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ABSTRACT
Overlay networks form the core part of peer-to-peer (P2P)
applications such as application-level multicast, content dis-
tribution and media streaming. To ease development, mid-
dleware solutions and toolkit libraries have been proposed
in the past to help with the implementation of overlay net-
works. Existing solutions, however, are either too generic
by only providing low-level communication abstractions, re-
quiring developers to implement algorithms for overlay net-
works from scratch, or too restrictive by only supporting a
particular overlay topology with fixed properties. In this
paper, we argue that it is possible to find a middle ground
between these two extremes.

We describe Hyphen, a middleware for overlay construc-
tion and maintenance that supports a range of overlay topolo-
gies with custom properties, and show how it can replace
topology construction for a variety of application-level mul-
ticast systems. Unlike previous efforts, Hyphen can con-
struct and maintain a range of overlay topologies such as
trees and forests with specific optimisation goals such as
low latency or high bandwidth. By using a gossip-based
mechanism to define topologies implicitly, Hyphen can scale
to many peers and achieve low construction overhead. Our
experimental evaluation with Bullet and Splitstream, two
P2P streaming systems, shows that Hyphen can construct a
bandwidth-optimised tree for Bullet that achieves a higher
streaming rate than the original Bullet implementation, and
that it can construct a more reliable forest for Splitstream
by taking individual peer reliability into account.

1. INTRODUCTION
In many domains, such as video streaming, file sharing,

and content distribution, peer-to-peer (P2P) applications
have emerged as a scalable and cost effective alternative
to traditional client/server systems. P2P applications are
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typically implemented on top of overlay networks, which act
as communication substrate [27]. For example, P2P applica-
tions for application-level multicast (ALM) [5] use an overlay
network to disseminate messages along a virtual topology.
They organise peers into a given logical overlay topology
and route disseminated messages through this topology to
achieve the desired multicast service.

The implementation of overlay networks as part of P2P
applications can be challenging and complex. In addition to
basic support in terms of peer discovery, peer membership
maintenance and topology construction, the overlay network
must handle peer churn and network failures. The con-
structed overlay network must have a specific virtual topol-
ogy that is required by the P2P application and provides
desired properties in terms of network bandwidth, latency
or reliability.

To help with the complexity of overlay networks, libraries
that handle different aspects of overlay network implementa-
tion such as peer communication or peer membership have
been proposed in the past [3, 1]. While these approaches
somewhat reduce programming burden, they do not address
the question of overlay construction. Existing middleware
solutions for overlay constructions are either too restrictive
by only supporting specific topologies [25] or too flexible by
forcing developers to implement their own algorithms for
topology construction and maintenance [26, 29, 30, 24].

However, typically overlay networks share common parts
that can be factored out into a middleware layer to simplify
the development of overlay-based P2P applications. For in-
stance, tree-like overlay networks (tree, multi-trees and for-
est) are widely used as the basis for routing in multicast
communication. Thus, the complex task of defining and
maintaining a tree overlay, for example, is duplicated unnec-
essarily across a wide range of P2P applications. A middle-
ware layer can avoid duplicate implementation effort for the
construction and maintenance of common overlay topologies
that different P2P applications share.

A natural question is how to define the boundary between
the middleware and the P2P application in order to provide
the application with the flexibility to implement specific al-
gorithms. In other words, we need to decide which overlay
topologies the middleware should support in order to help
with the complexity of overlay network construction without
imposing unnecessary restrictions on the application logic of
the P2P application. We address this issue by considering
the supported overlay topologies and associated optimisation
goals.

Overlay topologies. Different P2P applications rely on



different topologies. For instance, SplitStream [9] defines a
forest of trees overlay, optimising the available bandwidth
use on top of Pastry, which provides a scalable routing over-
lay. In Bullet [21], a covering random tree is defined for
the multicast service on top of which a mesh is then dy-
namically created by adding links between peers to recover
missing messages.

By investigating a number of overlays, we can see that
they have a generic part that is common across them. A
tree overlay is for instance at the heart of several P2P appli-
cations. In addition, an overlay also has a specific part. For
example, while the random covering tree in Bullet is generic,
the mesh is the specific part of the overlay network. These
two parts of the Bullet’s overlay are separated. The goal
of our middleware is to support the implementation of the
generic parts of overlay networks.

Optimisation goals. An overlay network is constructed
with given network properties such as latency and band-
width that are determined by an optimisation goal. A clas-
sification of existing overlays [5] revealed that there are three
main optimisation goals found across many overlay networks
in P2P applications: (1) minimising latency, (2) maximis-
ing bandwidth and (3) maximising reliability. Based on this
classification, we argue that a flexible middleware solution
should be able to consider any of these optimisation goals.

