
CHAMS: Churn-Aware Overlay Construction
for Media Streaming

ABSTRACT
Overlay networks support a wide range of peer-to-peer me-
dia streaming applications on the Internet. The user experi-
ence of such applications is affected by the churn resilience
of the system. When peers disconnect from the system,
streamed data may be delayed or lost due to missing links
in the overlay topology. In this paper, we explore a proac-
tive strategy that constructs a churn-aware overlay network
that reduces the potential of future disruptions caused by
churn events.

We describe Chams, a middleware solution for overlay
network construction that mitigates the impact of churn.
Chams uses a hybrid approach that implicitly defines an
overlay topology using a gossip-style mechanism that takes
the reliability of peers into account. Unlike existing solu-
tions for reliable overlay construction, Chams supports a
variety of topologies used in media streaming systems, such
as trees, multi-trees and forests, and can be applied to exist-
ing systems. We evaluate Chams with different topologies
and show that it reduces the impact of churn, while imposing
low computational and message overheads.

Keywords: application-level multicast, peer-to-peer sys-
tems, overlay networks, media streaming, churn resilience.

1. INTRODUCTION
Video streaming is one of the most popular Internet appli-

cations. It is expected to constitute 90% of Internet traffic
by 2013 according to Cisco. The majority of commercial
video streaming services such as YouTube and Google Video
are based on Content Delivery Networks (CDNs). Content
is first pushed to a set of strategically placed content deliv-
ery servers and consumers then stream content from nearby
servers. A CDN-based solution avoids the bottleneck of a
central server, can achieve lower streaming latency, reduces
network traffic and can serve more users. Its main challenge
is the amount of resources required to serve a global usage
base, making deployments expensive. To deliver streaming
video with good quality, the bandwidth provisioned at con-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 200X ACM X-XXXXX-000-0/00/0004 ...$10.00.

tent delivery servers must be proportional to the number
of consumers. To cope with this requirement, commercial
CDN operators such us Akamai and Real Networks operate
a costly dedicated large-scale infrastructure.

Peer-to-peer (P2P) networks emerged as an alternative for
providing media streaming services. In contrast to CDN-
based streaming, users (also named peers) not only down-
load content but also upload it to other users. The ad-
vantage of leveraging a user’s upload bandwidth makes this
architecture more cost-effective compared to CDNs. Appli-
cation-layer multicast (ALM) systems, such as Bullet [16],
Splitstream [7], Overcast [13] and CAN Multicast [22], can
provide a P2P streaming service. They must ensure proper-
ties necessary for high-quality streaming, namely maximis-
ing bandwidth and minimising latency. Typically, ALM
systems construct a logical overlay network through which
streaming packets are routed. Many overlay topologies have
been proposed: trees [13, 2, 9], meshes [16, 4] and forests [7].
Among existing topologies, tree-like overlays (i.e., single tree,
multi-trees and forests of trees) are widely used for their ef-
ficiency.

The construction of overlay networks follows some rules in
order to achieve the desired properties in terms of high band-
width and low latency. These goals must be combined with
the desire to maximise reliability, which is critical for high-
quality streaming. A P2P system operates in a dynamic
environment, in which peers can fail or leave the system
abruptly. The event of a peer leaving or failing is referred
to as churn [9]. In a tree-like overlay, a churn at an inter-
nal peer causes a service disruption on its descendants in
the tree. Frequent service disruptions reduce user experi-
ence and are thus unacceptable. To handle this, one could
employ a reactive solution [7, 16, 13, 19]: repair the tree
overlay by finding a new parent for orphaned peers. This
approach is efficient but it reduces streaming throughput
due to the time needed to heal the tree. An interesting
question is “whether one can minimise the impact of churn
using a proactive solution”, which we address in this paper.

Our goal is to improve the reliability of ALM overlays
in spite of the unreliable nature of peers. As a solution,
we describe Chams, a middleware for overlay construction
and maintenance that creates reliable tree-like overlays that
support high-quality streaming. Chams can increase the
reliability of existing ALM systems, such as Bullet [16] and
SplitStream [7]. For scalability reasons, Chams uses a hybrid
approach to define and maintain a reliable overlay implicitly
using gossip-style communication. Each peer selects a set of
peers to gossip with that form the desired overlay topology

and are chosen based on the perceived reliability of peers.
To take the reliability of peers into account, we quantify
it as a peer’s age [23]. While hybrid topology construction
was adopted by researchers in the past [6, 17, 25], previous
efforts were not churn-aware when building overlays, thus
reducing the practical applicability of this approach.

