is that A’s balance has been deducted $50 in c1, B’s balance
incremented by $50 in c1 and decremented by $50 in c2, and
C’s balance incremented by $50 in c2.

3.4 Treasuries

Treasuries generate public/private key pairs for treasury ad-
dresses, which are cryptocurrency addresses owned exclu-
sively by a treasury. They are generated securely inside each
TEE, and their private keys are stored in TEE memory.

Parties can send funds to these addresses in the form of
fund deposits. A call to new_deposit from Tab. 1 creates a
deposit. It requires a deposit transaction tx, which sends funds
to a set of treasury addresses, identified by the treasury public
keys, pub1 . . . pubn . In Fig. 2, deposit d2 sends $500 to the
treasury at node nB . Deposits can be associated by a treasury
with a payment channel, thus incrementing the balance of that
party in the channel. Fig. 2 shows two deposits registered with
the treasury of node nB : d1 of $1000 assigned to channel c1;
d2 of $500 assigned to channel c2.

Parties must verify the integrity of treasuries before trust-
ing them with funds; Teechain uses the remote attestation
support of TEEs for verification [36, 38]. A TEE (i) measures
the treasury code; (ii) cryptographically signs the measure-
ment and the treasury’s public key; and (iii) provides the
signed measurement and public key to the remote party. The
remote party then verifies the attestation, i.e., the remote party
ensures that the attestation is correctly signed by the TEE
hardware and that the measurement corresponds to a known
treasury implementation. Parties can thus verify that a spe-
cific treasury, identified by its public key, is operating genuine
TEE hardware.

Users without a TEE-enabled node of their own can use a
remote node to manage their funds through treasury outsourc-
ing. For this, the party attests a remote treasury and provisions
it with a secret key, giving it the same abilities as a local party.
To avoid having to trust a single remote treasury, Teechain
constructs committees with multiple remote treasuries (§3.5).

3.5 Committee chains

Committees are groups of treasuries that jointly manage fund
deposits. For each deposit owned by a committee, a minimum
number of committee members are required to sign transac-
tions before that deposit can be spent, thus tolerating a fixed
number of TEE failures. For this, Teechain uses the multi-
signature support of the blockchain [84]: each fund deposit
is paid into anm-out-of-n treasury address, wherem treasury

signatures are required to spend the deposit. The n commit-
tee members correspond to the n public keys provided to
new_deposit in Tab. 1, when the deposit is created.

All committee members must agree on the proportion of
each deposit owned by the parties in a payment channel. To
achieve agreement, Teechain uses a variant of chain replica-
tion [91], which offers strong consistency without requiring
all nodes to communicate directly. This is beneficial because
parties may not have direct connectivity due to network ad-
dress translation (NAT) and firewalls.

With chain replication, Teechain must prevent roll-back
and state forking attacks [10] in which an attacker partitions
the committee members into disjoint subgroups that can settle
a channel at different balances using different deposit states.
Forking a committee chain in this way would allow attackers
to roll-back to old payment states to steal funds.

Teechain achieves this with a new variant of chain replica-
tion called force-freeze replication: if any committee member
fails or refuses to update to the latest agreed upon state, the
replication chain is broken, freezing all nodes at the current
state. This prevents future state updates and requires that
all channels are settled and unused deposits released. We
describe force-freeze replication in more detail in §5.

3.6 Threat analysis

Malicious parties. Teechain assumes parties are rational and
selfish, i.e., parties behave in their best financial interest (§3.2).
We consider two possible cases: (i) A is a malicious local
party; and (ii) B is a malicious remote party. In the case
of a local malicious party A, Teechain requires parties to
encrypt and sign all API calls made to a local (or outsourced)
treasury (Tab. 1). A only has access to their own funds but
cannot affect other funds, as enforced by the local treasury.

In the case of a malicious remote party B who wishes to
steal A’s funds, B must either interact with the Teechain API to
force a protocol deviation or drop/replay/modify messages on
the network. Teechain secures funds with treasuries and uses
TEEs to ensure faithful protocol execution. Treasuries use
encrypted, authenticated and freshness-protected messages.
Compromised treasuries. Current TEE implementations are
vulnerable to attacks, e.g., through side-channels [11, 62,
90], and Teechain assumes that treasury compromises are
possible (§3.2). We consider two cases of a compromised
treasury T , which wishes to attack A: (i) TL is a local treasury
that A interacts with directly (i.e., the treasury at node nA in
Fig. 2); and (ii)TR is a remote treasury on another node in the
Teechain network.

A compromised local treasury TL cannot steal A’s funds
due to Teechain’s m-out-of-n committees for deposits. To
steal a deposit,TL would need to compromisem− 1 treasuries
in the committee. To prevent TL from deceiving A when inter-
acting with the Teechain API, Teechain requires the results of
API calls to be signed by all n committee treasuries, except

when an API call returns a blockchain transaction, which only
requires m signatures. If TL fails to coordinate correctly with
the committee, A settles channels and returns deposits.

Mitigating a compromised remote treasury TR is similar
to the local case above: committees protect deposits, and
thus TR needs to compromise m − 1 other treasuries. Note
that, although the requirement for n signatures on API calls
means that TR can force channel settlements, it does not gain
financially from this. Similar to prior work [12], Teechain
assumes committee members are paid fees for participation.
Global TEE compromises. To mitigate global TEE compro-
mises, in which many treasuries are compromised simultane-
ously, Teechain is designed to be TEE-agnostic, thus avoiding
dependencies on a single TEE implementation. This allows
parties in the network to protect deposits using committees of
heterogeneous TEEs. Under global TEE compromises, e.g.,
when a specific TEE vendor leaks hardware private keys or a
batch of TEEs are found to be faulty, parties can lower their
risk by including sufficiently heterogeneous TEEs in their
committee chains.

Compromises to the attestation mechanism of a particular
TEE implementation, e.g., as done by the Foreshadow [90]
attack against the Intel attestation service, do not affect funds
held by committees. As described in §3.4, remote attestation
ensures that a specific treasury, identified by its public key, op-
erates genuine TEE hardware. Even if remote attestation has
been compromised, an attacker can only create new malicious
treasuries, but cannot spoof other treasuries or committee
members in the network. To steal funds, an attacker would
need to bias the selection of future committee members. We
discuss committee member selection in §5.2.

4 Payment Protocol
This section describes Teechain’s deposit allocation (§4.1),
its payment channel protocol (§4.2), its multi-hop payment
protocol (§4.3), and sketches their security proofs (§4.4).

4.1 Allocating dynamic deposits

Deposits can be created at any time and associated/dissoci-
ated with payment channels dynamically. Alg. 1 shows the
protocol executed by treasuries for the API calls from Tab. 1.

To construct a new deposit d, parties invoke new_deposit
(Alg. 1, line 1) and present a deposit transaction tx and the list
of treasury public keys forming the committee that tx sends
funds to. The treasury then verifies that tx sends funds to an
m-out-of-n multi-signature address using the committee mem-
bers’ public keys, pub1 . . . pubn , and notifies the committee of
the new tx (see §5). The treasury then constructs a new de-
posit d , forwards tx to the blockchain, and returns d’s unique
identifier to the requester (line 6), signed by all committee
members—we omit signature collection for brevity.

A payment channel c may contain zero or more deposits
through deposit association. The sum of the deposits asso-
ciated with c must be equal to the sum of the balances of A

Algorithm 1: Teechain payment protocol executed by the treasury at each node (Based on the API shown in Table 1. For
brevity, we omit the collection of committee member signatures at the end of each API call (see §3.6).)

1 on new_deposit(tx,
pub1...pubn):

2 verify_tx(tx, pub1...pubn)
3 d ← create_new_deposit(tx)
4 deposits[d.id] ← d /* store dep */
5 write_to_blockchain(tx)
6 return d.id /* return deposit id */

7 on release_deposit(d_id):
8 d ← deposits[d_id]
9 assert(d.chan = ∅) /* unassoc */

10 tx ← gen_deposit_refund(d)
11 deposits[d.id] ← ∅ /* clear dep */
12 write_to_blockchain(tx)
13 return tx /* return refund */

14 on approve_deposit(d_id, pub):
15 d ← deposits[d_id]
16 apprv ← ask_approve_remote(d,

pub)
17 d.apprv[pub] ← apprv
18 return apprv /* return approval */

19 on new_pay_channel(pub):
20 c ← create_channel_with(pub)
21 (c.my_bal, c.rem_bal) ← (0, 0)
22 channels[c.id] ← c
23 return c.id /* return channel id */

24 on associate_deposit(d_id,
c_id):

25 d ← deposits[d_id]
26 c ← channels[c_id]
27 assert(d.chan = ∅) /* unassoc */
28 assert(d.apprv[c.pub])
29 d.chan ← c /* add assoc */
30 c.my_bal ← c.my_bal + d.val
31 send_assoc_to_remote(d, c)

32 on dissociate_deposit(d_id,
c_id):

33 d ← deposits[d_id]
34 c ← channels[c_id]
35 assert(d.chan = c)
36 send_dissoc_to_remote(d, c)
37 d.chan ← ∅ /* remove assoc */
38 c.my_bal ← c.my_bal − d.val

39 on pay_channel(val, c_id):
40 c ← channels[c_id]
41 assert(c.my_bal ≥ val)
42 c.my_bal ← c.my_bal − val
43 c.rem_bal ← c.rem_bal + val
44 send_pay_to_remote(c, val)

45 on settle_channel(c_id):
46 c ← channels[c_id]
47 if neutral_balance(c) then
48 /* terminate off-chain */
49 dissociate_all_deposits(c);
50 channels[c.id] ← ∅
51 return ∅
52 else
53 /* terminate on-chain */
54 tx ← get_settle_for_bals(c)
55 send_settle_to_remote(c, tx)
56 channels[c.id] ← ∅
57 write_to_blockchain(tx)
58 return tx

59 on pay_multihop(val,
c_id1...c_idn):

60 c1 ← channels[c_id1]
61 . . .