By providing overlays with various optimisation goals, the
middleware can not only satisfy the overlay requirements of
a P2P application but also further improve the quality of
these overlay networks. For example, in the case of Bullet,
the middleware can provide a covering bandwidth-optimised
tree instead of the default random Bullet tree, offering better
throughput. Similarly, SplitStream can leverage a reliable
forest topology, which enhances its reliability and minimises
the number of times SplitStream must handle churn events.

The Hyphen middleware. As a solution, we propose
Hyphen, a flexible middleware for constructing a variety of
tree-like overlay networks with specific properties and con-
straints. When using Hyphen, existing overlay-based P2P
applications are not only simplified but can also improve
the quality and performance of their communication. Hy-
phen supports overlays with various optimisation goals, such
as minimising latency, maximising reliability or maximising
bandwidth. These optimisation goals help existing P2P ap-
plications achieve better performance. In addition, overlay
networks constructed with Hyphen adapt to changes in their
environment.

To ensure that Hyphen’s topology construction can scale
to a large number of peers, it uses a gossip-style communica-
tion model. Gossip protocols distribute the load among all
peers in a system. However, traditional random gossip ap-
proaches may cause an excessive message overhead because
their intrinsic redundancy results in more network traffic.
To achieve both low message and computation overheads,
Hyphen makes the gossip communication deterministic in
order to define and maintain an overlay network implicitly,
which we refer to as a hybrid approach. Periodic gossip
messages are exchanged to construct and maintain the over-
lay with low computational and message overheads. Each
peer selects a specific set of peers to gossip with based on
peer properties such as reliability, available bandwidth, etc.
The selected peer sets are chosen so that the links among
peers form the desired overlay. Several overlay construction
techniques already rely on such a hybrid approach to define

overlays [12, 32, 23, 7] but they focus on a specific topology
and a specific optimisation goal. In this paper, we extend
the hybrid approach to build a variety of overlays with vari-
ous optimisation goals. The main contributions of this paper
are listed hereafter.

1. Flexible overlay construction. Hyphen supports tree-
like overlays that can be used as the basis of various
ALM applications. These overlays optimize different
properties such as bandwidth, reliability or latency.

2. Hybrid overlay construction. To achieve scalability,
Hyphen defines and maintains overlays implicitly with
low computational and message overheads by exploit-
ing a gossip-style communication.

3. Experimental evaluation. Using simulations, we show
that when Bullet uses a bandwidth-optimised tree pro-
vided by Hyphen, it achieves a higher streaming rate
than when using its default random tree. Our results
also show that Hyphen can enhance the reliability of
SplitStream by providing a forest overlay that takes
individual peers’ reliability into account.

Roadmap. In the following, Section 2 discusses related
work, while Section 3 states our assumptions. In Section 4,
we describe the architecture of Hyphen and Section 5 details
our algorithms for overlay construction and maintenance.
Finally, the evaluation of Hyphen is presented in Section 6
and Section 7 concludes the paper.

2. BACKGROUND
In this section, we place our work in the context of related

contributions. First, we describe some middleware solutions
supporting overlay-based applications. Then, we describe
some popular ALM solutions that could benefit from Hy-
phen . Finally, we compare Hyphen to existing solutions for
overlay construction that use the hybrid approach.

Middleware for P2P applications. In seeking of high
quality, e.g., low latency, high bandwidth, overlay networks
become more complex and hence building them is more
challenging. To facilitate construction and deployment of
overlay networks, middleware solutions have been proposed,
which provide useful abstractions such as communication
primitives, group membership maintenance and network met-
rics tracking [1, 26, 24, 30, 29].

Some middleware solutions offer specification tools and
languages that developers can use to define overlay topolo-
gies. In Macedon [30], an overlay network is specified by
describing its system states, local node states and events us-
ing finite state machines. In P2 [26], a declarative language
called Overlog is proposed to define rules that realise a par-
ticular overlay topology. While more concise than Mace-
don, P2 rules can become complex for non-trivial overlay
networks.

More fundamentally, developers using such approaches
still need to define algorithms for overlay construction and
maintenance using the specification rules provided by the
middleware. This means that the overlay definition is con-
sidered as part of the overlay-based application development
due to the heterogeneity of existing overlays. In contrast, we
argue that middleware can provide a higher-level abstrac-
tion for overlay networks. A middleware that supports a
common set of overlay topologies with a set of performance



properties can simplify the implementation of a range of P2P
applications. For example, while specific P2P applications
for application-level multicast have their own specific over-
lay networks, many of these overlays share a set of common
parts.