In summary, the contributions of this work are:

• A proactive approach for churn-aware overlays. We de-
fine reliable tree-like overlays that can be used as the
basis of a P2P streaming service. Our solution max-
imises overlay reliability by taking individual churn
risk at each peer into account.

• The integration of churn-awareness with hybrid topol-
ogy construction. We describe an extension of a hybrid
topology construction algorithm that makes decisions
about how to connect peers based on estimated peer
reliability, creating and maintaining reliable tree-like
overlays.

• An experimental evaluation based on real-world P2P
traces. We show through simulation results based on
traces from real P2P streaming systems that Chams
is feasible and efficient. Chams reduces the number of
churn disruptions while incurring a low latency penalty.

The rest of this paper is organised as follows. Section 2
discusses related work. Section 3 states our assumptions.
In Section 4, we describe the architecture of Chams and
Section 5 gives details of the employed algorithms for overlay
construction. We evaluate Chams in Section 6 and conclude
in Section 7.

2. BACKGROUND
Next we describe related work by classifying existing ALM

solution based on their approach. We also discuss how churn
resilience is achieved in previous proposals for P2P overlay
construction and maintenance.

Application-layer multicast. To support P2P stream-
ing, a plethora of application layer multicast (ALM) so-
lutions [1] have been proposed with varying properties in
terms of throughput, scalability, reliability and delay. A
high-level classification of systems defines two main types:
gossip-based [5, 15, 11, 18] and overlay-based [16, 7, 9, 13]
approaches.

Gossip-based. A gossip protocol can be pull-based [11] or
push-based [15, 5]. In pull-based gossip, peers exchange in-
formation about which messages they have received. When
a peer p learns through gossip exchange that it misses a mes-
sage m, then p sends an explicit request for the message m
to another peer q, and q replies by forwarding m to p.

In push-based gossip, when a peer wants to disseminate
a message, it selects a set of peers at random based on a
fanout parameter and sends the message to them [15]. When
receiving a message for the first time, each peer repeats that
process, while excluding the sender from a set of randomly
selected neighbours. As a consequence, the path followed by
the diffused message is not deterministic.

Overlay-based. In overlay-based systems, peers are first or-
ganised into an overlay network with a given topology, such
as a tree, and then messages are routed along this topology.
The overlay network is constructed with given constraints

on network properties such as latency and bandwidth that
are determined by an optimisation goal. Existing proposals
differ in their optimisation goals [1], including minimising
latency [17, 19, 9], maximising throughput [13, 16, 7] and
achieving scalability [22, 4], churn resilience or reliability [8,
2, 12].

These two approaches have a tradeoff in terms of scalabil-
ity and resilience vs. adaptiveness and efficiency. Gossip-
based protocols scale well because they balance load among
all peers in the system. However, gossip-based protocols
are less efficient than overlay-based ones because they suf-
fer from increased network traffic due to the redundancy in
the push-based gossip or the exchange of received message
identifiers between peers in pull-based gossip. This is the
price to pay for avoiding the cost of topology construction
and maintenance in overlay-based approaches. On the other
hand, overlay-based approaches can adapt well to hetero-
geneity. Since gossip-based approaches are random in na-
ture, it is difficult for them to take different node resources
and network properties into account.

Hybrid. For the best of both worlds, hybrid approaches [6,
17, 25, 3, 10, 14] combine gossip- and overlay-based strate-
gies. A hybrid protocol diffuses messages, adapting to node
and network constraints, similar to an overlay-based proto-
col, while not imposing an overhead through overlay con-
struction. To do so, a hybrid protocol uses a gossip-style
mechanism, with deterministic behaviour in the gossip de-
cision. Contrary to traditional random gossip, the subset
of selected peers to gossip with is chosen deterministically
by taking peer properties and constraints into account, such
as the desired overlay topology. The union of links between
selected gossip peers implicitly defines the required overlay.

Examples of hybrid protocols are Plumtree [17], which
constructs a minimum latency tree, RASM [3], which de-
fines a maximum reliability tree and Thicket [10], which
defines a forest of minimum latency trees. In contrast to
these efforts, Chams focusses on the reliability of the over-
lay and is not restricted to a single topology but supports
different tree-like overlays. T-Man [14] also supports the
construction of different overlay topologies using a hybrid
approach, such as trees and ring. However, it constructs
overlays with considering underlying peer properties such as
reliability. Another relevant gossip-style overlay construc-
tion algorithm is the Scamp protocol [21], which defines a
proximity optimised overlay in order to reduce network load.
In contrast to Chams, the overlay defined by Scamp is un-
structured, which is unsuitable for ALM systems that rely
on a given topology. In addition, Scamp handles churn reac-
tively, whereas Chams addresses churn proactively in order
to minimise disruption during churn events.