62 cn ← channels[c_idn]
63 lock(val, c1, ... , cn) /* Alg.2 */
64 wait_for_unlock()
65 return ⊤ /* payment done */

66 on eject_multihop(c_id):
67 c ← channels[c_id]
68 s ← c.state
69 if s = lock ∨ s = sign ∨

s = postpayment ∨
s = unlock then

70 return settle_channel (c_id)
71 return c.τ /* settle all */

72 on eject_multihop(c_id, popt):
73 s ← popt.state
74 if s = lock ∨ s = sign then
75 return settle_prepay(c_id)
76 if s = postpayment ∨

s = unlock then
77 return settle_postpay(c_id)

and B in c, i.e., deposits are distributed to A and B. Before
a deposit d can be associated with c, it must be approved by
the remote party in c (e.g., B if A requests approval) using
approve_deposit (line 14). Approval contacts the remote party
via its treasury and queries if the deposit is eligible for asso-
ciation with c. Deposit approval therefore allows A and B to
define which deposits can be associated with c. Due to our
assumption of asynchronous blockchain access, this may take
unbounded time. Deposits need to be approved only once.

Approved deposits can be associated with a single
channel using associate_deposit, and dissociated using
dissociate_deposit (lines 24 and 32). When deposit d is associ-
ated with c by A, the treasuries increase A’s balance by the
deposit amount (lines 30 and 31); dissociation decrements A’s
balance (lines 36 and 38). Disassociation can only be done if
the participant’s balance is greater than or equal to the deposit
amount. Unassociated deposits are deposits not associated
with any channel. They can be returned upon request through
release_deposit (line 7): a new transaction tx is generated and
signed by the appropriate committee treasuries, and written
to the blockchain; d is then removed from the treasury.

4.2 Using payment channels

To create payment channels between treasuries without block-
chain interaction, participants call new_pay_channel and pro-
vide the public key of the treasury with which to create the
channel (Alg. 1, line 19). The two treasuries then establish
a secure communication channel using authenticated Diffie-
Hellman [47] for key provisioning and remote attestation.
Using the secure channel, the treasuries assign a unique chan-
nel identifier to the channel c, initialize both participant’s
balances to 0, and return the channel identifier.

To execute a payment along a channel, the sender calls
pay_channel (line 39), which specifies the amount to send
and the channel identifier. The sender’s treasury first ensures
that the sender has sufficient funds before decrementing the
sender’s balance and incrementing the recipient’s balance
locally (lines 42 and 43). It then forwards the payment to
the recipient’s treasury to update balances. If the payment is
not received by the recipient, e.g., due to a network failure,
the sender settles the channel and writes the balances to the
blockchain to allow the remote party to see the final state of
the channel. This prevents balance inconsistencies.

As deposits can only be associated with a single channel,
participants may suffer from deposit lock-in: when a large
deposit is added to a channel but only a small fraction is
spent, it leaves the remaining locked-in until the channel is
settled. In a channel c with deposit dx of amount ax , after
payments of value px have been made, the locked-in funds fx
are ax − px . If fx is large, there is a high fund lock-in. To
avoid this, participants can perform deposit rebalancing: they
associate another deposit dy of value vy , where vx > vy ≥ px ,
with c and dissociate dx from c. This reduces the lock-in.

At any time, either party may settle the channel using
settle_channel (line 45). If the balances of the parties are neu-
tral, i.e., equivalent to their deposits as if no payments were
made, the treasuries can terminate the channel off-chain by
simply disassociating all deposits from the channel. Off-chain
termination avoids writing a settlement transaction to the
blockchain (see §6.4); otherwise, the local treasury generates
a blockchain transaction tx using the deposits and balances in
the channel, collects signatures from the committee members,
and writes tx to the blockchain.

Algorithm 2: Teechain multi-hop payment protocol (For brevity, we omit the messages exchanged between treasuries
after each step, i.e., the messages in Fig. 3. Payment channels in the path are denoted: c1 . . . cn . Treasuries in the path are
numbered 1 . . .n + 1. pos denotes a treasuries’ position.)

1 on 1 lock(val, c1, ... , cn):
2 if pos ≤ n then
3 assert(cpos .my_bal ≥ val)
4 lock_channel(cpos, val)
5 if pos > 1 then
6 lock_channel(cpos−1, val)

7 on lock_channel(c, val):
8 (c.state, c.val) ← (lock, val)

9 on 2 sign(τ , c1, ... , cn):
10 if pos > 1 then
11 sign_channel(cpos−1, τ)
12 if pos ≤ n then
13 sign_channel(cpos, τ)

14 on sign_channel(c, τ):
15 τ ← add_chan_settle_post(τ , c)
16 c.state ← sign

17 on 3 pre(τ , c1, ... , cn):
18 if pos ≤ n then
19 pre_channel(cpos, τ)
20 if i > 1 then
21 pre_channel(cpos−1, τ)

22 on pre_channel(c, τ):
23 c.τ ← τ /* store τ for if settle */
24 c.state ← prepayment

25 on 4 inter(c1, ... , cn):
26 if pos > 1 then
27 increase_my_bal(cpos−1)
28 if pos ≤ n then
29 decrease_my_bal(cpos)

30 on increase_my_bal(c):
31 c.my_bal ← c.my_bal + c.val
32 c.rem_bal ← c.rem_bal − c.val
33 c.state ← inter

34 on decrease_my_bal(c):
35 c.my_bal ← c.my_bal − c.val
36 c.rem_bal ← c.rem_bal + c.val
37 c.state ← inter

38 on 5 post(c1, ... , cn):
39 if pos ≤ n then
40 post_channel(cpos)
41 if pos > 1 then
42 post_channel(cpos−1)

43 on post_channel(c):
44 c.τ ← ∅ /* not needed */
45 c.state ← postpayment

46 on 6 unlock(c1, ... , cn):
47 if pos > 1 then
48 cpos−1 .state ← idle
49 if pos ≤ n then
50 cpos .state ← idle

lock1

TreasuryA TreasuryB TreasuryC

2

3

4

5

6

pre

lock

pre

post post

unlockunlock

t1 t2

t3 t4

sign (construct)�
sign (construct)�

�inter (only settle with) �inter (only settle with)

Figure 3. Protocol for multi-hop payments

4.3 Executing multi-hop payments

To do a multi-hop payment across multiple payment channels,
parties invoke pay_multihop (Alg. 1, line 59) with the payment
amount and the channel identifiers of the path.2 All channels
in the path must update their balances atomically otherwise
intermediaries could lose funds. For example, B in Fig. 2
retains the same total funds post-payment, i.e., their balance
is incremented by $50 in c1 and decremented by $50 in c2; if
c1 is not updated and only c2 updates, B pays C personally.

One approach to ensure atomic channel updates is to freeze
channels by preventing parties from settling them until the
multi-hop payment completes. This has the problem that if a
failure occurs along the path, channels are frozen indefinitely.
To overcome this, Teechain allows parties to settle channels
even if a multi-hop payment is being executed. Teechain
achieves this using a proof of premature termination (PoPT).
When a party prematurely settles a channel c during a multi-
hop payment, the settlement transaction tx can be used by
other parties in the path to determine the state s of settlement:
c was either settled pre-payment (s = pre), i.e., before the
payment has occurred, or post-payment (s = post), i.e., after
the payment has occurred. The parties can present tx to their
treasuries as a PoPT to settle all channels in the same state s.

Teechain enforces that settlement transactions in state pre
will conflict (§2.1) with those in state post. If a channel in the

2We assume that participants determine paths in Teechain out-of-band.

path is terminated prematurely using eject_multihop (Alg. 1,
line 66), the first settlement transaction tx to be written to
the blockchain determines the state at which all channels are
settled. If a channel in a different state tries to settle after-
wards, the transaction is rejected by the blockchain. The party
can present tx to its treasuries as PoPT through eject_multihop
(Alg. 1, line 72), which generates a settlement transaction
without conflict. Conflicts prevent Teechain from assuming
how long settlements take to be written to the blockchain.

For blockchains with expressive transactions [85], smart
contracts can be used to ensure conflicts between settlement
transactions in different states. Channels in a multi-hop pay-
ment can simply transition from pre to post in a single step.

For other blockchains, e.g., Bitcoin, Teechain must enforce
transaction conflicts manually. Teechain constructs an inter-
mediate path settlement transaction τ that settles all channels
in state post using a single blockchain transaction. τ conflicts
with individual settlement transactions in pre and post because
it spends the same deposits. Teechain uses τ to transition
channels from state pre to post by moving to an intermediate
state inter between the transition first. Channels in state inter
can only settle using τ . If a party decides to settle a channel
while it is in state inter, they settle all channels in the path.
Therefore, during the transition from pre to inter, either the first
channel settlement transaction tx written to the blockchain is
in pre, in which case τ cannot be written to the blockchain
and all channels settle at pre by presenting tx as PoPT ; or tx is
τ , in which case all channels are settled in post using τ . The
transition from inter to post is analogous.
Payment execution. Fig. 3 shows the messages exchanged
by the treasuries when A executes a multi-hop payment to
C via B. Alg. 2 shows the corresponding protocol steps.
Teechain requires three network round trips to complete the
payment: step 1 locks the channel and ensures sufficient
balances (Alg. 2, line 1); step 2 constructs τ with all trea-
suries writing their channel balances and signatures (line 9);
Teechain then updates the channel balances from pre (3 ,

line 17) to inter (4 , line 25) to post (5 , line 38) payment state;
and finally, step 6 unlocks the channels (line 46).