Overlay networks. To understand which parts of an over-
lay network can be considered generic, we studied a number
of different overlay networks. From this study, it clearly
appears that tree-like topologies are widely used, typically
single trees and multi-trees.

Single tree. Tree topologies are widely used because their
acyclic property greatly simplifies routing and avoids data
redundancy, and thus saves peer resources and reduces pro-
duced network traffic. However, tree overlays are sensitive to
peer churn: when a non-leaf peer leaves or fails, partitioning
occurs, which then interrupts a multicast service. Tree over-
lays are used either as the main routing overlay [18, 23, 10,
22, 6, 4] or as part of more complex, layered or composed
overlay [9, 21, 34]. Existing tree overlays are often con-
structed based on one or more of three optimisation goals:
minimising latency[23, 22], maximising bandwidth [18, 6]
and maximising reliability [10, 4].

Multi-tree. A popular example of multi-trees is a forest
of tree overlays. This topology was first proposed by Split-
Stream [9] in order to maximise the use of available band-
width. It represents a special type of multi-tree topology
with one source but where each peer is internal in only one
tree and is a leaf in the other trees. Based on this condi-
tion, the trees of the forest structure are disjoint. In [9], the
stream is divided into multiple sub-streams named stripes.
Each stripe is routed through a dedicated disjoint tree of the
forest. Forest overlays have been adopted by several recent
projects [12, 20] to improve other aspects of overlay-based
multicast. Hyphen supports forest-based P2P applications
with a forest overlay. In addition, Hyphen is able to deliver
a forest overlay with different optimisation goals in order to
enhance the quality of this topology. For example, Hyphen
can enhance the reliability of SplitStream [9] by providing a
more reliable forest overlay.

Mesh. Many overlay-based P2P applications define sev-
eral layered (or composed) overlays in order to adapt multi-
ple network properties and/or to facilitate routing. In these
applications, a mesh overlay is often used in one layer. The
mesh layer and its optimisation goals differ from one P2P
application to another. Some mesh-based applications first
build a mesh overlay and then derive a tree on top of that
mesh [11, 28]. Other P2P applications first construct a tree
overlay on top of which they dynamically create a mesh by
adding links between peers in disjoint sub-trees [21, 13]. A
popular example of the latter category is Bullet [21], where
a mesh is created on-demand, during a multicast over a tree,
in order to recover missing messages. The mesh links con-
sist of new peering relationships created between peers that
hold disjoint data. Bullet can function on top of any tree
overlay. Originally, a random covering tree was adopted. In
this paper, we show that the performance of Bullet can be
improved using Hyphen by providing it with a bandwidth-
optimised tree.

Hybrid Overlay construction. To overcome the com-
plexity imposed by traditional overlay construction, many
recent researches [23, 12, 8] proposed hybrid approaches
that combine gossip- and overlay-based strategies. A hy-
brid protocol diffuses content messages, adapting to node

and network constraints as overlay-based protocols, while
not imposing an overhead through overlay construction. To
do so, a hybrid protocol uses a gossip-style mechanism with
deterministic behaviour in the gossip decision. Contrary to
traditional random gossip, the subset of selected peers to
gossip with is chosen by taking peer properties into account,
such as a desired overlay topology. The union of links be-
tween selected gossip peers thus implicitly defines a specific
overlay topology. Examples of systems following a hybrid
approach are Plumtree [23], which constructs a minimum
latency tree, [7], which defines a maximum reliability tree
and Thicket [12], which defines a forest of minimum latency
trees. In contrast to these efforts, Hyphen supports different
overlay optimisations and is not restricted to a single topol-
ogy but supports different tree-like overlays. T-Man [19]
also supports multiple topologies, such as trees and rings,
but constructed overlays do not consider underlying peer
properties such as reliability.

3. MODEL
We consider a P2P network composed of N peers that

communicate by message passing. More formally, we model
the overlay topology as a connected graph G = (Π,Λ),
where Π = {p1, p2, . . . , pn} is a set of N peers and Λ =
{l1, l2, . . .} ⊆ Π× Π is a set of bidirectional communication
links.

Reliability. We assume that peers can crash or leave and
links can suffer omission faults. Both process crash and link
message loss probabilities are modelled as a failure configu-
ration C = (P1, P2, ..., Pn, L1, L2, ..., L|Λ|), where Pi is the
probability that process pi crashes during a computation
step, and Lj is the probability that link lj loses a message
during a communication step. As explained in Section 4, this
system view can be approximated by each process using, for
instance, the results presented in [14].

