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ABSTRACT
Recently we have observed emerging uses of deep learning tech-
niques in multimedia systems. Developing a practical deep learning
system is arduous and complex. It involves labor-intensive tasks
for constructing sophisticated neural networks, coordinating mul-
tiple network models, and managing a large amount of training-
related data. To facilitate such a development process, we propose
TensorLayer which is a Python-based versatile deep learning library.
TensorLayer provides high-level modules that abstract sophisticated
operations towards neuron layers, network models, training data
and dependent training jobs. In spite of offering simplicity, it has
transparent module interfaces that allows developers to flexibly
embed low-level controls within a backend engine, with the aim of
supporting fine-grain tuning towards training. Real-world cluster
experiment results show that TensorLayer is able to achieve com-
petitive performance and scalability in critical deep learning tasks.
TensorLayer was released in September 2016 on GitHub. Since after,
it soon become one of the most popular open-sourced deep learning
library used by researchers and practitioners.
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1 INTRODUCTION
Recently we have observed the prosperity of applying deep learning
into multimedia systems. Important applications include achieving
visual recognition using convolution neural networks (CNN) (e.g.,
object recognition [23] and image generation [29]), natural lan-
guage understanding using recurrent neural networks (RNN) [26]
and machine strategic thinking using deep reinforcement learning
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(DRL) [27]. Such a prosperity has led to a booming of deep learn-
ing frameworks including TensorFlow [1], MXNet [7], Torch [9]
and CNTK [30]. Developing a deep learning system typically starts
with a rigorous search for an optimal neural network. A typical
neural network consists of stacked neuron layers such as dropout
[31], batch normalization [19], CNN and RNN. Developers rapidly
evaluate varied networks by utilizing rich reference layer imple-
mentations imported from open source libraries including Caffe
[20], Keras [8], Theano [6], Sonnet [11] and TFLearn [10].

Deep learning systems are increasingly interactive [3]. This has
led to three transitions in their development landscape. Firstly,
datasets are becoming dynamic. The emergence of learning sys-
tems that involve feedback loops, e.g., DRL and active learning
[13], has spawn numerous requests for manipulating, consolidating
and querying datasets. Secondly, models are becoming composite.
To achieve precise recognition, a deep neural network, e.g., dy-
namic neural networks [4] and generative adversarial networks
(GANs) [29], can need to activate varied neuron layers according
to input features. Thirdly, training is becoming continuous. Sam-
ples, features, human insights, and operation experiences can be
produced even after deployment. It thus becomes necessary to
constantly optimize the hyper-parameters of a neural network by
supporting human-in-the-loop.

The growing interactivity complicates deep learning develop-
ment. Developers have to spend many cycles on integrating compo-
nents for experimenting neural networks, managing intermediate
training states, organizing training-related data, and enabling hyper-
parameter tuning in responses to varied events. To reduce required
cycles, we argue for an integrative development approach where
the complex operations towards neural networks, states, data, and
hyper-parameters are abstracted and provided within complemen-
tary modules. This spawns an unified environment where develop-
ers are able to efficiently explore ideas through high-level module
operations, and apply customizations to modules only if necessary.
This approach does not intend to create module lock-in. Instead,
modules are modelled minimal single-function blocks that share an
interaction interface, which allows easy plug-ins of user-defined
modules.

TensorLayer is a community effort to achieve this vision. It is
a modular Python library that provides easy-to-use modules to
facilitate researchers and engineers in developing complex deep
learning systems. Currently, it has (1) a layer module that provides
reference implementation of neuron layers which can be flexibly
interconnected to architect neural networks, (2) a model module
that can help manage the intermediate states incurred throughout
a model life-cycle, (3) a dataset module that manages training data
which can be used by both offline and online learning systems,
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and (4) a workflow module that supports asynchronous schedul-
ing and failure recovery for concurrent training jobs. In addition
to using high-level module APIs, TensorLayer users are allowed
to offload low-level functions into execution backends to achieve
fine-grain controls towards a training process. This transparent in-
terface design is particular useful when addressing domain-specific
problems.

TensorLayer implementation is optimized for performance and
scalability. It adopts TensorFlow as the distributed training and
inference engine. Delegation into TensorFlow exhibits negligible
overhead. In addition, TensorLayer uses MongoDB as the storage
backend. This backend is augmented with an efficient stream con-
troller for managing unbounded training data. To enable automa-
tion, this controller is able to batch results from a dataset query and
spawns batch training tasks accordingly. For efficiently handling
large data objects like videos, TensorLayer uses GridFS as a blob
backend, and makes MongoDB act as an sample indexer. Finally,
TensorLayer implements an agent pub-sub system to achieve asyn-
chronous training workflow. Agents can be placed onto various
kinds of machines and subscribe to independent tasks queues. These
queues are managed by in reliable storages so that failed tasks can
be replayed automatically.