As multi-hop payments lock channels, this prevents con-
current payments. Teechain therefore dynamically constructs
new channels for concurrent payments using unassociated
deposits, as needed. This is feasible because Teechain can cre-
ate channels and assign deposits with low latency. Teechain
coalesces no longer needed payment channels by: (i) execut-
ing multi-hop payments in a cycle along the channels until
they are at a neutral balance; and (ii) terminating the channels
off-chain through deposit dissociation (see §4.2). We evaluate
dynamic channel construction in §6.3.

4.4 Payment protocol security

Teechain’s payment protocol (Algs. 1 and 2) achieves balance
security (§3.1) under asynchronous blockchain access, i.e.,
parties can always receive their funds on the blockchain, re-
gardless of blockchain access times or other parties’ actions.
We sketch a proof below and defer to a technical report [53]
for more details. We first show that Teechain achieves asyn-
chronous blockchain access, and then prove balance security.

When Teechain writes to (new_deposit, release_deposit,
settle_channel, eject_multihop) or reads from the blockchain
(approve_deposit), the protocol makes no assumption about
the duration of these operations. For example, when eject-
ing from a multi-hop payment prematurely (eject_multihop),
Teechain uses the first settlement transaction written to the
blockchain to determine the state at which all channels in a
payment path are settled (§4.3). By considering all blockchain
interactions on a case-by-case basis (Algs. 1 and 2), we can
see Teechain operates with asynchronous blockchain access.
Payment channel security. We now prove that Teechain
achieves balance security using the Universal Composabil-
ity (UC) framework [13]. Our definition of balance secu-
rity (§3.1) under UC is similar to prior work [24, 54, 60]. We
model committees as a single treasury executing the protocol.

Under UC, we consider a real world, in which parties run
the Teechain protocol πTeechain (Alg. 1), and an ideal world,
in which parties interact with an ideal functionality, FTeechain,
a trusted third party that implements Teechain’s API (Alg. 1).
Adversarial behavior is introduced in the ideal world by a
simulator S with appropriate adversarial abilities (§3.2).

To prove that Teechain achieves balance security, we show
that (i) the real and ideal worlds are indistinguishable to an
external observer E. This implies that any attack violating bal-
ance security in the real world is also possible in the ideal one;
and (ii) FTeechain achieves balance security in the ideal world.
This proves that πTeechain also achieves balance security.

We prove indistinguishability between the real and ideal
worlds through a series of five hybrid steps, starting at the real
world H0, and ending in the ideal world H5. In each step, a
key element is changed and indistinguishability is proven. As
commonly done [6, 88], in H0, the desired behavior of TEEs
and the blockchain are replaced by two ideal functionalities,

FTEE and FB, respectively (defined in [66, 69]). In H1 and
H2, S simulates FTEE and FB, respectively, and in H3 and H4,
incorrectly signed messages to FTEE and FB, are dropped, to
tolerate attacks on the signing schemes. Finally, in H5, we
prove equivalence between πTeechain and FTeechain to E.

Next, we prove that FTeechain achieves balance security by
showing that a party can always eventually place transactions
on the blockchain that grant it an amount equal to its perceived
balance. This is done by ordering FTeechain to create transac-
tions that close all open channels, remove all unassociated de-
posits, and place them on the blockchain. Since Teechain does
not make blockchain timing assumptions, denial-of-service
attacks [31, 55]), do not violate balance security.
Multi-hop payment security. We show that the multi-hop
protocol also maintains balance security. As shown in Fig. 3,
consider a payment from A to C via B of amount val at the
following times: A begins step lock of the protocol at t1; at
t2 > t1, C begins step lock; at t3 > t2: C completes step unlock;
and, at t4 > t3, A completes the protocol with unlock.

For A, the perceived balance for the channel is: before t1
as if val was not paid; after t4, as if val was paid; between t1
and t4 either is acceptable. For C, the same as A but t1 replaced
with t2, and t4 with t3. The perceived balance of the interme-
diate B is not affected. A considers the payment complete iff
C considers it complete; funds are not lost or created.

We show that A and C can unilaterally reclaim their per-
ceived balance. Note that single channel payments do not
interfere with multi-hop payments, because all channels are
locked (§4.3). At any point, A and C can settle the channels
in either the pre- or post-payment states, either with single
settlement transactions or using τ (see Alg. 2). For example,
if a node is in state lock, the others are either in unlock or lock
or in lock or sign. In all cases, if a node settles, the rest of the
nodes can only settle in the same state (pre- or post-payment),
in accordance with balance security.

5 Committee Chains
This section describes force-freeze replication in committee
chains (§5.1), committee configurations (§5.2), and persistent
storage for committee members (§5.3).

5.1 Force-freeze replication

To maintain consensus among committee members, Teechain
uses force-freeze replication, a new variant of chain replica-
tion [91]. The nodes form a chain, with the primary at the
head, and the last backup at the tail. On an update, the primary
propagates the update down the chain. Each node forwards
the update to its backup, and waits for an acknowledgement
before executing the update. When the primary receives an
acknowledgement, the entire chain has updated. This provides
strong consistency among the nodes.

Traditional chain replication [91] continues to execute state
updates even after nodes have failed to update. Applying this
naively to treasuries in a committee, would make Teechain

Algorithm 3: Force-freeze chain replication (For
brevity, we omit message encryption, authentication
and freshness.)

1 on assign_comm_chain(pub):
2 assert(pred = ∅) /* no chain */
3 attest_and_auth_DH(pub)
4 pred ← pub /* set chain pred */
5 send(addTail) to (pub)
6 wait_for(update, s) from (pub)
7 return ⊤

8 on receive(addTail) from (pub):
9 assert(succ = ∅) /* current tail */

10 attest_and_auth_DH(pub)
11 succ ← pub
12 send(update, curr_state) to

(pub)

13 on receive(update, s) from
(pub):

14 assert(pred = pub)
15 if succ = ∅ then
16 update_state_to(s)
17 ack ← create_signed_ack()
18 else
19 ack ← send(update, s) to

(succ)
20 if fail_or_invalid(ack) then
21 freeze() /* can’t update */
22 else
23 update_state_to(s)
24 ack ← sign_ack(ack)
25 send(ack) to pub

vulnerable to roll-back and state forking attacks (§3.5). In-
stead, in force-freeze replication (Alg. 3), if a node receives
an update request (line 13) and it or its successor fails to
update, the chain is frozen at its current state (line 21). All
channels must now settle and release unused deposits.

Parties construct force-freeze replication chains using
assign_comm_chain (line 1), which assigns a treasury to the end
of the chain: a party provides the public key of the node at the
tail of the chain. To secure state updates along the chain, nodes
construct secure communication channels (lines 3 and 10).

To prevent malicious treasuries from executing denial-of-
service attacks by freezing committee chains through forced
failures, Teechain employs incentives for committee mem-
bers: parties are assumed to be financially rational (§3.6),
and committee members are paid fees for participation. If a
committee member forces a freeze, it loses any participation
fees that it has accumulated in that committee.

Unlike other replication protocols, e.g., Paxos [48] and
PBFT [14], force-freeze replication uses a chain communica-
tion topology and therefore does not not require full network
connectivity, which is impractical in peer-to-peer networks.
Other consensus protocols may enhance liveness, but this
comes at the cost of increased network communication. It
also increases protocol complexity—a benefit of force-freeze
replication is that it is simple to implement and reason about.

5.2 Committee chain configurations

To ensure balance security (§3.1) despite compromised trea-
suries, Teechain uses committees chains of size n for each
deposit, and requires at least m treasuries in a committee to
sign a blockchain transaction before that deposit can be spent.
To violate balance security, an attacker must compromise
at least m treasuries in a committee, or cause (n −m) + 1
treasuries to fail, e.g., crash or stop responding.

The values of m and n affect security: (i) 1-out-of-1 de-
posits provide no fault tolerance against crash failures or
compromises; (ii) 1-out-of-n committee chains provide crash

fault tolerance for treasuries but do not tolerate their com-
promises; and (iii) in the general case, asm increases, more
signatures are appended to each transaction, impacting their
size. We explore this trade-off in §6.4.

As deposits must be approved before association with pay-
ment channels (§3.4), parties can choose the values of n and
m for their deposits and channels. For small deposits, a 1-out-
of-1 committee chain may be sufficient as there is little loss
if a failure occurs; for medium deposits, 1-out-of-n may be
desirable to tolerate crash failures; and for large deposits, e.g.,
2-out-of-3 committee chains are required to tolerate attacks.
Larger committees, e.g., with more than five members, may
only be required for high-value deposits.

To prevent an attacker from biasing the selection of com-
mittee members, parties select the committee treasuries them-
selves on deposit creation (new_deposit, Tab. 1). Selection
criteria may include treasury reputation, trusted TEE vendors
and implementations, blacklisted treasuries, and TEE hetero-
geneity. To avoid Sybil attacks [19], Teechain can leverage
several techniques, such as requiring treasuries to provide a
proof-of-stake [7], operate in a permissioned setting [4], or
use a reputation system.

Payment channels may contain multiple deposits, each
with a separate committee chain. These chains do not have
to be updated atomically: for payments that span multiple
deposits, the committee chains must be identical, and thus
the state updates can be batched. If a large payment spans
deposits of multiple committee chains, the payment is broken
down into smaller payments, only affecting one deposit at a
time. Having many deposits, each with distinct committee
members, affects performance (see §6.1).