Scalability. To ensure scalability, we assume that a peer pi
knows only its direct neighbours, denoted as Ni. At each
peer pi, the set of direct neighbours Ni represents the peers
with which pi has a peering relationship. The establishment
and management of peering relationships is part of a peer-
ing membership mechanism, which is the protocol executed
by peers to join the P2P network and maintain a number
of peering neighbours. We assume that knowing about an
environment component (link or process) includes knowing
all its properties. That is, if a process pi knows a neighbour
nk then, pi knows the nk churn probability, noted Pk. It,
also, knows lk, the link connecting pi to nk, its message loss
probability Lk and the bandwidth capacity of lk.

4. THE Hyphen MIDDLEWARE
Hyphen is a flexible middleware that handles overlay con-

struction and maintenance for existing ALM systems. Fig-
ure 1 illustrates how Hyphen supports ALM systems (layer 4).
Hyphen can be used with existing ALM systems because it
supports a range of overlay topologies: single tree, multi-
trees and forest. By factoring out overlay construction, Hy-
phen simplifies the implementation of ALM systems and im-
proves their quality by defining an overlay following different
optimisation focus. For this, Hyphen takes the properties of
the underlying network peers (layer 0) into account to con-
struct the required overlay topology (layer 2). This process
leverages a peer membership mechanism, which associates
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Figure 1: Overview of the Hyphen architecture.

each peer with a set of neighbours and notifies a peer of their
arrival or departure. It also leverages a set of approximation
mechanisms providing each peer with an up-to-date estima-
tion of the properties within its neighbourhood. These ap-
proximation mechanisms continuously refresh the delivered
estimations of peer properties. With these estimations, the
overlay maintenance process can adapt to changes in the
physical network. In what follows, we describe the func-
tionality of the layers illustrated in Figure 1 in bottom up
order.

Main building blocks. Hereafter, we describe the main
building blocks of Hyphen, as illustrated in Figure 1.

Peering Membership (PM). In a P2P system, a joining
peer executes a peering membership algorithm in order to
establish a peering relationship with a set of the existing
peers. Hyphen uses the peering membership protocol de-
fined in [28], which builds peering relationships in an adap-
tive manner based on available bandwidth at each peer.
Specifically, the degree of each peer (i.e., the number of di-
rect neighbours) depends on the available bandwidth of the
peer. Based on that, we assume that each peer has sufficient
bandwidth to gossip with all its direct neighbours. To keep
a peer’s view up-to-date, each peer is notified when a change
occurs in the set of its direct neighbours.

Bandwidth Approximation (BA). In order to construct an
overlay optimising bandwidth, we assume that each peer re-
ceives an up-to-date estimation of the available bandwidth
at each direct neighbour. That is, each peer pi knowns the
available bandwidth at any link connecting pi to a direct
neighbour. This approximation could be ensured by one of
the several approximation techniques proposed in the liter-
ature [16, 17, 15].

Reliability Approximation (RA). In order to maximise the
overlay reliability, we assume that each peer pi has an up-
to-date knowledge about its churn probability, noted Pi, the
neighbour pk churn probability, noted Pk, and the message
loss probability Li,k of the link li,k connecting pi and pk. We
assume this knowledge is provided by an underlying layer.
Several techniques could be used to approximate reliability.

In [14] for instance, the reliability of peers and links is ex-
pressed probabilistically and approximated using Bayesian
networks. In IRP [33] and ROST [31] a peer reliability is
expressed in terms probability and defined based on the age
of the peer. Long-lived peers are considered more reliable.

Generic overlay construction. Hyphen follows a hy-
brid approach to create and maintain an overlay network
implicitly by operating a gossip protocol. That is, Hyphen
operates as any pure gossip protocol, in the sense that, in
order to build and maintain an overlay a subset of partic-
ipating peers periodically gossip a set of control messages
denoted cmsg. A distinct periodic gossip of control mes-
sages is performed for each single tree that is part of the
targeted tree-like overlay: single tree, forest or multi-tree.
However our gossip is deterministic in that each peer main-
tains a subset of its neighbors, named activeNeighbors, that
periodically gossip our control messages cmsg. The selection
of neighbors to be added to the activeNeighbors set ensures
that the closure of links among those peers form the overlay
required by the in-top ALM solution.

