
Network-Aware Stream Query Processing
in Mobile Ad-Hoc Networks

Dan O’Keeffe
Imperial College London

Theodoros Salonidis
IBM T.J. Watson Research Center

Peter Pietzuch
Imperial College London

Abstract—Many real-time decision support and sensing ap-
plications can be expressed as continuous stream queries over
time-varying data streams, following a data stream management
model. We consider the problem of the efficient and resilient
execution of continuous stream queries in tactical edge net-
works formed from mobile ad-hoc networks (MANETs) with
limited backend connectivity. Previous approaches for distributed
stream query execution target data center environments in which
networks are static, and centralized control is feasible. The
distributed, bandwidth-constrained and highly dynamic nature
of MANETs render such approaches insufficient—while a stream
query executes in a MANET, changes in the network topology
mean that any fixed query plan eventually becomes outdated.

We introduce an adaptive, network-aware approach for stream
query planning in MANETs, which supports both single- and
multi-input windowed stream query operators. The basic idea is
to increase the path diversity available when executing stream
queries by replicating query operators across many nodes in the
MANET. During execution, it becomes possible to dynamically
switch between different operator replicas based on connectivity
and other network path conditions. We evaluate our approach in
emulated MANETs, showing that it can increase substantially the
robustness of distributed stream query processing under mobility.

I. INTRODUCTION

A data stream management (DSM) model [4] naturally ex-
presses the behavior of many real-time decision support, sens-
ing and analytics applications. In contrast with a traditional
database model, which executes one-shot queries on stored
data, a DSM model executes continuous queries on real-time
streaming data. A continuous stream of data items is processed
by a query that extracts knowledge in real time. For example,
troops at a spot checkpoint with cameras or head-mounted
displays can execute a stream query to continuously detect,
recognize and share any suspicious enemy faces, vehicles or
motion within 10 m of the checkpoint (see Figure 1).

To implement a DSM model, a data stream manage-
ment system (DSMS) typically represents queries as dataflow
graphs. In such a dataflow graph, vertices correspond to stream
query operators and directed edges describe the movement
of data items between operators [4], which can be database
tuples, network measurements, location readings, or images
from video sources. The operators are executed by the DSMS
and can perform simple arithmetic operations, data filtering
or aggregation and more computationally-intensive database,
signal processing or data mining operations on the stream data.

DSMSs have been used to realize many commercial ap-
plications, including click-stream analysis, network intrusion
detection, video stream analysis and financial risk calculations.

Fig. 1: Checkpoint scenario. Soldiers equipped with
smartphones communicate over a MANET

Such applications typically run in centralized data centers
with high volumes of data traffic that are processed by high-
performance networked compute clusters.

In contrast, mobile devices in tactical environments are
resource- and energy-constrained and have intermittent or
bandwidth-limited network connectivity to backend ser-
vices. Sources of stream data and processing resources
are distributed, and connected via mobile ad-hoc net-
works (MANETs). An individual device such as a smartphone
or a tablet may not have sufficient compute resources to
carry out all required processing by itself, which requires
a distributed processing model that combines the resources
of multiple devices. A vital requirement is the resilience
of critical mission operations, and the dynamic nature of
MANETs makes it more challenging to meet this requirement
for distributed DSM applications.

Our key observation is that, for a DSM model to become
feasible in a MANET, the execution of stream queries must
adapt to network conditions, thus making it network-aware.
In this paper, we propose a novel approach for adaptive
stream query planning that takes the current conditions of
the MANET into account in order to increase data processing
resilience and throughput. While adaptive query planning has
been explored by the database research community to cope
with changes in workloads in a datacenter environment [8],
our goal is to perform query planning in a manner that reacts
to changes in the network conditions in MANETs.

Our network-aware approach to adaptive query planning
consists of two parts: (i) operators in the dataflow graph are
replicated within the MANET in a manner that provides robust
availability and access in the face of intermittent network
connectivity and congestion; and (ii) data stream items are then
routed to operator replicas over the highest quality available

Milcom 2015 Track 2 - Networking Protocols and Performance

978-1-5090-0073-9/15/$31.00 ©2015 IEEE 1335

network paths. Our experiments show that the additional path
diversity operator replication affords results in more efficient
and robust stream processing compared to using a single static
deployment plan for a query.