5.3 Committee chains with secure persistent storage

In addition to committee chains, Teechain also supports the
optional use of secure persistent storage for crash fault tol-
erance. After a failure, a treasury can reload its state, settle
channels and return deposits. To overcome roll-back attacks,
state freshness must be guaranteed by the TEE hardware [3],
e.g., through hardware monotonic counters [37].

Current Intel SGX implementations throttle accesses to
hardware monotonic counters to tens of increments per sec-
ond [56, 78], which limits performance. As a mitigation,
Teechain batches transactions at the client side, similar to
other payment networks [71] that merge payments from the
same sender/recipient pairs. Current SGX implementations
also limit the number of writes for hardware counters to 1 mil-
lion [56]. For the majority of parties in Teechain, this should
be high enough. When the limit is reached, Teechain forces
treasuries to settle channels and return deposits.

6 Evaluation
We explore the performance of payment channels (§6.1),
multi-hop payments (§6.2), payment networks (§6.3), and
blockchain storage costs (§6.4).

Table 2. Channel performance

Payment Throughput Latency [99th %]
channel (tx/sec) (ms)

Lightning Network 1,000 387 [420]

Teechain
n = 1 130,311 86 [93]
n = 2 (IL) 34,115 292 [301]
n = 3 (IL, UK) 33,180 415 [432]
n = 4 (IL, US, UK) 33,178 672 [691]
n = 1 (batching) 150,311 191 [196]
n = 3 (batching) 135,331 516 [530]
n = 3 (outsourced) 33,178 483 [494]

Persistent storage
n = 1 10 288 [294]
n = 1 (batching) 145,786 401 [408]

We implement Teechain using Intel SGX for the Bitcoin
blockchain. We use the Linux Intel SGX SDK version 2.1 [34]
and a subset of Bitcoin core [83]. A release of our imple-
mentation is available at: https://teechain.network. Teechain
consists of 20,000 lines of C/C++ code inside the TEE, and
65,000 lines of untrusted code. As the Linux SGX SDK does
not support monotonic counters on all hardware [34], we
emulate them with a delay of 100 ms [56, 78].

Our implementation is hardened against side-channel at-
tacks. Although TEE compromises are mitigated by commit-
tee chains (§5), Teechain uses timing and memory-access side-
channel resistant libraries for sensitive data: (i) secp256k1,
a constant time and memory library for elliptic curve oper-
ations [82]; (ii) a side-channel resistant implementation of
Elliptic-Curve Diffie-Hellman [86]; and (iii) AES-GCM using
AES-NI [86], immune to software side channels [34].

To measure performance, we define throughput as the num-
ber of transactions sent per second, and latency as the time
from when a payment is issued until an acknowledgement
is received. At the time of writing, the only payment net-
work with a public implementation is the Lightning Net-
work (LN) [71]. We compare Teechain against the Lightning
Network Daemon (LND) [50]. Both Teechain and LN can op-
tionally batch transactions at the client side, merging multiple
payments into a single payment with increased latency.

6.1 Performance of payment channels

We want to answer three questions: (i) what is the throughput
of a payment channel? (ii) how do committee chains affect
performance? (iii) what is the benefit of transaction batching?

We deploy Teechain on 33 SGX-capable machines in the
UK, the US and Israel. Fig. 4 shows the network topology and
hardware set-up. We construct a payment channel between
US and UK1. To evaluate treasury outsourcing, IL1 acts as a
non-SGX client using US as a remote treasury.

In all experiments, committee chains have the same length,
as the performance is bound by the slowest party. We vary n
for m-out-of-n committee chains. Note that m does not affect
channel throughput because all n committee members must

Table 3. API performance

Latency (ms) [99th %]
API operation Local Outsourced

Lightning Network
new_pay_channel 60 min. [N/A]

Teechain
new_pay_channel 2,810 [4,205] 4,322 [5,201]
assign_comm_chain 2,765 [3,910] 2,852 [3,993]
associate_deposit
n = 1 101 [110]
n = 2 (IL) 289 [297]
n = 3 (IL & UK) 422 [429] 489 [514]
n = 4 (IL, US & UK) 677 [681]
Persistent storage 302 [309]

UK1

US

IL1

IL2
RTT: 0.5 ms
Bandwidth: 100 Mb/s

RTT: 0.5 ms
Bandwidth: 1 Gb/s

RTT: 60 ms
Bandwidth: 180 Mb/s

RTT: 140 ms
Bandwidth: 90 Mb/s

RT
T:

 90
 m

s
Ba
nd
wi
dt
h:

 15
0 M

b/s

US

IL

UK
Intel Xeon E3-1280 v5

64GB RAM

Intel i7-6700K
32GB RAM

Intel Xeon
E3-1275 v6
64GB RAM

Intel i7-7567U
16GB RAM

UK2 UK3

UK.. UK.. UK30

Figure 4. Evaluation setup

replicate the state regardless. When batching transactions,
we batch for 100 ms before sending a transaction. Teechain
requires one round-trip for a payment, while LN requires
two [71]. Teechain can pipeline payments but LN only sup-
ports sequential transactions and must batch by default.

Tab. 2 shows the observed throughput and latency. LN
achieves a maximum throughput of 1,000 tx/sec with a la-
tency of 387 ms (99th percentile at 420 ms). With a committee
chain of n=1, Teechain has two orders of magnitude higher
throughput with a latency of 86 ms (no batching). With n=2
(i.e., an extra committee member in Israel), the throughput
of Teechain is 34× compared to LN, with similar latencies.
Adding more members to each party’s committee chain only
increases latency, and throughput remains unchanged. Us-
ing persistent storage, performance is capped by the TEE
hardware counters, resulting in 10 tx/sec, which can be over-
come by transaction batching. Teechain achieves between
135–150× better performance than LN when batching.

Tab. 3 shows the performance of different API calls. LN
channel creation takes approx. 60 mins, as a transaction must
be placed onto the blockchain and confirmation takes 6 Bit-
coin blocks. Since Teechain decouples channels and deposits,
channel creation takes only 2.8 secs; we assume deposits are
already on the blockchain. Creation of an outsourced payment
channel takes 4.3 secs, as the client (IL1) must also verify the

https://teechain.network

Figure 5. Multi-hop performance

integrity of the outsourced treasury (US). Adding new mem-
bers to a committee chain incurs similar latencies as channel
creation. The latency for associating deposits depends on the
committee length n, and dissociation is similar.

In summary, channel throughput is affected by commit-
tee chains: (i) without batching, committee chains with n=1
achieve the best performance, and persistent storage performs
worst due to hardware counters; (ii) with batching, Teechain
achieves higher throughput for committee chains and persis-
tent storage hides the delay for counters. The latency depends
on the network, committee length and batching delay.

6.2 Performance of multi-hop payments

Next we evaluate the performance of multi-hop payments and
investigate: (i) how does latency increase with the number of
hops in a payment path? and (ii) how do committee chains
affect multi-hop performance?

For our experiments, we limit the maximum number of
hops in a payment path to 11, as longer payment paths are
unlikely to be seen in practice. Recent work [74] studying LN
shows that the average number of hops between two parties
is approximately 3.

We construct the 11 payment channels, all of which are
transatlantic in the topology from Fig. 4. We send transactions
along the path UK → US → IL → UK . For UK and IL, we split
the payment channels equally between the machines to spread
load. All experiments use the same payment channels and
committee chains of the same length. Committee members
are deployed in different failure domains.

We measure the latency of multi-hop payments. We vary
the number of hops and the number of committee members
per committee chain for each node. Fig. 5 shows that LN
scales linearly with chain length, taking 1 sec to complete a
payment across 2 hops (2 channels) and 6 secs for 11 hops.
Teechain also scales linearly but with a different slope: with
n=1, the latency is about 2× that of LN; using n=3, pay-
ments across 2 hops take 5 secs; payments across 11 hops
take 26 secs. The 3–4× overhead compared to LN is a due to
the extra network round trips for multi-hop payments.

To update all channels in a multi-hop payment consistently,
both Teechain and LN do not pipeline payments. Therefore,
throughput is 1/latency. Teechain and LN batch transactions:
throughput becomes the batch size divided by the latency
to complete the payment. We compare the throughput for
Teechain and LN, with each Teechain node using committee
chains of n=3. Teechain batches 135,000 tx/sec; LN batches
1,000 tx/sec (see §6.1). With this, the throughput of Teechain
for 2 hops is 14,062 tx/sec, and for 11 hops is 3,649 tx/sec.
For LN, throughput for 2 hops is 862 tx/sec, and 139 tx/sec
for 11 hops. Teechain thus outperforms LN by 16–26×.

In summary, Teechain requires three network round trips
to complete a payment, while LN requires only 1.5. Teechain
must synchronize nodes off-chain with extra messages to sup-
port asynchronous blockchain access. In addition, Teechain
is network-bound: chain replication increases latency.

6.3 Performance of payment networks

We evaluate the performance of a complete Teechain payment
network and investigate how its throughput is affected by
(i) the network topology and (ii) the committee chains.

We use 30 machines located in the UK (see Fig. 4). As there
exist no public micro-payment datasets, we use the transac-
tions from the Bitcoin blockchain. We filter out transactions
that we cannot replay, such as those that spend to/from multi-
signature addresses. For transactions with multiple inputs and
outputs, we choose only one. The resulting dataset has over
150 million payments from a source to a recipient address.

We construct two payment network topologies: (i) a com-
plete graph, in which all node pairs have direct payment
channels; and (ii) a hub-and-spoke topology (see Fig. 6), in
which the nodes are connected with 3 tiers of connectivity:
tier 1 nodes have the highest connectivity and tier 3 nodes
the lowest. We emulate wide-area network links by adding
100 ms latency between machines.