More precisely, the gossip of a control message cmsg starts
by having the source of the tree send cmsg to all its neigh-
bours in its activeNeighbours set. This implies that some
nodes will receive a set of duplicates for the same control
message cmsg. Based on the quality information brought
by these duplicates, some paths are pruned in the overlay
so that only paths with high quality are kept. In Hyphen,
a peer pi prunes paths with undesirable properties, from
which it received cmsg , by removing direct neighbours that
provided messages on those paths from its activeNeighbors
set. Peer pi also sends a prune message to neighbours that
sent undesirable cmsg messages, so they do not forward sub-
sequent control messages to pi.

Hyphen APIs. Hyphen constructs and maintain an overlay
topology to support an ALM system. When a peer in the
ALM system wants to send a message (e.g., a stream packet),
it asks Hyphen for the subset of neighbours to which the
message should be propagated. This subset is obtained by
calling the getChildren function. The union of links between
that peer and this subset of its neighbours is guaranteed
to be part of the overlay requested by the ALM system.
Hence, the full topology is not known to any single peer but
it is defined implicitly by the union of gossip peers sets. So
Hyphen never exposes the complete overlay topology to the
ALM system.

5. THE Hyphen ALGORITHM
In this section, we describe the Hyphen algorithm in de-

tail. Various topologies can be constructed using Hyphen,
by passing it the desired overlay topology as a parameter,
as suggested in Figure 1. In addition, an overlay can be
built with different optimisation goals. For this purpose, we
define a generic function computing the quality of a path.
The quality is parametric and can reflect either the band-
width, the latency or the reliability. Hereafter, we give a
description of our generic function to compute the quality
of a path.

5.1 Parametric Quality Optimisation
As already mentioned, Hyphen aims at supporting dif-

ferent requirements: high reliability, high bandwidth or low
latency. Generically, we refer to these different requirements



as Quality Q and we aim at maximising Q. Hereafter, we
list the set of parameters related to the quality at a peer pi.

• Qn,i: Quality of the branch connecting pn to pi.
• Qi: Quality of the path from the source to pi.
• Qpn

i : Quality of the path from the source to pi via pn.

Generic quality computation. To compute the qual-
ity of a path, we define a function update Upd shown in
Equation (1). The quality of a path is computed based on
the quality of each branch of the path. The Upd function
returns the quality of a path when adding a new branch to
it. For this, it takes as parameters the initial quality of the
path Qn and the quality of the branch Qn,i to be added.
The details of the function are described below.

Upd(Qn ,Qn,i) = Qpn
i (1)

Specific quality computation. Quality in Hyphen is
a generic concept that can reflect different optimisation re-
quirements. Next we describe how the quality is computed
depending on targeted optimisations. For this, we define
three versions of function Upd , denoted UpdB , UpdL and
UpdR,which compute the bandwidth, the latency and the
reliability of a path from the source to a peer pi, respec-
tively.

• UpdB (Qn ,Qn,i) = min(Qn, Qn,i), with Qn,i the band-
width ln,i

• UpdL(Qn,i) = 1
Qn,i+1

, with Qn,i the time at which pi re-

ceived cmsg from pn
• UpdR(Qn ,Qn,i) = Qn × Qn,i, with Qn,i = [(1 − Pn) ×
(1− Ln,i)× (1− Pi)]

The bandwidth of a path is computed as the bandwidth
of its bottleneck link, which is the link with the lowest band-
width capacity. To compute the bandwidth of a path when
adding a new branch, function Upd simply retains the min-
imum of the bandwidth capacities. The computation of the
latency of a path relies only on the time. For this, the func-
tion Upd considers the reception time of a message through a
path: the lower the reception time, the better the latency of
the path. To compute the reliability of a path when adding
new branch from pn to pi, function Upd takes into account
the reliability the current path Qn, the churn probability
Pn, the churn probability of the target neighbour Pi, and the
message loss probability of the link ln,i, Ln,i. The resulting
reliability Qpn

i expresses the probability that a message sent
from the source reaches peer pi.

5.2 Hybrid Overlay Construction
Overlay construction. We now detail the overlay con-
struction algorithm at the heart of the Hyphen middleware.
For this, we show an example of the operation of this al-
gorithm in Figure 2. As explained in the previous section,
the implicit definition of the overlay relies on the diffusion
of control messages cmsg . Each control message cmsg holds
a set of information necessary for the overlay definition such
as the quality Q of the path serving this message. To de-
fine a tree-like overlay, we associate each tree of the overlay
with a flow of control messages cmsg . Each peer main-
tains a set of flows corresponding to the trees on which that
peer is included. In a single tree overlay, only one flow is
defined at each peer. In a multi-tree overlay, the number
of flows corresponds to the number of trees. In a forest
overlay, the number of flows corresponds to the number of
stripes of the forest. At each peer, a flow data structure
includes the set activeNeighbours, with which the current

peer gossips multicast messages and control messages, and
the set backupNeighbours used to ensure connectivity of the
tree. In addition, each flow data structure indicates the
quality Q perceived so far in the path serving the current
flow messages. A flow is created first at the source of the
corresponding tree. We initialise the quality of a flow at the
source peer to 1. Note that, when a flow is initialised, all
neighbours are in the backupNeighbours set. Before dissem-
inating control messages cmsg , a subset of these neighbours
moves to the activeNeighbours.