In summary, the paper makes the following contributions:
• a novel replicated dataflow graph model for distributed

data stream processing in MANETs, under which a num-
ber of replicated query operators are deployed to a subset
of nodes in the network to support network dynamicity;

• a network-aware cost-based routing algorithm that dy-
namically sends data to different operator replicas in order
to maximize query performance. The algorithm ensures
consistent switching decisions for both single and multi-
input query operators; and

• an evaluation of the performance benefits of operator
replication for a distributed face recognition application.

Next we provide background on DSM (Section II) and intro-
duce our adaptive network-aware approach to query planning
in MANETs (Section III). We then discuss the implementation
of a prototype DSMS for executing streaming queries that re-
alizes our approach (Section IV), and evaluate our prototype’s
performance with an emulated MANET (Section V). We finish
with related work (Section VI) and conclusions (Section VII).

II. BACKGROUND

A. Data stream management model

We adopt the following formal DSM model in this paper:
Data model. A stream s is an infinite series of tuples t ∈ s. A
tuple t = (τ, p) has a logical timestamp τ and a payload p. The
timestamp τ ∈ N+ is assigned by a monotonically increasing
logical clock of an operator. Tuples in a stream are ordered
according to their timestamps.
Operator model. Tuples are processed by operators. A logical
operator o takes n input streams, denoted by the set Io =
{s1, . . . ,sn}, processes their tuples and produces a logical
output stream Oo. The notation Io[τ̄] specifies all tuples in
the input streams with timestamps less than τ̄ where τ̄ =
(τ1, . . . ,τn). We assume that all operators are windowed opera-
tors in that they divide their input streams into finite windows
of tuples before processing them. Windows may be count- or
time-based, modeled using size and slide parameters [2].
Query model. A query is specified as a dataflow graph Q
= (O,S) where O is the set of operators and S is the set
of streams. A stream s ∈ S is a directed edge between two
operators, s = (o,o′), where {o,o′} ⊆ O. A query has two
special operators, src and sink, that act as the sources and sink
for data streams, respectively. An operator u is upstream to o,
denoted by u∈ up(o), when ∃(u,o)∈ S. Similarly, an operator
d is downstream to o, d ∈ down(o), when ∃(o,d)∈ S. Finally,
to optimize query execution, a DSMS first transforms Q into
a query plan G = (O,S), also a dataflow graph.

B. Problem statement

The problem that we address is how to design a DSMS
that supports the above DSM model and can operate in a
tactical environment with a MANET. We assume that in

Fig. 2: Operator replication and query execution in a MANET

this environment (i) applications are too compute-intensive to
execute on a single node, and (ii) distributed computation is
challenging to coordinate due to the dynamic topology of a
MANET. An additional constraint is that the DSMS should
not unnecessarily waste scarce resources such as network
bandwidth or node energy, and should allow for correlation
of stream data across multiple sources.

We assume that, although some or all network nodes may
be mobile and the network can become partitioned due to
mobility, most of the time there will exist a path in the network
from sources to sinks. We argue that scenarios in which nodes
are nearly always disconnected are better suited to store-and-
forward models such as delay-tolerant networking [9].

In addition, we assume that for most distributed DSM
applications executing in a MANET, the network will be
the bottleneck due to its dynamic nature and the reduced
bandwidth and potential for interference in wireless networks.
Cellular or satellite connectivity is unavailable, intermittent, or
too bandwidth-constrained to make offloading computation to
a centralized backend a feasible solution.

III. ADAPTIVE NETWORK-AWARE STREAM QUERIES

We describe a new approach for executing data stream
queries in MANETs that relies on network-aware adaptation of
the query plan that the DSMS executes. The plan adaptation
has two steps: (i) for a given query, the DSMS generates a
query plan with multiple replicated operators; and (ii) when
executing the query, the DSMS routes data tuples along
redundant processing paths in the query plan depending on
the current network conditions in the MANET.

A. Query deployment

Given a query Q, a query planner that is part of the DSMS
first decides on a physical query deployment plan GQDP. As
shown in Figure 2, the query deployment plan is a dataflow
graph that, in contrast to the logical query graph Q, contains
replicated operators. Operator replication gives the DSMS
a choice at runtime to which downstream replica a given
operator sends its stream output for further processing. This
enables the DSMS to avoid network bottlenecks and thus
improve query throughput (see Section III-B).