To execute payments, we assign Bitcoin addresses to the
machines. For the complete graph, we randomly and evenly
assign Bitcoin addresses; for the hub-and-spoke graph, we
distribute the addresses in a skewed fashion, with larger nodes
being assigned more addresses than smaller nodes (50% of
addresses to tier 1 nodes, 35% to tier 2, and 15% to tier 3).
For each graph deployment, we compare the throughput with
differently-sized committee chains, for n=1 to n=3 committee
members per deposit. We vary the number of nodes in the
deployment from 5 to 30 machines.

Fig. 7 shows the throughput for the complete graph topol-
ogy. For all committee chain lengths, throughput scales lin-
early with the node number. Committee chains of length n = 1
perform best (2.2 million tx/sec with 30 machines); commit-
tee chains with n > 1 limit throughput (1 million tx/sec).
There is little difference (9%) between n = 2 committee mem-
bers and n = 3; throughput is bottlenecked by the time to
replicate state.

Tier 1 nodes
Tier 2 nodes
Tier 3 nodes

Inter-node RTT:
100ms

Figure 6. Hub-and-spoke
network topology

Figure 7. Throughput for
complete topology

Figure 8. Throughput for
hub-and-spoke topology

Next we consider the hub-and-spoke graph topology. Multi-
hop payments use the shortest path—if there are multiple
paths, only one is chosen. As multi-hop payments lock chan-
nels during execution, payments compete with one another.
To overcome this, Teechain uses dynamic channel creation to
allow concurrent payments between endpoints (see §4.3).

Fig. 8 shows how the throughput increases as intermediate
nodes (i.e., tier 1 and 2) are permitted to create more dynamic
channels. Without dynamic channels, i.e., G = 1, with n =

3 committee chains, the network achieves around 210 tx/sec,
with an average latency of 720 ms. With G > 1, throughput
scales almost linearly with the number of channels, for both
n = 1 and n = 3. We obtain diminishing returns asG increases
further because tier 3 nodes become congested.

In summary, payment throughput is lower in the hub-and-
spoke topology compared to the complete topology by several
orders of magnitude. This is a result of locking channels for
multi-hop payments: while dynamic channel creation allevi-
ates contention, best performance requires high connectivity.

Given that Teechain and LN exhibit different performance
for single and multi-hop payments, any in-depth comparison
requires careful treatment of many aspects, including the em-
ployed payment routing algorithm, the choice of transaction
batching interval in LN, the number of dynamic channels
created in Teechain, and the used contention avoidance algo-
rithm [54]. We defer more experiments to future work.

6.4 Blockchain cost

We evaluate and compare: (i) the number of transactions
placed on the blockchain; and (ii) the blockchain cost. We
define the blockchain cost as the amount of data placed
on the blockchain to open and close a payment chan-
nel. Unlike existing solutions, Teechain can assign multi-
ple deposits to a single channel. For a fair comparison,
we assume at most 2 deposits per channel, and we ab-
stract from particular blockchains by counting the pairs
of public keys and signatures [12]. We compare with the
Lightning Network (LN) [71], Duplex Micropayment Chan-
nels (DMC) [18] and Scalable Funding of Micropayment
Channels (SFMC) [12].

Tab. 4 shows the number of transactions and the block-
chain cost. For all solutions but LN, the cost is higher if one

Table 4. Number of transactions and blockchain costs

Payment Bilateral Unilateral
channel No. txs Cost No. txs Cost

LN [71] 4 6 4 6

DMC [18] 2 4 3 + d 2(3 + d)
SFMC [12] 2/n 2p/n (1 + i)/n (1 + i)(p/n)

+(3 + d) +2(3 + d)
Teechain 1 1 + (n/2) 3 2 + (n1/2) + (n2/2)

+m1 +m2

party unilaterally closes the channel. For DMC, the number of
transactions required ranges from 2 to 3 + d , where d ≥ 1 de-
fines the DMC transaction chain length. In LN, 4 transactions
must be placed onto the blockchain, which result in a cost of
6 across bilateral and unilateral termination. For SFMC, the
number of transactions ranges from 2/n to (1 + i)/n + (3 + d),
where n is the total number of constructed payment chan-
nels and i and d define the funding and transaction chain’s
lengths. respectively. Since each SFMC transaction requires
p signatures and is shared between the n payment channels,
the blockchain cost is 2p/n if all parties collaboratively close
payment channels; (1+ i)(p/n)+ 2(3+d) if closed unilaterally.

Teechain constructs funding deposits using m-out-of-n
transactions. If the channel has a single deposit and is settled
off-chain, only one transaction is required, with a cost of
1 + (n/2), i.e., the cost of a signature and public key to spend
funds into the treasury address, and n public keys for commit-
tee members; otherwise, with 2 deposits assigned to a channel,
Teechain requires 3 transactions, with the cost including the
two funding deposits and the settlement transaction.

We observe that, with a 2-out-of-3 multi-signature for each
funding deposit, Teechain places 25%–75% fewer transac-
tions on the blockchain than LN, and is up to 58% more
efficient for bilateral termination. For DMC and bilateral
closures, Teechain places 50% fewer transactions and 37%
less data on the blockchain than DMC. While Teechain out-
performs SMFC when closing channels unilaterally, SMFC
uses fewer transactions under bilateral closure if n = 1 and
p/n > 1. SFMC amortises transactions across multiple parties

and channels at the cost of having to trust all involved parties.
Teechain does not make this assumption.

7 Related Work

Payment channels and networks. Unilateral payment chan-
nels were first discussed in [30]. Duplex Micropayment Chan-
nels [18] use time-locked transactions to prevent old channel
states from being published. Lightning Network (LN) [71]
supports multi-hop payments but requires users to monitor the
blockchain. Pisa [58] builds on LN and allows third parties to
monitor the blockchain on behalf of other users. REVIVE [44]
rebalances payment channels, but locks the funds during the
rebalancing process. Sprites [60] can add and remove funds to
channels dynamically, but requires smart-contracts [80]. State
channels [24, 59] is a generalization of payment networks, but
also requires smart-contracts. Fulgor and Rayo [54] attempt
to add concurrency and privacy to existing payment networks.

All of these proposals assume synchronous blockchain
access. To the best of our knowledge, Teechain is the first
system to avoid this assumption.
Blockchain layer scaling. Prior work addresses the scalabil-
ity and performance limitations of blockchains by departing
from chain structures [49, 76, 85], changing block genera-
tion [26, 67, 70], operating in a permissioned setting [4, 28]
and using classical consensus [14, 57, 61]. Other approaches
operate global committees [27, 68, 81] or shard transactions
to concurrent blockchains [45, 46] in order to scale. Unlike
these, Teechain executes payments without the blockchain,
and users can choose whether or not to use Teechain in con-
junction with a blockchain.

Fundamentally, on-chain protocols must reach consensus
(global or per shard) [92] for each transaction and thus cannot
achieve the performance of Teechain: by operating multiple
concurrent and independent committees, Teechain can scale
throughput with the number of users and committees in the
network. As with any second-layer solutions, Teechain places
deposit and settlement transactions on the blockchain and
thus benefits from improved blockchain performance.
Trusted hardware and blockchains. Prior work proposes
electronic payment systems [77] based on secure co-
processors [23], smart cards [16], and trusted hardware mod-
ules [9]. They utilize dedicated hardware to enforce double-
spending protection. However, these solutions do not integrate
asynchronously with a blockchain and make weaker security
assumptions, such as assuming no hardware compromises.

Microsoft’s Confidential Consortium Frame-
work (CCF) [75] operates a permissioned blockchain
using TEEs to enable high throughput and confidentiality for
transactions. Unlike Teechain, CCF does not operate on top
of an existing permissionless blockchain, but instead assumes
a permissioned setting in which the identities of all members
of the CCF consortium are known.

TEEChan [52] uses TEEs to realize single-hop payment
channels with limited lifetimes. It provides limited fault tol-
erance, requires synchronous blockchain access, does not
support multi-hop payments, and cannot create payment chan-
nels instantly or dynamically assign deposits. TownCrier [94]
enables a secure data-feed for blockchain contracts; Tesser-
act [6] is a secure multi-blockchain cryptocurrency exchange;
Ekiden [15] offers a platform for privacy-preserving smart
contracts; Obscuro [89] constructs a Bitcoin privacy mecha-
nism; and Paralysis Proofs [95] allows consensus reconfig-
uration with a blockchain. Apart from the different goals,
Teechain uses a more refined security model: clients use a
remote TEE to prevent fraud and a local TEE for availability.

8 Conclusion
Teechain is the first payment network to operate with asyn-
chronous blockchain access and offer dynamic deposits.
Teechain mitigates against TEE compromises through a novel
combination of force-freeze replication and m-out-of-n sig-
natures to construct committee chains. We evaluate Teechain
using Intel SGX on Bitcoin; our results show orders of mag-
nitude performance gains compared to the state of the art.

9 Acknowledgements
We thank the anonymous reviewers and our shepherd, David
Andersen, for their feedback and suggestions. This project
received funding from the European Union Horizon 2020
research and innovation programme under the SecureCloud
project (690111); the Israel Science Foundation; the US-Israel
Binational Science Foundation (BSF); the US National Sci-
ence Foundation (NSF); the Israel Cyber Bureau; Engima
MPC Inc; and a Mel Berlin Cyber-Security Scholarship. We
also thank Intel for their donation of SGX servers.

References
[1] Syed Taha Ali, Dylan Clarke, and Patrick McCorry. 2017. The Nuts

and Bolts of Micropayments: a Survey. Preprint arXiv:1710.02964.
[2] Amazon. 2019. https://www.amazon.com/.
[3] Ittai Anati, Shay Gueron, Simon Johnson, and Vincent Scarlata. 2013.