The initialisation of the activeNeighbours set is different
depending on the target topology overlay, i.e., tree, multi-
tree or forest. In a single tree or in a multi-tree, this set is
initialised with all direct neighbours Ni. This means that
our periodic gossip starts initially as a flooding where the
first control message is sent to all neighbours. For the forest
topology, however, the disjointedness condition should be
verified. That is, each peer can be an internal peer in only
one flow. At a peer pi, this means that pi can have only one
flow where the size of its activeNeighbours set exceeds 1. In
that flow, the activeNeighbours set is also initialised with
the set of direct neighbours Ni. For any other flow f ′, this
set contains only one element—the neighbour that provides
pi with f ′ control messages.

In the scenario shown in Figure 2, a flow tree rooted at
peer p1 is to be constructed. Here p1 can be either the root
of a single tree overlay or the root of a tree included in a
multi-tree overlay or the root of a stripe part of a forest over-
lay. A flow f tree construction begins when the flow source
peer p1 sends a control message cmsg to all peers in its ac-
tiveNeighbours set (see Figure 2 (a)). The activeNeighbours
set of p1 includes all its direct neighbours (i.e., {p2, p3}).
To each of its neighbours, the peer p1 sends cmsg, with the
quality Q perceived traversed by cmsg. At the source the
quality is set to 1.

Upon receiving cmsg, both p2 and p3 update the qual-
ity Q of the path traversed by cmsg, respectively, up to p2

and p3 by calling the update function Upd . Then, p3 for-
wards the message to all peers in its activeNeighbours set
except peer p1, i.e., it forwards cmsg only to p4 (see Fig-
ure 2 (b)). In addition, peer p3 sends the adjusted Q of
the path traversed by cmsg to reach p3. Similarly, peer p2

forwards the message to p4 (see Figure 2 (c)). When receiv-
ing a duplicate of cmsg from p2, p4 compares Q of the path
traversed by cmsg from p2 and Q of the path along which
cmsg was previously sent (via p3). In this scenario, we as-
sume that the path via p2 has a higher quality. To select the
path via p2, p4 sends a prune message to the previous sender
of cmsg: p3 (see Figure 2 (d)). When receiving this prune
message, p3 removes p4 from its activeNeighbours set. The
resulting tree defined by the activeNeighbours sets is shown
in Figure 2 (e).

Overlay healing. In any overlay-based solution, a peer’s
churn may cause the partition of the overlay. Thus, to ensure
the service availability, a reactive strategy to reconnect the
overlay is required. Here, we briefly describe a simple healing
mechanism inspired by [23, 12].

First, the detection of a partition in tree of flow f re-
lies on the periodic exchange of a summary of the received
cmsg messages between each peer and its neighbours in the
backupNeighbours set of f . When a peer pi receives a sum-
mary, it verifies if all messages exist in its f ’s receivedMsgs
set. For each missed message missed , pi waits for a timeout
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to receive it through its current flow sender. If the message
missed has not been received, pi assumes that it either has
never been included in the tree of f or has been disconnected
from that tree. To incorporate or heal the tree, pi sends
a Graft message to all backupNeighbours that announced
the message missed to pi in their summaries. When receiv-
ing a Graft message from pi, the backupNeighbour moves
pi from its backupNeighbours set to its activeNeighbours set
and sends the control message missed to pi.

Since the missed message can be announced by several
neighbours, several backupNeighbours can reconnect pi. In
this case, our mechanism selects the path with the best qual-
ity being optimised by the current overlay. Note that to
preserve the required topology, e.g., a forest, only peers that
are willing to accept new children send their summary of
the received cmsg messages periodically. In other words, a
peer pi will not announce received messages of flow f if pi
is unable to serve neighbours with f ’s messages.

6. EVALUATION OF Hyphen
This section presents our evaluation of the benefits of us-

ing Hyphen. In what follows, we first describe our simulation
setup and then evaluate the performance of various overlays
built by Hyphen with different optimisation goals.