The query planner precomputes the number of replicas for
each operator based on the expected characteristics of the
network, such as the expected level of mobility. We assume
that only approximate aggregate information about the network

Milcom 2015 Track 2 - Networking Protocols and Performance

1336

is available to the query planner at deployment time, such as
the expected network size and density, and the average level
of mobility. The planner then deploys each operator replica
in GQDP to a node in the MANET. We treat the problem of
replica placement in the network as an orthogonal issue; for
simplicity, we assume simple random placement.

B. Query execution planning
Having deployed a physical query deployment plan GQDP,

the challenge for the DSMS is to determine the best physical
execution plan for the query. A query execution plan GQEP
is a subgraph of GQDP that defines for each operator replica
in GQDP the downstream replica that it should send its output
tuples to. Figure 2 depicts the relationship between the deploy-
ment plan graph GQDP and the current GQEP for a query Q.
Each link in GQEP corresponds to a multi-hop network-level
path in the MANET with an associated cost.

Our goal is to make execution planning decisions in
a network-aware manner. Due to the dynamic nature of
MANETs, the cost of communication between nodes can
change dramatically over time. DSMS execution planning
must therefore continuously monitor the network and adapt
GQEP in response to cost changes. Furthermore, execution
planning should be distributed to avoid relying on a centralized
coordinator as part of the DSMS because node failures and
disconnections are likely in a MANET.
Dynamic routing. We propose a decentralized algorithm for
query execution planning in a DSMS that views the replica
selection problem as a distributed routing problem. Period-
ically, operator replicas measure the network costs to their
direct downstream replicas in GQDP. Costs can be provided by
the underlying MANET protocol or measured directly through
explicit probing. Replicas then communicate to update the
costs associated with their local copies of GQDP. Finally, each
replica independently determines its best downstream replica
by computing the shortest path to the sink operator over GQDP,
and selects the next-hop downstream replica on this path.

This distributed dynamic shortest-path routing algorithm
has two key benefits: (i) intermediate operators can change
the path of tuples in-flight in response to changing network
conditions, allowing more flexibility than e.g. strict source-
routing; and (ii) since routing decisions are based on the cost
to the destination, this approach avoids sending tuples along
a path with low cost to the next downstream replica but high
cost to the destination, as may occur with greedy local routing.

The DSMS uses additive costs to determine the overall
network cost of the query. This enables it to use shortest-
path algorithms of low complexity such as Dijkstra or Bellman
Ford. In our DSMS implementation, we use a modified version
of Dijkstra’s shortest path algorithm.
Tuple routing algorithm. Algorithm 1 describes the routing
behavior of each operator replica in more detail. Given an
operator replica r, we define its replica deployment plan
graph Gr

QDP as the subgraph of the global deployment plan
graph GQDP containing all transitively reachable downstream
replicas. Periodically, each operator executes the adapt-route
function to determine whether it needs to switch to a different

Algorithm 1 Dynamic tuple routing algorithm
1: id ∈ ID // local node id
2: sink ∈ ID // sink id
3: Gid

qdp ⊂ Gqdp // Deployment plan graph for replica id
4: Pcurr // The currently active path to the sink from this node
5: function ADAPT-ROUTE(id,sink,Gid

qdp,Pcurr)
6: Pnew = SHORTEST-PATH(id,sink,Gid

qdp)
7: if COST(Pcurr,Gid

qdp) − COST(Pnew,Gid
qdp) > 0 then

8: return Pnew
9: else

10: return Pcurr

downstream replica (line 5). The function first computes the
shortest path to the sink using the operator’s current replica
deployment plan graph (line 6), and then compares the differ-
ence in cost between the new shortest path and the currently
active path (line 7). Finally, the function returns the new path
if it offers sufficient benefit (line 8), and otherwise returns the
currently active path (line 10).
Support for multi-input operators. Although the above
algorithm computes an efficient execution plan for simple
chain queries, it does not work for more complex queries
with multi-input operators such as stream joins [2]. Multi-input
operators need tuples from both input streams within a window
in order to produce a correct result. If two input sources route
their tuples independently to two different replicas, the result
will be incorrect—instead, both inputs must coordinate their
routing decisions.