Innovative Technology for CPU Based Attestation and Sealing. In
Proceedings of the 2nd International Workshop on Hardware and Ar-
chitectural Support for Security and Privacy, HASP, Vol. 13.

[4] Elli Androulaki, Artem Barger, Vita Bortnikov, Christian Cachin, Kon-
stantinos Christidis, Angelo De Caro, David Enyeart, Christopher Ferris,
Gennady Laventman, Yacov Manevich, Srinivasan Muralidharan, Chet
Murthy, Binh Nguyen, Manish Sethi, Gari Singh, Keith Smith, Alessan-
dro Sorniotti, Chrysoula Stathakopoulou, Marko Vukolić, Sharon Weed
Cocco, and Jason Yellick. 2018. Hyperledger Fabric: A Distributed
Operating System for Permissioned Blockchains. In EuroSys.

[5] ARM Ltd. 2017. TrustZone. https://www.arm.com/products/security-
on-arm/trustzone. Accessed May 2017.

[6] Iddo Bentov, Yan Ji, Fan Zhang, Yunqi Li, Xueyuan Zhao, Lorenz
Breidenbach, Philip Daian, and Ari Juels. 2017. Tesseract: Real-Time
Cryptocurrency Exchange using Trusted Hardware. IACR Cryptology
ePrint Archive 2017, 1153.

[7] Iddo Bentov, Charles Lee, Alex Mizrahi, and Meni Rosenfeld. 2014.
Proof of Activity: Extending Bitcoin’s Proof of Work via Proof of Stake.

https://www.amazon.com/
https://www.arm.com/products/security-on-arm/trustzone
https://www.arm.com/products/security-on-arm/trustzone

ePrint Archive, Report 2014/452. http://eprint.iacr.org/2014/452.
[8] blockchain.info. 2018. Average Confirmation Time. https:

//blockchain.info/charts/avg-confirmation-time?timespan=all&
daysAverageString=7. Accessed May 2018.

[9] Jean-Paul Boly, Antoon Bosselaers, Ronald Cramer, Rolf Michelsen,
Stig Mjølsnes, Frank Muller, Torben Pedersen, Birgit Pfitzmann, Pe-
ter De Rooij, Berry Schoenmakers, et al. 1994. The ESPRIT project
CAFE—High security digital payment systems. In European Sympo-
sium on Research in Computer Security. Springer, 217–230.

[10] Marcus Brandenburger, Christian Cachin, Matthias Lorenz, and Rüdi-
ger Kapitza. 2017. Rollback and forking detection for trusted execution
environments using lightweight collective memory. In 47th Annual
IEEE/IFIP International Conference on Dependable Systems and Net-
works (DSN). IEEE, 157–168.

[11] Ferdinand Brasser, Urs Müller, Alexandra Dmitrienko, Kari Kostiainen,
Srdjan Capkun, and Ahmad-Reza Sadeghi. 2017. Software grand
exposure: SGX cache attacks are practical. arXiv:1702.07521, 33.

[12] Conrad Burchert, Christian Decker, and Roger Wattenhofer. 2017. Scal-
able Funding of Bitcoin Micropayment Channel Networks. In Interna-
tional Symposium on Stabilization, Safety, and Security of Distributed
Systems. Springer, 361–377.

[13] Ran Canetti. 2001. Universally composable security: A new paradigm
for cryptographic protocols. In Foundations of Computer Science, 2001.
Proceedings. 42nd IEEE Symposium on. IEEE, 136–145.

[14] Miguel Castro, Barbara Liskov, et al. 1999. Practical Byzantine Fault
Tolerance. In OSDI, Vol. 99. 173–186.

[15] Raymond Cheng, Fan Zhang, Jernej Kos, Warren He, Nicholas Hynes,
Noah Johnson, Ari Juels, Andrew Miller, and Dawn Song. 2018. Ekiden:
A Platform for Confidentiality-Preserving, Trustworthy, and Performant
Smart Contract Execution. Preprint arXiv:1804.05141.

[16] Eric K Clemons, David C Croson, and Bruce W Weber. 1996. Reengi-
neering money: the Mondex stored value card and beyond. International
Journal of Electronic Commerce 1, 2, 5–31.

[17] Victor Costan, Ilia Lebedev, and Srinivas Devadas. 2016. Sanctum:
Minimal hardware extensions for strong software isolation. In 25th
USENIX Security Symposium (USENIX Security 16). 857–874.

[18] Christian Decker and Roger Wattenhofer. 2015. A Fast and Scalable
Payment Network with Bitcoin Duplex Micropayment Channels. In
Stabilization, Safety, and Security of Distributed Systems - 17th Inter-
national Symposium. https://doi.org/10.1007/978-3-319-21741-3_1

[19] John R Douceur. 2002. The sybil attack. In International workshop on
peer-to-peer systems. Springer, 251–260.

[20] Tadge Dryja. 2015. Scalability of lightning with different bips and some
back-of-the-envelope calculations. http://diyhpl.us/wiki/transcripts/
scalingbitcoin/hong-kong/overview-of-bips-necessary-for-lightning/.

[21] Thaddeus Dryja. 2016. Unlinkable outsourced channel monitoring.
https://youtu.be/Gzg_u9gHc5Q?t=2875.

[22] DwarfPool. 2016. Why DwarfPool mines mostly empty blocks and
only few ones with transactions. https://www.reddit.com/r/ethereum/
comments/57c1yn/why_dwarfpool_mines_mostly_empty_blocks_
and_only/. Accessed Feb 2018.

[23] Joan G Dyer, Mark Lindemann, Ronald Perez, Reiner Sailer, Leendert
Van Doorn, and Sean W Smith. 2001. Building the IBM 4758 secure
coprocessor. Computer 34, 10, 57–66.

[24] Stefan Dziembowski, Sebastian Faust, and Kristina Hostáková. 2018.
General state channel networks. In Proceedings of 2018 SIGSAC Con-
ference on Computer and Communications Security. ACM, 949–966.

[25] Ebay. 2019. https://www.ebay.com/.
[26] Ittay Eyal, Adem Efe Gencer, Emin Gün Sirer, and Robbert Van Re-

nesse. 2016. Bitcoin-NG: A Scalable Blockchain Protocol. In 13th
USENIX Symposium on Networked Systems Design and Implementa-
tion (NSDI 2016).

[27] Yossi Gilad, Rotem Hemo, Silvio Micali, Georgios Vlachos, and Nick-
olai Zeldovich. 2017. Algorand: Scaling byzantine agreements for

cryptocurrencies. In Proceedings of the 26th Symposium on Operating
Systems Principles. ACM, 51–68.

[28] Gideon Greenspan. 2015. MultiChain private blockchain—White paper.
http://www.multichain.com/download/MultiChain-White-Paper.pdf.

[29] Lewis Gudgeon, Pedro Moreno-Sanchez, Stefanie Roos, Patrick Mc-
Corry, and Arthur Gervais. 2019. SoK: Off The Chain Transactions.
ePrint Archive, Report 2019/360. https://eprint.iacr.org/2019/360.

[30] Mike Hearn and Jeremy Spilman. 2015. Rapidly-adjusted micropay-
ments to a pre-determined party. https://en.bitcoin.it/wiki/Contract.

[31] Ethan Heilman, Alison Kendler, Aviv Zohar, and Sharon Goldberg.
2015. Eclipse Attacks on Bitcoin’s Peer-to-Peer Network. In 24th
USENIX Security Symposium, USENIX Security 15, Washington,
D.C., USA, August 12-14, 2015. 129–144. https://www.usenix.org/
conference/usenixsecurity15/technical-sessions/presentation/heilman

[32] Hex-Five Security. 2018. Multizone: The first Trusted Execution Envi-
ronment for RISC-V. https://hex-five.com/.

[33] Intel. 2015. Product Change Notification. https://qdms.intel.com/dm/i.
aspx/5A160770-FC47-47A0-BF8A-062540456F0A/PCN114074-00.
pdf. Accessed May 2018.

[34] Intel. 2017. Intel SGX SDK for Linux. https://download.01.org/intel-
sgx/linux-1.8/docs/Intel_SGX_SDK_Developer_Reference_Linux_1.
8_Open_Source.pdf. Accessed May 2017.

[35] Intel Corp. 2014. Software Guard Extensions Programming Refer-
ence, Ref. 329298-002US. https://software.intel.com/sites/default/
files/managed/48/88/329298-002.pdf. https://software.intel.com/sites/
default/files/managed/48/88/329298-002.pdf

[36] Intel Inc. 2016. Intel Software Guard Extensions Remote Attestation
End-to-End Example. https://software.intel.com/en-us/articles/intel-
software-guard-extensions-remote-attestation-end-to-end-example.
Accessed May 2017.

[37] Intel Inc. 2017. sgx_create_monotonic_counter. https://software.intel.
com/en-us/node/709160. Accessed May 2017.

[38] Johnson, Simon et al. 2016. Intel® Software Guard
Extensions: EPID Provisioning and Attestation Services.
https://software.intel.com/en-us/blogs/2016/03/09/intel-sgx-epid-
provisioning-and-attestation-services.

[39] Jordan Pearson. 2015. WikiLeaks Is Now a Target In the Massive Spam
Attack on Bitcoin. https://motherboard.vice.com/en_us/article/ezvw7z/
wikileaks-is-now-a-target-in-the-massive-spam-attack-on-bitcoin. Ac-
cessed Feb 2018.

[40] Joseph Young. 2017. Analyst: Suspicious Bitcoin Mempool Activity,
Transaction Fees Spike to 16. https://cointelegraph.com/news/analyst-
suspicious-bitcoin-mempool-activity-transaction-fees-spike-to-16. Ac-
cessed Feb 2018.