Evaluation setup. We evaluate the performance of Hy-
phen using the Sinalgo simulator [2]. Sinalgo acts in rounds,
which we consider as our time unit. In each round, a node
receives and sends messages from/to its direct neighbours.
To approximate a real environment, we performed experi-
ments on a simulated network based on approximations of
a PlanetLab network. The adopted approximation covers a
well-connected PlanetLab network with 205 nodes and 35918
links. This approximation is part of another contribution de-
tailed in [15]. The resulting topology view includes several
components details. In this evaluation, we retain the links’
bandwidth and the latency. The bandwidth measured on
this network links ranges in [, Mbps], while links laten-
cies are in [, ms]. In both simulated networks, the
peers’ churn probabilities Pi and links’ loss probabilities Li

are chosen uniformly at random from different predefined
ranges and fixed for the duration of an experiment.

Bandwidth optimised tree for Bullet. A single tree is
the basis of a large number of multicast protocols. As al-
ready explained, Hyphen could be used to build various type
of trees. For the current evaluation, we chose to evaluate the
construction of a tree optimising bandwidth to serve Bul-
let [21]. We name this tree the Bandwidth Optimised Tree
(BOT). For this, we simulate the construction of our BOT
and the construction of a random covering tree. On top of
these trees we simulate the Bullet algorithm building a mesh
dynamically during a streaming. In this experiment, we fix
a maximum number of peering relationships (i.e., new links)
part of the Bullet mesh to 2 for each peer and the RanSub
epoch to 5 rounds.

To evaluate the performance of BOT, we fix as a bench-
mark to our tree the one defined in [21] as the best possible
bandwidth optimised tree and named Bottleneck bandwidth
tree. In [21], the bottleneck bandwidth tree was used for
performance comparison with Bullet and was defined off-
line based on global topological information. In that work,
authors argued that it would be extremely difficult for any
online tree-based algorithm to exceed the bandwidth achiev-
able by the offline building algorithm. We agree with au-
thors’ argumentations. However, we believe that the BOT
built by Hyphen is close to the Bottleneck bandwidth tree.
Figure 3 (a) compares the bandwidth performance of the
Bottleneck bandwidth tree and the BOT built by Hyphen.
It shows the Cumulative Distribution Function (CDF) of
the average achievable bandwidth at each node based on
the BOT and based on our benchmark tree. It also shows
the CDF of the average achievable bandwidth when using a
random tree. Such a tree could be the one currently used
by Bullet. By achievable bandwidth we mean the maximum
rate a node can receive using these overlays. As we can
see, the achievable bandwidth using our BOT, built in a
scalable manner, is close to the achievable bandwidth when
using the benchmark tree based on global knowledge. More
interestingly, using our BOT peers may receive by far a bet-
ter bandwidth than when using random tree as the one used
by Bullet. This indicates a promising improvement of the
Bullet streaming quality if relying on BOT. To measure this
possible improvement, Figure 3 (b) shows the CDF of the
maximum achievable bandwidth when performing Bullet on
random tree and on our BOT. Since the Bullet mesh is built
dynamically during a streaming, the achievable bandwidth
measured here was captured a time t=100 during a stream-
ing 3600kbps. From this figure, we observe that when defin-
ing Bullet on a random tree 80% of peers have an achievable
bandwidth less than 70Mbps whereas, performing Bullet on
our BOT only 40% are bounded to this same achievable
bandwidth. In addition, we notice, in this same scenario,
that the number of new peering relationships (i.e., Bullet
mesh links) defined by Bullet on top of our BOT is much
less (= 205 links) than the number defined on top of a ran-
dom tree (= 380).

To show the improvement in terms of streaming qual-
ity, we measure the average of received bandwidth when
performing a streaming on single covering trees and when
performing the Bullet streaming solution. Figure 4 plots
the received bandwidth when performing different stream-
ing rates. As shown in Figure 4 the bandwidth performance
of our BOT is higher than the performance of the random
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Figure 3: CDF of maximum achievable bandwidth.
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Figure 4: Achieved bandwidth over time for stream-
ing over trees and Bullet mesh.

tree. While the received bandwidth using BOT scales as the
required streaming rate increases, the received bandwidth
when using a random tree does not reach the required rate.
Regarding the Bullet behaviour, we can see that Bullet mesh
has a more significant impact when using random tree as it
permits to hide the missed messages on the random tree. On
the other hand, BOT offers almost the required streaming
and thus the cross links built by Bullet permit to completely
hide any message misses.