To solve this problem, we introduce a technique called
multi-input cost aggregation. Upstream operators measure the
costs to their downstream multi-input replicas as before, but
instead of using those costs directly, they send them down-
stream to the corresponding multi-input replicas. The replicas
compute the aggregate cost across all of their direct upstreams,
and return this cost. The upstream operators then combine the
aggregate costs with other GQDP updates received from their
downstreams to construct their local copy of GQDP. Finally,
each operator replica computes the shortest path as before.

Multi-input cost aggregation ensures that the aggregate cost
to each multi-input replica is the same for each input. Since
the lowest cost path from a multi-input replica to the sink
is independent of the inputs, each operator making a routing
decision will compute the same shortest path to the destination,
thus implicitly coordinating their choice of downstream.

IV. IMPLEMENTATION

We next describe the implementation of a prototype DSMS
that incorporates our adaptive query planning technique.

A. System architecture

Our prototype is based on SEEP [10], a Java-based DSMS
designed originally for datacenters. A SEEP cluster consists
of a master node and one or more worker nodes. Workers
join the cluster by registering with the master. Users submit
new queries to SEEP through the master, which then deploys
query operators to the workers for execution. Unlike SEEP, our
prototype workers run on MANET nodes, and the master runs
on either a MANET node or on a node outside the MANET if

Milcom 2015 Track 2 - Networking Protocols and Performance

1337

Operator Dispatcher

 Routing
Controller

Fig. 3: Node worker architecture in the DSMS prototype

available. The master is only used for initial query deployment,
and could be decentralized with additional engineering effort.

Query deployment. For the initial conversion of stream
queries into a physical dataflow graph with several replicas
for each operator, we implement a query planner component
as part of the SEEP master. The planner takes as input a
stream query Q, creates GQDP from Q and then deploys each
operator replica in GQDP to a random worker node in the
MANET. The planner implementation extends SEEP’s scale-
out capability, designed for replication of partitionable data-
parallel operators, to support replication of arbitrary operators.

Runtime query execution. A SEEP worker is responsible
for receiving and processing input tuples, and sending any
operator output tuples to downstream worker nodes. Workers
implement the routing functionality needed to implement our
network-aware routing algorithm (Section III-B).

Figure 3 shows the high-level architecture of each DSMS
worker. The operator component receives tuples from its
upstream operators and outputs them to a dispatcher. The
dispatcher forwards output tuples to a downstream replica.
The dispatcher consults the router to determine the replica
to select. The router of replica r selects a downstream replica
based on its view of the dataflow graph Gr

QDP, over which it
periodically computes the lowest cost path to the sink.

The router is responsible for maintaining the costs asso-
ciated with each link in Gr

QDP. In the simplest case, the
network layer uses a link-state routing algorithm and allows
the application to access its routing tables. The router consults
the network layer periodically to obtain Gnet, the current
network-level link-state. The router then computes the cost
for each application-level link (o,o′) in Gr

QDP as the cost of
the shortest path between o and o′ in Gnet.

If the network-layer does not use a link-state routing al-
gorithm or does not allow the application layer to query its
routing tables, each replica r can measure itself only the
network-level costs to its direct downstreams in Gr

QDP. In such
cases, the router of r periodically obtains the costs for the
remaining links in Gr

QDP from the downstreams of r. In turn,
the router of r periodically forwards Gr

QDP to r’s upstreams.

B. Network-layer interaction

Routing. Our implementation is agnostic to the network-layer
routing algorithm used in the underlying MANET, although
the algorithm chosen may impact the performance of query
processing. Our evaluation (Section V) uses OLSR [6], a
proactive routing protocol. Reactive routing protocols (e.g.
AODV [15]), in which nodes gather routing information on-
demand in response to send requests, are also applicable.

Source Sink Face
Detector

 Face
Recognizer

Wanted List

Fig. 4: Stream query for face recognition application

Cost metrics. Our implementation can use any additive cost
metric for routing, including hop count, latency, packet loss,
or ETX [7]. We require additive costs to support shortest-
path routing algorithms of low complexity (e.g. Dijkstra).
Costs can be supplied by the network layer, or if necessary
measured at the application layer using explicit probing (e.g.
bandwidth measurements). Our evaluation (Section V) uses
ETX, a high-performance additive metric for wireless mesh
networks, defined as the inverse of packet success ratio. Our
architecture also allows us to incorporate node costs such as
processing load or energy remaining.

