SEEP: Scalable and Elastic Event Processing

Matteo Migliavacca, Ioannis Papagiannis, Peter Pietzuch
migliavacca@kth.se

David Eyers, Jean Bacon
David.Eyers@cl.cam.ac.uk

Brian Shand
Brian.Shand@nhs.uk

Background

Motivation
- Continuous streams of event data occur in many applications
- Existing analysis systems have generally focused on off-line analysis
- Event based systems analyse data in real-time
- Centralised event-processing systems are reaching their limits

Open challenge: facilitate scaling up to thousands of machines in a cloud computing setting

Goals
1. Scalability: Develop architecture for event processing at cloud scale
2. Elasticity: Ensure that the deployed scale can change dynamically
3. Adaptability: Dynamic tuning of processing quality and speed or cost

Workload Characteristics
- Existing usage of large-scale services has peaks and troughs
- Significant scope for improvement for elasticity and adaptability

SEEP Architecture

Partitioning layer
- Event Processing Machines (EPMs) perform event processing
- EPMs implemented as non-deterministic FSAs
 - Each EPM instance contains state \(S \) derived by events matched so far
 - States linked by edge predicates (computed in P/S layer)

Publish/subscribe layer
- Incoming event streams broadcast to P/S layer nodes
- Large number of matching predicates \((P_1, P_2, \ldots, P_n) \) on incoming events
- Matched events dispatched to appropriate VMs in partitioning layer
- Inverted index created over predicates to speed up event matching
 - Predicates indexed according to matched attributes, operator and value
 - Techniques from publish/subscribe literature can be reused
- By filtering first, the volume of events in the next layer can be reduced

Two layer approach
- Structured approach to event processing
 - Architecture separates matching from computation
 - Reduces complexity for improved scalability
 - Two layers can scale independently

Cloud environment
- Provide a Platform-as-a-Service (PaaS) Cloud environment
- Make use of Infrastructure-as-a-Service (IaaS) Cloud providers

Target features
- Expressiveness: provide detection of event sequences and aggregation
 - e.g. value of cumulative purchases above the average for that month
 - We do not aim to solve general purpose data analysis computations
- Elasticity: the system must be able to adapt to varying event rates
 - Could be through controlled decision: e.g. cost considerations
 - Might be through unforeseeable workload variations
- Fault tolerance: the system must be able to handle failures in VMs
 - Still must maintain throughput and/or latency bounds

Future Work
- Which applications best match the EPM model’s expressiveness?
- How do extensions to the EPM model impact upon the architecture?
- How can persistence be best integrated into the SEEP architecture?
- Test large-scale, distributed deployment of the system
- Develop an open software platform for hosting SEEP applications