Reliable forest for SplitStream. In this section, we
investigate the reliability gain in forest overlay built using
Hyphen with reliability optimisation. Our results show that
Hyphen can build reliable overlays that enhance significantly
the reliability of SplitStream when used instead of the forest
overlay built without an optimisation focus. We measure the
reliability of a forest as the average reliability over disjoint
trees composing it. The reliability of each disjoint tree is
the product of reliabilities of branches composing that tree
computed iteratively using our Upd function defined in Sec-
tion 5.1. Figure 5 shows the reliability of a forest overlay
built with Hyphen optimising reliability and the reliability
of a random forest built without optimisation. As shown
in Figure 5 (a) in a reliable environment (Li=0 and Pi=0),
there is no difference between our reliable forest and the
random forest since both of them provide 100% reliability.
As soon as we inject unreliability to the environment con-
figuration our reliable forest achieves better reliability than
the random forest. This reliability advantage varies with
the environment configuration. For the same peer churn
probability Pi, this difference increases as the message loss
probability Li increases. Contrary, for the same message
loss probability Li, this difference decreases as the churn
probability Pi increases.

Regarding the number of stripes K in the forest, Figure 5
(b) shows the reliability of Hyphen reliable forest while vary-
ing K. From this figure, we notice that the forest reliabil-

ity decreases when K increases. This reliability decrease is
more important when peers are reliable (Pi=0). This is be-
cause the peers’ unreliabilities have a larger impact on the
overall reliability of the forest. This is simply because such
overlay includes all peers and not all links of the network.
Thus, when the peers are unreliable the forest reliability is
improved slightly by selecting the most reliable links.

To show the advantage of reliable forest, we simulate a
streaming through our reliable forest and through forest
overlays built without optimisation focus, named Random
Forest. In this streaming some interruptions can occur due
to churn disconnecting temporarily the overlay or due to a
link losing a message. The interruption risk in one path is
proportional to the path reliability. To focus on reliability,
in this evaluation we do not consider bandwidth limitation.
In other words, no messages are missed due to bandwidth
limitation. A message is lost only due to the unreliability of
peers and links. Figure 6 shows the average received band-
width when streaming 600kbps in each stripe of a forest
overlay with 2 stripes while varying the peers unreliabili-
ties Pi and links unreliabilities Li. As it is noticeable, our
reliable forest ensures a higher bandwidth as fewer interrup-
tions, due to churn or to links losing messages, occur. The
difference between received bandwidth gets larger when the
components unreliabilities (Pi & Li) increase (Figure 6 (b)),
because our reliable forest is defined by selecting the most
reliable paths by taking into account individual component
unreliability.
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Minimum latency multi-trees. In this section, we eval-
uate the latency advantage of a multi-tree overlay optimising
latency. For this, we compare the delay experienced at each
node when using a random multi-trees overlay and when
using a minimum latency multi-trees built by Hyphen. Fig-
ure 7 plots the CDF of average delay that each peer experi-
ences when included in one tree overlay (a) or when included
in four distinct trees of a multi-trees overlay (b). In both
single tree and multi trees overlays, the delay experienced by
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Figure 7: CDF of average delay in multi-trees

each peer when using Hyphen minimising latency is consid-
erably lower than when being part of these overlays topolo-
gies built randomly. Note also that the advantage of using
Hyphen optimising latency is more important when tested in
other networks. Indeed, the simulated PlanetLab network
represents a well connected graph with a large number of
links. When investigating these links’ latencies, we notice
that almost 75% of nodes are connected to at least one link
with a very low latency (20 ms). Thus, with a large number
of low latency links, even a randomly constructed overlay
can achieve a reasonable delay.

7. CONCLUSION
In this paper, we presented Hyphen, a middleware solu-

tion for constructing and maintaining various tree-like over-
lays. Hyphen aims at supporting the existing application-
level multicast at two levels: simplification and quality im-
provement. The simplification is achieved by factoring out
the construction and maintenance of generic overlay topolo-
gies. In addition, Hyphen aims at improving the quality
of existing multicast solutions by building generic overlays
following various optimisation focus. In this paper, three
main optimisations are provided: minimise latency, max-
imise bandwidth and maximise reliability. Our experimental
evaluation shows that Hyphen can construct overlays that
significantly improve the quality of Bullet and SplitStream.
In future work, we plan to extend Hyphen to construct other
overlay topologies, e.g., mesh, and optimising other perfor-
mance properties, e.g., peer degree. In addition, we want to
explore a real-world deployment on the public Internet as
part of a middleware system for P2P applications.
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