C. Mobility models

We do not assume a particular mobility model, allowing
for example a query deployment phase that randomly deploys
replicas when accurate location predictions are hard to make
a priori (e.g. for a random waypoint mobility model). More
sophisticated mobility models could involve nodes that are
known to follow certain paths or congregate in specific areas,
or incorporate information about group or social relationships.
Our query planning framework could use such information to
influence both the level of operator replication and operator
placement. We leave this for future work.

V. EVALUATION

We evaluate the performance of our adaptive network-aware
query planning in an emulated mobile ad-hoc network, focus-
ing on the distributed face recognition application as shown in
Figure 1, and also in simulation. Our experiments explore the
effect of operator replication on processing throughput with
different levels of network dynamicity, density and size.

A. Emulation experiments

Distributed face recognition query. The query for our dis-
tributed face recognition application is shown in Figure 4. A
source captures frames from a local video feed and forwards
them to a (1) face detection operator. It analyses each frame
and forwards the image coordinates of detected faces to a
(2) face recognition operator, which compares input faces to
a local database of persons of interest. The faces and names
of matches are sent to a sink, which displays the results to
the user. In our experiments, all operators have a selectivity
of 1 because the goal is to make a continuous video stream
available at the sink, with throughput measurements indicating
the sustained transmission rate.
Experimental setup. We deploy the query in a MANET
that is emulated using the CORE/EMANE network emula-
tor (version 0.9.1) [1]. Nodes in the MANET move according
to a random waypoint mobility model with a pause time
of 2±1 seconds (node speed varies according to the experi-
ment). At the physical layer, we set the node transmit power

Milcom 2015 Track 2 - Networking Protocols and Performance

1338

to −10.0 dBm and the path loss mode to 2ray, giving an
approximate transmission range of 500 m with stable TCP
throughput. At the MAC layer, we use 802.11b with a unicast
and multicast rate of 11 Mb/s. We use the default values for
all other EMANE parameters. At the network layer, we use
OLSR [6] with ETX [7] as a cost metric.

1) Impact of network mobility: Our first experiment evalu-
ates the benefit of operator replication in a 25 node network
with different levels of node mobility. Figures 5 and 6 show
the query throughput and latency with different replication
factors k, as we increase node speed (error bars indicate the
standard deviation across 5 runs).

The benefits of replication for throughput become apparent
as node speed increases, even though the absolute throughput
falls. With an average node speed of 5 m/s, there is a 1.6×
and 1.8× improvement in mean throughput for k = 2 and
k = 3, respectively. At 10 m/s, the improvement increases to
2.1× (k = 2) and 2.6× (k = 3). Even with low mobility (1 m/s),
a replication factor of k = 2 gives a mean speedup of around
1.3×, and k = 3 results in 1.4×.

The variance is slightly higher with low mobility because
the initial operator and node placement has more influence on
the throughput. Even though the variance is higher, the relative
throughput increases with larger replication factors.

Figure 6 shows that query latency remains low for all values
of k up to 10 m/s, allowing for near real-time distributed pro-
cessing. However, variance in latency increases considerably
for higher levels of mobility. In absolute terms, the mean
95th percentile latency is sub-second with replication for low
mobility (1 and 5 m/s), and on the order of a second at 10 m/s.

In terms of relative latency, both k = 2 and k = 3 give a
50% reduction in latency over k = 1 at 1 m/s, and 50% and
40%, respectively, at 5 m/s. At 10 m/s, latency for k = 2 is on
par with k = 1, and with k = 3 it is approximately 20% lower.

2) Scalability: The next experiment explores how increas-
ing the network size, while keeping network density fixed,
affects throughput for different replication factors k. Figure 7
shows the throughput for different replication factors in a
network with 50 nodes and an average node speed of 5 m/s.

Although the absolute throughput is lower than for the
25-node network in Figure 5, replication still improves per-
formance considerably. For k = 2, there is a 1.8× speedup
in mean throughput, and a 2.3× improvement for k = 3.
We consider a 50-node network as an upper bound for the
size of a realistic deployment, and thus the results show the
applicability of our approach even at scale.

B. Simulation experiments
To characterize the behaviour of our approach for a wider

variety of environmental parameters, we conduct several ad-
ditional experiments in simulation using the JIST/SWANS
wireless ad-hoc network simulator [5].
Experimental setup. All of our simulations use a 25-node
network. The effective transmission range for each node is
625 m. Since JIST does not provide an OLSR implementation,
our simulator experiments use the AODV routing algorithm,
and the hop count provided by AODV as a cost metric.