[41] JP Buntinx. 2017. F2Pool Allegedly Prevented Users From Investing in
Status ICO. https://themerkle.com/f2pool-allegedly-prevented-users-
from-investing-in-status-ico/. Accessed Feb 2018.

[42] David Kaplan, Jeremy Powell, and Tom Woller. 2016. AMD Memory
Encryption. White paper.

[43] Keystone Project. 2018. Keystone: Open-source Secure Hardware
Enclave. https://keystone-enclave.org/.

[44] Rami Khalil and Arthur Gervais. 2017. Revive: Rebalancing Off-
Blockchain Payment Networks. Gas 200, 400.

[45] Eleftherios Kokoris Kogias, Philipp Jovanovic, Nicolas Gailly, Ismail
Khoffi, Linus Gasser, and Bryan Ford. 2016. Enhancing Bitcoin Secu-
rity and Performance with Strong Consistency via Collective Signing.
In 25th USENIX Security Symposium (USENIX Security 16).

[46] Eleftherios Kokoris-Kogias, Philipp Jovanovic, Linus Gasser, Nicolas
Gailly, Ewa Syta, and Bryan Ford. 2018. Omniledger: A secure, scale-
out, decentralized ledger via sharding. In 2018 IEEE Symposium on
Security and Privacy (SP). IEEE, 583–598.

[47] Hugo Krawczyk. 2003. SIGMA: The ‘SIGn-and-MAc’approach to
authenticated Diffie-Hellman and its use in the IKE protocols. In Annual
International Cryptology Conference. Springer, 400–425.

http://eprint.iacr.org/2014/452
https://blockchain.info/charts/avg-confirmation-time?timespan=all&daysAverageString=7
https://blockchain.info/charts/avg-confirmation-time?timespan=all&daysAverageString=7
https://blockchain.info/charts/avg-confirmation-time?timespan=all&daysAverageString=7
https://doi.org/10.1007/978-3-319-21741-3_1
http://diyhpl.us/wiki/transcripts/scalingbitcoin/hong-kong/overview-of-bips-necessary-for-lightning/
http://diyhpl.us/wiki/transcripts/scalingbitcoin/hong-kong/overview-of-bips-necessary-for-lightning/
https://youtu.be/Gzg_u9gHc5Q?t=2875
https://www.reddit.com/r/ethereum/comments/57c1yn/why_dwarfpool_mines_mostly_empty_blocks_and_only/
https://www.reddit.com/r/ethereum/comments/57c1yn/why_dwarfpool_mines_mostly_empty_blocks_and_only/
https://www.reddit.com/r/ethereum/comments/57c1yn/why_dwarfpool_mines_mostly_empty_blocks_and_only/
https://www.ebay.com/
http://www.multichain.com/download/MultiChain-White-Paper.pdf
https://eprint.iacr.org/2019/360
https://en.bitcoin.it/wiki/Contract
https://www.usenix.org/conference/usenixsecurity15/technical-sessions/presentation/heilman
https://www.usenix.org/conference/usenixsecurity15/technical-sessions/presentation/heilman
https://hex-five.com/
https://qdms.intel.com/dm/i.aspx/5A160770-FC47-47A0-BF8A-062540456F0A/PCN114074-00.pdf
https://qdms.intel.com/dm/i.aspx/5A160770-FC47-47A0-BF8A-062540456F0A/PCN114074-00.pdf
https://qdms.intel.com/dm/i.aspx/5A160770-FC47-47A0-BF8A-062540456F0A/PCN114074-00.pdf
https://download.01.org/intel-sgx/linux-1.8/docs/Intel_SGX_SDK_Developer_Reference_Linux_1.8_Open_Source.pdf
https://download.01.org/intel-sgx/linux-1.8/docs/Intel_SGX_SDK_Developer_Reference_Linux_1.8_Open_Source.pdf
https://download.01.org/intel-sgx/linux-1.8/docs/Intel_SGX_SDK_Developer_Reference_Linux_1.8_Open_Source.pdf
https://software.intel.com/sites/default/files/managed/48/88/329298-002.pdf
https://software.intel.com/sites/default/files/managed/48/88/329298-002.pdf
https://software.intel.com/sites/default/files/managed/48/88/329298-002.pdf
https://software.intel.com/sites/default/files/managed/48/88/329298-002.pdf
https://software.intel.com/en-us/articles/intel-software-guard-extensions-remote-attestation-end-to-end-example
https://software.intel.com/en-us/articles/intel-software-guard-extensions-remote-attestation-end-to-end-example
https://software.intel.com/en-us/node/709160
https://software.intel.com/en-us/node/709160
https://software.intel.com/en-us/blogs/2016/03/09/intel-sgx-epid-provisioning-and-attestation-services
https://software.intel.com/en-us/blogs/2016/03/09/intel-sgx-epid-provisioning-and-attestation-services
https://motherboard.vice.com/en_us/article/ezvw7z/wikileaks-is-now-a-target-in-the-massive-spam-attack-on-bitcoin
https://motherboard.vice.com/en_us/article/ezvw7z/wikileaks-is-now-a-target-in-the-massive-spam-attack-on-bitcoin
https://cointelegraph.com/news/analyst-suspicious-bitcoin-mempool-activity-transaction-fees-spike-to-16
https://cointelegraph.com/news/analyst-suspicious-bitcoin-mempool-activity-transaction-fees-spike-to-16
https://themerkle.com/f2pool-allegedly-prevented-users-from-investing-in-status-ico/
https://themerkle.com/f2pool-allegedly-prevented-users-from-investing-in-status-ico/
https://keystone-enclave.org/

[48] Leslie Lamport et al. 2001. Paxos made simple. ACM Sigact News.
Dec 2001 32, 4, 18–25.

[49] Yoad Lewenberg, Yonatan Sompolinsky, and Aviv Zohar. 2015. Inclu-
sive Block Chain Protocols. In Financial Cryptography. Puerto Rico.

[50] Lightning Network community. 2017. Lightning Network Daemon.
https://github.com/lightningnetwork/lnd. Accessed May 2017.

[51] Linaro. 2014. Open Portable Trusted Execution Environment. https:
//www.op-tee.org/.

[52] Joshua Lind, Ittay Eyal, Peter Pietzuch, and Emin Gün Sirer. 2016.
Teechan: Payment channels using trusted execution environments.
Preprint arXiv:1612.07766.

[53] Joshua Lind, Oded Naor, Florian Kelbert, Ittay Eyal, Emin Gün Sirer,
and Peter Pietzuch. 2019. Teechain Technical Report. https://arxiv.org/
abs/1707.05454.

[54] Giulio Malavolta, Pedro Moreno-Sanchez, Aniket Kate, Matteo Maffei,
and Srivatsan Ravi. 2017. Concurrency and privacy with payment-
channel networks.

[55] Yuval Marcus, Ethan Heilman, and Sharon Goldberg. 2018. Low-
Resource Eclipse Attacks on Ethereum’s Peer-to-Peer Network. IACR
Cryptology ePrint Archive 2018, 236.

[56] Sinisa Matetic, Mansoor Ahmed, Kari Kostiainen, Aritra Dhar, David
Sommer, Arthur Gervais, Ari Juels, and Srdjan Capkun. 2017. ROTE:
Rollback Protection for Trusted Execution. Cryptology ePrint Archive,
Report 2017/048. http://eprint.iacr.org/2017/048.

[57] David Mazieres. 2015. The Stellar Consensus Protocol: A Federated
Model for Internet-level Consensus. https://www.stellar.org/papers/
stellar-consensus-protocol.pdf.

[58] Patrick McCorry, Surya Bakshi, Iddo Bentov, Andrew Miller, and Sarah
Meiklejohn. 2018. Pisa: Arbitration Outsourcing for State Channels.
IACR Cryptology ePrint Archive 2018, 582.

[59] Patrick McCorry, Chris Buckland, Surya Bakshi, Karl Wüst, and An-
drew Miller. 2018. You sank my battleship! A case study to evaluate
state channels as a scaling solution for cryptocurrencies.

[60] Andrew Miller, Iddo Bentov, Ranjit Kumaresan, and Patrick McCorry.
2017. Sprites: Payment channels that go faster than lightning. CoRR
abs/1702.05812.

[61] Andrew Miller, Yu Xia, Kyle Croman, Elaine Shi, and Dawn Song.
2016. The Honey Badger of BFT Protocols. In Proceedings of the 2016
ACM SIGSAC Conference on Computer and Communications Security.

[62] Ahmad Moghimi, Gorka Irazoqui, and Thomas Eisenbarth. 2017.
CacheZoom: How SGX amplifies the power of cache attacks. In In-
ternational Conference on Cryptographic Hardware and Embedded
Systems. Springer, 69–90.

[63] Satoshi Nakamoto. 2008. Bitcoin: A Peer-to-Peer Electronic Cash
System. http://www.bitcoin.org/bitcoin.pdf.

[64] Open Enclave SDK Community. 2018. Open Enclave SDK. https:
//openenclave.io/sdk/.

[65] Dan O’Keeffe, Divya Muthukumaran, Pierre-Louis Aublin, Florian
Kelbert, Christian Priebe, Josh Lind, Huanzhou Zhu, and Peter Pietzuch.
2018. Spectre attack against SGX enclave.

[66] Rafael Pass, Lior Seeman, and Abhi Shelat. 2017. Analysis of the
blockchain protocol in asynchronous networks. In Annual International
Conference on the Theory and Applications of Cryptographic Tech-
niques. Springer, 643–673.

[67] Rafael Pass and Elaine Shi. 2016. Hybrid Consensus: Efficient Consen-
sus in the Permissionless Model. ePrint Archive, Report 2016/917.