In contrast to other TensorFlow-based libraries such as Keras and
TFLearn, TensorLayer permits straightforward low-level controls
within the execution of layers and neural networks. In addition, it
provides extra dataset and workflow modules to free users from
labor-intensive data pre-processing, post-processing, module serv-
ing and data management tasks. Last but not least, TensorLayer
does not create library lock-in. Its unified module interaction in-
terface can accept layers and networks imported from Keras and
TFLearn in a non-invasive manner.

TensorLayer was released on Github 1 in September 2016, and
soon become one of the most popular open-sourced deep learning
libraries [14]. By July 2017, it has received more than 1900 stars and
has formed an active development community. We demonstrate its
effectiveness through real-world applications, where TensorLayer
are used to implement DRL, GANs, model cross-validation and hy-
per parameter optimization [5]. These applications were previously
challenging to develop and requires expensive development effort
for integrating storage, fault-tolerance, computations and cluster
management components. The use of TensorLayer significantly
accelerates such a process.

2 ARCHITECTURE
We describe the architecture of TensorLayer in Figure 1. A deep
learning developer writes a multimedia system using helper func-
tions from TensorLayer . These functions range from providing and
importing layer implementations, to building neural networks, to
managing states involved throughout model life-cycles, to creating
online or offline datasets, and to writing a parallel training plan.
These functions are grouped into four modules: layer, network,
dataset, and workflow. In the following, we describe these modules,
respectively.

1https://github.com/zsdonghao/tensorlayer
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Figure 1: TensorLayer architecture.

Table 1: TensorLayer (TL) and TensorFlow (TF) benchmark.

CIFAR-10 PTB LSTM Word2vec
TL 2528 images/s 18063 words/s 58167 words/s
TF 2530 images/s 18075 words/s 58181 words/s

2.1 Layer Module
Layers are the core bricks of a neural network. TensorLayer pro-
vides a layer module that includes reference implementations of
numerous layers, such as CNN, RNN, dropout, dropconnect, batch
normalization and many others. Layers are stacked to create a neu-
ral network with a declarative fashion, similar to the extensively
used Lasagne [12]. Each layer is given an unique key for helping
developers achieve parameter sharing. The networks are delegated
to TensorFlow. TensorLayer inherits from TensorFlow to run on
hybrid and distributed platforms. A concern towards TensorLayer
is performance overhead. We investigate this by running classic
models [32] using TensorLayer and native TensorFlow implemen-
tations on a Titan X Pascal GPU. Table 1 shows that TensorLayer
exhibits negligible overhead in all models.

Layers can be flexibly composed and customized. They can be
embedded with control functions that are lazily evaluated within
TensorFlow to adjust training behaviours. This transparency de-
sign is favoured by TensorLayer users, in particular when they
are addressing domain-specific problems that require carefully cus-
tomized models. In addition, to ease migration, TensorLayer allows
importing external layer and network implementations from other
TensorFlow wrappers such as Keras, TFLearn and TFSlim by using
the LambdaLayer.

2.2 Model Module
Model is the logical representation of a self-contained functional
unit, and can be trained, evaluated and deployed in production.
Each model has an unique network structure. During training, the
model can have different versions or states (i.e., weights). States can
be persisted, cached and reloaded. We use MongoDB as the storage
backend. Compared to other storage providers such as HBase or
MySQL, MongoDB is out-of-box deployable, simple to use, and rich
in third-party management tools. In terms of performance, it is able
to achieve sufficient throughput for processing tensors which are
the dominant data type in deep learning.
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TensorLayer supports recording user-defined model events. Con-
ventional events reflect training steps, learning speed, and accuracy.
They are often used for diagnosing a training process in order to
achieve, for example, model versioning [25] and interactive learn-
ing [21].

2.3 Dataset Module
The dataset module is used for managing training samples and
prediction results. They are stored as documents in MongoDB. Each
document contains a unique key, sample, label and user-defined tags.
Datasets are specified by declarative queries that carry conditions
towards tag fields. Queries create views of underlying data, and
thus do not cost extra storage.

Data are modelled as general streaming datasets. Each dataset is
given a stream controller that constantly monitor the availability of
samples and predictions, and then trigger corresponding training
tasks towards this dataset. Intermediate training states are cached
in memory and later reloaded among batches. The streaming ab-
straction is able to unify the declaration of offline and online data.
To speed up training efficiency, changes to a dataset is batched until
become significant.

TensorLayer optimizes dataset performance thoroughly. Firstly,
TensorLayer creates indexes for frequently visited tags to accel-
erate row selection. Secondly, datasets can be cached locally and
partitioned to distribute workloads. Thirdly, chunky data are com-
pressed and sent in batches to improve I/O efficiency. Thirdly, in
addressing big blobs such as videos, TensorLayer adopts GridFS as
the blob store. In such a case, the rows in MongoDB carry pointers
to the locations of sample blobs in GridFS. This two-layer storage
architecture is transparent to developers.