0

20

40

60

80

100

0 20 40 60 80 100 120 140 160 180Pr
op

or
ti
on

of
ru

n
s

(%
)

k=2
k=3
k=5

Throughput (Kb/s)

k=1

(a) Sparse network

0

20

40

60

80

100

0 50 100 150 200 250 300 350 400Pr
op

or
ti
on

of
ru

n
s

(%
)

k=2
k=3
k=5

Throughput (Kb/s)

k=1

(b) Dense network

Fig. 8: Throughput percentiles in dense (1500 m ×1500 m)
and sparse (3135 m ×3135 m) networks for a query with 3
operators, avg. node speed 4 m/s, and replication k

1) Impact of network density: Our first set of simulator
experiments investigates the effect of reduced network density
on the relative throughput achieved for different replication
factors k. Figure 8 compares the throughput with an average
node speed of 4 m/s in (a) sparse and (b) dense networks.

In a dense network, k = 2 is beneficial, k = 3 gives diminish-
ing returns, and increasing k further reduces throughput. For
sparse networks, k > 3 still gives a clear benefit in throughput,
although the absolute throughput is lower than for the dense
case. These differences in behaviour arise because in a dense
network, the worst case path length is shorter, and so, on
average, the gain from replica switching is lower. Since higher
replication factors have more chances to switch, switching
overhead begins to outweigh the benefits of replication.

2) Switching threshold: Intuitively, the benefit of replica-
tion factors k> 3 should further diminish in a dense network as
dynamicity increases, because new paths retain their advantage
for shorter periods. To confirm this intuition, Figure 9 repeats
the previous experiment with increased node mobility (10 m/s)
and different switching thresholds. Instead of always switching
to the lowest cost path every period, nodes only switch if the
difference between the expected cost of the new path and the
expected cost of the current path is above a certain threshold.

In Figure 9, we measure the throughput for different
replication factors in a dense network with high mobility
and switching thresholds of (a) 1 hop and (b) 3 network
hops. The results show that an increased switching threshold
improves throughput for higher replication factors by avoiding
unnecessary switches.

VI. RELATED WORK

Much research work in the database community exists on
adaptive query processing [8]. Unlike traditional “optimize-
then-execute” query processing, the goal of adaptive planning

Milcom 2015 Track 2 - Networking Protocols and Performance

1339

 0

 200

 400

 600

 800

 1000

 1200

 0 2 4 6 8 10 12 14 16T
h
ro

u
g
h
p
u
t

(K
b
/s

)

Node speed (m/s)

k=1
k=2
k=3

Fig. 5: Face recognition. Throughput
vs. mobility for replication k.

 0

 1000

 2000

 3000

 4000

 5000

 0 2 4 6 8 10 12 14 169
5

%
 L

a
te

n
cy

 (
m

s)

Node speed (m/s)

k=1
k=2
k=3

Fig. 6: Face recognition. Latency vs.
mobility for replication k.

 0

 50

 100

 150

 200

 250

 300

 350

T
h
ro

u
g
h
p
u
t

(K
b
/s

)

Replication factor (k)

k=1
k=2
k=3

Fig. 7: Face recognition. Throughput
in a large network with replication k.

0

20

40

60

80

100

50 100 150 200 250 300 350 400 450 500

Pr
o

p
o

rt
io

n
o

f
ru

n
s

(%
)

k=2
k=3
k=5

Throughput (Kb/s)

k=1

(a) Switch threshold = 1 hops

0

20

40

60

80

100

50 100 150 200 250 300 350 400 450 500Pr
op

or
ti
on

of
ru

n
s

(%
)

k=2
k=3
k=5

Throughput (Kb/s)

k=1

(b) Switch threshold = 3 hops

Fig. 9: Throughput percentiles with different switching thresh-
olds for a 3-operator query with replication k in a 1500 m
×1500 m area with avg. node speed 10 m/s

is to use runtime feedback to modify query processing dynam-
ically to improve response times or utilization. Rundensteiner
et al. give an overview of the design space [14], ranging pre-
computed static plans to dynamic per-tuple routing.