[68] Rafael Pass and Elaine Shi. 2018. Thunderella: Blockchains with
optimistic instant confirmation. In International Conference on the
Theory and Applications of Cryptographic Techniques. Springer, 3–33.

[69] Rafael Pass, Elaine Shi, and Florian Tramer. 2017. Formal abstractions
for attested execution secure processors. In Annual International Con-
ference on the Theory and Applications of Cryptographic Techniques.
Springer, 260–289.

[70] Joseph Poon and Vitalik Buterin. 2017. Plasma: Scalable autonomous
smart contracts.

[71] Joseph Poon and Thaddeus Dryja. 2016. The Bitcoin Lightning Net-
work: Scalable off-chain instant payments. Technical Report (draft
0.5.9.1). https://lightning.network. Accessed May 2017.

[72] Eli Ben Sasson, Alessandro Chiesa, Christina Garman, Matthew Green,
Ian Miers, Eran Tromer, and Madars Virza. 2014. Zerocash: Decentral-
ized anonymous payments from bitcoin. In Security and Privacy (SP),
2014 IEEE Symposium on. IEEE, 459–474.

[73] SECBIT. 2018. How the winner got Fomo3D prize — A Detailed Expla-
nation. https://medium.com/coinmonks/how-the-winner-got-fomo3d-
prize-a-detailed-explanation-b30a69b7813f. Accessed Sep 2018.

[74] István András Seres, László Gulyás, Dániel A Nagy, and Péter Burcsi.
2019. Topological Analysis of Bitcoin’s Lightning Network. Preprint
arXiv:1901.04972.

[75] Alex Shamis, Amaury Chamayou, Christine Avanessians, Christoph M.
Wintersteiger, Edward Ashton, Felix Schuster, Cédric Four-
net, Julien Maffre, Kartik Nayak, Mark Russinovich, Matthew
Kerner, Miguel Castro, Thomas Moscibroda, Olga Vrousgou, Roy
Schwartz, Sid Krishna, Sylvan Clebsch, and Olya Ohrimenko.
2019. CCF: A Framework for Building Confidential Verifiable
Replicated Services. Technical Report MSR-TR-2019-16. Mi-
crosoft. https://www.microsoft.com/en-us/research/publication/ccf-a-
framework-for-building-confidential-verifiable-replicated-services/

[76] Yonatan Sompolinsky and Aviv Zohar. 2015. Accelerating Bitcoin’s
Transaction Processing. Fast Money Grows on Trees, Not Chains. In
Financial Cryptography. Puerto Rico.

[77] Susan Stepney, David Cooper, and Jim Woodcock. 2000. An electronic
purse: Specification, refinement and proof. Oxford University.

[78] Raoul Strackx and Frank Piessens. 2016. Ariadne: A Minimal
Approach to State Continuity. In 25th USENIX Security Sympo-
sium (USENIX Security 16). USENIX Association, Austin, TX, 875–
892. https://www.usenix.org/conference/usenixsecurity16/technical-
sessions/presentation/strackx

[79] superfreek. 2017. BTC Spam attack. 200,000 unconfirmed transac-
tions halts bitcoin. https://steemit.com/cryptocurrency/@superfreek/
btc-spam-attack-200-000-unconfirmed-transactions-halts-bitcoin. Ac-
cessed Feb 2018.

[80] Nick Szabo. 1997. The idea of smart contracts. Nick Szabo’s Papers
and Concise Tutorials 6.

[81] Team Rocket. 2018. Snowflake to Avalanche: A Novel Metastable
Consensus Protocol Family for Cryptocurrencies. https://ipfs.io/ipfs/
QmUy4jh5mGNZvLkjies1RWM4YuvJh5-o2FYopNPVYwrRVGV.

[82] The Bitcoin Community. 2013. libsecp256k1. https://github.com/
bitcoin-core/secp256k1.

[83] The Bitcoin Community. 2016. Bitcoin Core version 0.13.1 released.
https://bitcoin.org/en/release/v0.13.1. Accessed May 2017.

[84] The Bitcoin community. 2017. M-of-N Multisig, Multisig Output.
https://bitcoin.org/en/glossary/multisig. Accessed May 2017.

[85] The Ethereum community. 2017. Ethereum White Paper. https://github.
com/ethereum/wiki/wiki/White-Paper. Accessed May 2017.

[86] The Linux-SGX community. 2016. Intel(R) Software Guard Extensions
for Linux OS. https://github.com/intel/linux-sgx.

[87] The Raiden Network community. 2017. The Raiden Network. https:
//raiden.network/. Accessed October 2017.

[88] Florian Tramer, Fan Zhang, Huang Lin, Jean-Pierre Hubaux, Ari Juels,
and Elaine Shi. 2016. Sealed-Glass Proofs: Using Transparent Enclaves
to Prove and Sell Knowledge. Cryptology ePrint Archive, Report
2016/635. http://eprint.iacr.org/2016/635.

[89] Muoi Tran, Loi Luu, Min Suk Kang, Iddo Bentov, and Prateek Saxena.
2017. Obscuro: A Bitcoin Mixer using Trusted Execution Environments.
IACR Cryptology ePrint Archive 2017, 974.

https://github.com/lightningnetwork/lnd
https://www.op-tee.org/
https://www.op-tee.org/
https://arxiv.org/abs/1707.05454
https://arxiv.org/abs/1707.05454
http://eprint.iacr.org/2017/048
https://www.stellar.org/papers/stellar-consensus-protocol.pdf
https://www.stellar.org/papers/stellar-consensus-protocol.pdf
http://www.bitcoin.org/bitcoin.pdf
https://openenclave.io/sdk/
https://openenclave.io/sdk/
https://lightning.network
https://medium.com/coinmonks/how-the-winner-got-fomo3d-prize-a-detailed-explanation-b30a69b7813f
https://medium.com/coinmonks/how-the-winner-got-fomo3d-prize-a-detailed-explanation-b30a69b7813f
https://www.microsoft.com/en-us/research/publication/ccf-a-framework-for-building-confidential-verifiable-replicated-services/
https://www.microsoft.com/en-us/research/publication/ccf-a-framework-for-building-confidential-verifiable-replicated-services/
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/strackx
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/strackx
https://steemit.com/cryptocurrency/@superfreek/btc-spam-attack-200-000-unconfirmed-transactions-halts-bitcoin.
https://steemit.com/cryptocurrency/@superfreek/btc-spam-attack-200-000-unconfirmed-transactions-halts-bitcoin.
https://ipfs.io/ipfs/QmUy4jh5mGNZvLkjies1RWM4YuvJh5-o2FYopNPVYwrRVGV
https://ipfs.io/ipfs/QmUy4jh5mGNZvLkjies1RWM4YuvJh5-o2FYopNPVYwrRVGV
https://github.com/bitcoin-core/secp256k1
https://github.com/bitcoin-core/secp256k1
https://bitcoin.org/en/release/v0.13.1
https://bitcoin.org/en/glossary/multisig
https://github.com/ethereum/wiki/wiki/White-Paper
https://github.com/ethereum/wiki/wiki/White-Paper
https://github.com/intel/linux-sgx
https://raiden.network/
https://raiden.network/
http://eprint.iacr.org/2016/635

[90] Jo Van Bulck, Marina Minkin, Ofir Weisse, Daniel Genkin, Baris
Kasikci, Frank Piessens, Mark Silberstein, Thomas F Wenisch, Yu-
val Yarom, and Raoul Strackx. 2018. FORESHADOW: Extracting the
Keys to the Intel SGX Kingdom with Transient Out-of-Order Execution.
In 27th USENIX Security Symposium (USENIX Security 18).

[91] Robbert Van Renesse and Fred B Schneider. 2004. Chain Replication
for Supporting High Throughput and Availability.. In 6th Symposium
on Operating Systems Design and Implementation, Vol. 4. 91–104.

[92] Marko Vukolić. 2015. The quest for scalable blockchain fabric: Proof-
of-Work vs. BFT replication. In International Workshop on Open Prob-
lems in Network Security. Springer, 112–125.

[93] Gavin Wood. 2016. Ethereum: A Secure Decentralised Generalised
Transaction Ledger (EIP-150). http://gavwood.com/Paper.pdf.

[94] Fan Zhang, Ethan Cecchetti, Kyle Croman, Ari Juels, and Elaine Shi.
2016. Town crier: An authenticated data feed for smart contracts. In
Proceedings of the 2016 ACM SIGSAC Conference on Computer and
Communications Security. ACM, 270–282.

[95] Fan Zhang, Philip Daian, Gabriel Kaptchuk, Iddo Bentov, Ian Miers,
and Ari Juels. 2017. Paralysis Proofs: Secure Dynamic Access Struc-
tures for Cryptocurrencies and More.

http://gavwood.com/Paper.pdf

	Abstract
	1 Introduction
	2 Secure Payment Networks for Blockchains
	2.1 Blockchain protocols
	2.2 Payment networks and channels
	2.3 Limitations of payment networks

	3 Teechain Design
	3.1 Trusted execution as a root-of-trust
	3.2 Threat model
	3.3 Design overview
	3.4 Treasuries
	3.5 Committee chains
	3.6 Threat analysis

	4 Payment Protocol
	4.1 Allocating dynamic deposits
	4.2 Using payment channels
	4.3 Executing multi-hop payments
	4.4 Payment protocol security

	5 Committee Chains
	5.1 Force-freeze replication
	5.2 Committee chain configurations
	5.3 Committee chains with secure persistent storage

	6 Evaluation
	6.1 Performance of payment channels
	6.2 Performance of multi-hop payments
	6.3 Performance of payment networks
	6.4 Blockchain cost

	7 Related Work
	8 Conclusion
	9 Acknowledgements
	References