2.4 Workflow Module
The workflow module provides task abstraction to enable fault-
tolerant asynchronous training. A training task is uniquely identi-
fied by 3-tuple: an input dataset key, a model key, and an output
dataset key. It is inserted into a task queue subscribed by an agent.
An agent can perform CPU / GPU training task or any user-defined
function written in Python. Task completion messages are pub-
lished onto a notification queue subscribed by an agent master.
This pub-sub system is naturally asynchronous. Multiple tasks can
form a training plan to be scheduled by the master. Queues are
persisted in the storage backend to ensure that failed tasks are
replayed.

The workflow module simplifies the implementation of model
group operations and learning systems that involves asynchronous
feedback loops in operation. It is also useful for complex cognitive
systems that have training dependency among components. For
example, the developer of an image captioning system [28] first
trained a CNN to understand the context of images, and then trained
a RNN decoder to generate description based on recognized context.
This example thus forms a two-stage asynchronous training plan
that can be supported by TensorLayer .

3 APPLICATIONS
This section presents a comprehensive study of deep learning ap-
plications that can benefit from using TensorLayer in terms of

5 10 15 20 25
Number of agents

2k

4k

6k

8k

10k

12k

N
u
m

b
e
r 

o
f 

sa
m

p
le

s/
se

c

Figure 2: Training throughput vs. number of agents used for
generating training samples.

The	bird	has	blue	
crown	and	wings,	and	

white	breast.

A	red	bird	with	blue	
head	has	grey	wings.

Text	to	image synthesis

Semantic	image	transformation

A	yellow	
school	 bus	
parked	in	a	
parking	lot.

Gender	transformation

Face	swapping

Super-Resolution	GAN

Gener
ated	
Image

Figure 3: Highlighted TensorLayer applications.

development efficiency. Relevant source code is publicly available
on Github 2.

Generative adversarial networks.GANs have become a popu-
lar deep learning based generative framework for multimedia tasks.
The discriminator network of GANs has two source inputs, which
is different from common deep learning architectures. TensorLayer
enables developers to efficiently construct network architectures of
GANs, and control the dynamics of a training process, and achieve
parameter optimization.We take DCGAN [29], an image generation
network, as an instance to evaluate the helpfulness of TensorLayer
. While achieving identical training efficiency, TensorLayer im-
plementation has 187 lines of code (LOC), which is 75% smaller
2https://github.com/akaraspt/tl_paper
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than the published TensorFlow implementation (746 LOC). We
use Super-Resolution GAN (SRGAN) [24] as another example. The
TensorLayer-based implementation of SRGAN is 526 LOC in length.
This is smaller than many other open-sourced implementations
that often have more than a thousand LOC.

Deep reinforcement learning.ADRL application is a great ex-
ample that showcases a joint usage of the layer, model, dataset and
workflow modules. Specifically, developers can use TensorLayer to
build a DRL model, manage model’s states between iterations, and
create training data that will be constantly generated by concurrent
game players. To demonstrate this, we implement a distributed
asynchronous DRL system in a cluster that has 10 Gbps connectiv-
ity. The system trains an agent for playing Atari pong game [22]
on a GTX 980 GPU. The trainer keeps receiving samples (i.e., ob-
servations, actions and rewards) from game players simulated by
TensorLayer agents. Trained network models are shared with all
players via the model module of TensorLayer . Figure 2 illustrates
the scalability of TensorLayer in powering such a system. The train-
ing throughput is linearly increasing with more joining agents,
until it reaches the maximum capacity of the GPU.

Hyper parameter optimization and cross-validation.These
two machine learning jobs are necessary for addressing domain-
specific problems, e.g., medical signal processing [2], which usually
do not have universally effective models. Hence, they help devel-
opers explore various models and evaluate their performance. Pre-
viously, they were implemented using ad-hoc components. These
implementations incurred high maintenance cost, and reduced task
efficiency due to the cross-component overhead (e.g., serialization
and network transfer). Integrating them with TensorLayer signifi-
cantly reduces the development and maintenance complexity. In
addition, experiment results show that TensorLayer can gently in-
crease task parallelism while only incurring low memory and I/O
overhead within the shared data infrastructure.

More applications. There are many more applications that
have benefited from using TensorLayer . We highlight a few of them
here: multi-model research [16], image transformation [17, 18], and
medical signal processing [2, 15]. Their results are illustrated in
Figure 3.

4 AVAILABILITY
TensorLayer is open sourced under the license of Apache 2.0. It can
be used in Linux, Mac OS andWindows environments. TensorLayer
has a low adoption barrier. It provides a multilingual documenta-
tion, massive tutorials and thorough examples, such as CNNs (like
VGG, ResNet, Inception), text-related applications (like text gen-
eration, Word2vec, machine translation, image captioning), GANs
(text-to-image synthesis, CycleGAN, stackGAN, SRGAN), reinforce-
ment learning algorithms (like Deep Q-Network, Policy Gradients,
Asynchronous Advantage Actor-Critic (A3C)) and etc.
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