A plethora of work exists on static query plan generation
for DSM systems. Query planners such as SODA [16] and
SQPR [13] formulate query planning and placement as an
optimization problem and solve it using standard techniques
like mixed integer linear programming (MILP) [12]. We can
exploit these approaches to generate an initial query deploy-
ment plan from a given logical dataflow graph.

Adaptive execution for streaming queries has been consid-
ered in Eddies [3] and QueryMesh [14]. These approaches
adapt to changes in input data by either selecting one of
multiple pre-computed query plans [14], or adapting the order
of operators visited by tuples while ensuring a correct query
result [3]. Both approaches are typically executed in single-
node or static network environments and therefore do not apply
for dynamic network environments such as MANETs. They
also focus on relational database queries while we consider
queries with more general operators (e.g. face recognition).

In the context of DSM systems, Hwang et al. describe how
replicated plans with multiple paths between a tuple source and
sink and redundant data processing can improve reliability or
reduce processing latency [11]. Instead of sending a copy of

each tuple along every path, we send only a single tuple, and
paths along which successive tuples travel may differ. While
replication-based approaches are likely to perform better in
extremely dynamic networks, they incur the cost of redundant
processing, increased network traffic and interference.

VII. CONCLUSION

In this paper, we proposed the data stream manage-
ment (DSM) model as a suitable foundation for real-time
decision support and analytics applications in tactical environ-
ments, where nodes may have limited backend connectivity.
However, existing approaches for DSM that target data centers
are unsuited to MANETs—the dynamic nature of the network
means that any fixed query deployment plan quickly becomes
outdated, resulting in poor performance. We describe instead
an adaptive network-aware approach to stream query planning
where (i) operators are replicated within the MANET and
(ii) data streams are routed to operator replicas over the
best available network path. We showed that the additional
path diversity afforded by operator replication results in more
efficient and robust stream processing in MANETs.

REFERENCES

[1] J. Ahrenholz. Comparison of CORE network emulation platforms. In
MILCOM ’10.

[2] A. Arasu, S. Babu, and J. Widom. The CQL continuous query language:
Semantic foundations and query execution. The VLDB Journal, 2006.

[3] R. Avnur and J.M. Hellerstein. Eddies: Continuously adaptive query
processing. In ACM SIGMOD Record, 2000.

[4] H. Balakrishnan, M. Balazinska, D. Carney, U. Çetintemel, et al.
Retrospective on Aurora. VLDB Journal, 13(4), 2004.

[5] R. Barr, Z.J. Haas, and R. van Renesse. JiST: An efficient approach to
simulation using virtual machines. Software Practice and Experience,
2005.

[6] T. Clausen and P. Jacquet. Optimized link state routing protocol (OLSR),
2003.

[7] D. De Couto, D. Aguayo, J. Bicket, and R. Morris. A high-throughput
path metric for multi-hop wireless routing. In MOBICOM ’03.

[8] A. Deshpande, Z. Ives, and V. Raman. Adaptive query processing.
Foundations and Trends in Databases, 2006.

[9] K. Fall. A delay-tolerant network architecture for challenged internets.
In SIGCOMM ’03.

[10] R. Castro Fernandez, M. Migliavacca, E. Kalyvianaki, and P. Pietzuch.
Integrating Scale Out and Fault Tolerance in Stream Processing using
Operator State Management. In SIGMOD ’13.

[11] J.-H. Hwang, U. Çetintemel, and S. Zdonik. Fast and reliable stream
processing over wide area networks. In ICDEW ’07.

[12] IBM. ILOG CPLEX. www.ibm.com, 2010.
[13] E. Kalyvianaki, W. Wiesemann, Q. Hieu Vu, D. Kuhn, and P. Pietzuch.

SQPR: Stream query planning with reuse. In ICDE, 2011.
[14] R.V. Nehme, K. Works, C. Lei, E.A. Rundensteiner, and E. Bertino.

Multi-route query processing and optimization. Journal of Computer
and System Sciences, 2013.

[15] C. Perkins, E. Belding-Royer, and S. Das. Ad hoc on-demand distance
vector (AODV) routing, 2003.

[16] J. Wolf, N. Bansal, K. Hildrum, S. Parekh, et al. SODA: An optimizing
scheduler for large-scale stream-based distributed computer systems. In
Middleware, 2008.

Milcom 2015 Track 2 - Networking Protocols and Performance

1340