Churn resilience. To provide churn-resilient P2P stream-
ing, most existing solutions adopt a reactive approach [16,
7, 13, 19], healing the overlay when churn occurs. Based on
the non-determinism in a P2P environment with probabilis-
tic peer departure, it is necessary to react to disconnecting
peers. While being efficient, a reactive approach leads to a
reduction in throughput due to the time required to repair
the overlay.

Proposals exist to address churn in a proactive manner [3,
2, 26, 24, 23, 28], attempting to reduce the impact of churn
as much as possible. Overlay topologies are constructed by
taking the likelihood of peer departure into account. Ex-

isting works [2, 12] consider a P2P overlay network as a
probabilistic model, in which nodes can fail and links may
lose messages with a given probability, approximated using
Bayesian networks.

Peer reliability can be expressed in different ways. Sri-
panidkulchai et al. [23] show that peer lifetimes exhibit a
heavy-tailed behaviour in real P2P applications, with a small
number of peers having very long lifetimes. Based on the ob-
servation that old peers are more likely to stay longer in the
system, it is possible to define a heuristic that regards old
peers as more reliable. For P2P streaming, a peer that re-
lies on old peers to receive stream packets reduces the risk
of churn, hence improving the quality of the streaming.

In IRP [26], the authors use an estimate of peer reliability
based on the age of peers. Long-lived peers are considered
more reliable and are moved upwards in the tree overlay. In
ROST [24], peer reliability is calculated as the product of the
age and the outgoing bandwidth. This mitigates the depth
of the constructed tree and reduces the overhead imposed
to maintain the tree. Our approach for churn-awareness
is also proactive, predicting churn risk based on observed
peer age. In contrast to IRP and ROST, which build a
single tree overlay, Chams can construct a variety of overlay
topologies, including single trees, multi-trees and forests of
disjoint trees.

3. P2P MODEL
We consider a P2P overlay network composed of peers

that communicate by message passing. More formally, we
model the overlay topology as a connected graph with a set
of n peers connected with a set of bidirectional links.

Local peer view. To obtain a scalable solution, we assume
that a peer pi knows only its direct neighbours, denoted as
Ni. At each peer pi, the set of direct neighbours Ni rep-
resents the peers with which pi has a peering relationship.
The establishment and management of peering relationships
is part of a peering membership protocol, which is the proto-
col executed by peers to join the P2P network and maintain
a number of peering neighbours.

Reliability. Based on the analysis in [27, 23], we adopt
the heuristic that if a peer has been participating in the
system for a long time, it is more likely to remain. We
argue that this heuristic is reasonable given the heavy-tailed
distribution of peer lifetimes.

Defining the reliability of each peer pi as function of pi’s
age requires continuous updates of this metric because the
change in age. To avoid this, we define the reliability metric
of a peer pi as pi’s join time, denoted as joinTimei. Contrary
to the age, the reliability of a peer is inversely proportional
to its join time—the lower the join time, the more reliable
the corresponding peer is. Thus, the lower joinTimei, the
more reliable pi is deemed to be. To be able, to compare
different peers reliabilities metrics, we assume that join time
values rely on a global clock among all peers.

From the definition of peer reliability metric, we can ob-
tain a reliability metric of a path based on the reliability
metrics of the peers along that path. More formally, we
define the reliability metric of a path PR a the sum of indi-
vidual joinTime of peers along that path:

PR =
X

pi∈path

joinTimei. (1)

multicast(packet)

CHAMS

activeNeighbors
(∈ tree-like overlay)

Physical network

reliable overlay construction

overlay-based ALM Systems (3)

(2)

(1)

Set of neighbours Ni

peering membership
(Streamline)

p2p streaming

deliver(packet)

(4)

(0)

desired topology
(tree, multi-tree, forest)

Figure 1: Overview of the Chams architecture

Similarly to the joinTime interpretation, the lower the value
of PR of a path, the more reliable it is.

4. CHAMS MIDDLEWARE
Chams provides a middleware that handles overlay con-

struction and maintenance for existing ALM systems. It
constructs a churn-aware overlay that enhances the reliabil-
ity of P2P media streaming. Chams can be used with exist-
ing ALM systems because it supports a range of tree-based
overlay topologies such as trees, multi-trees and forests. By
factoring out overlay construction, Chams simplifies the im-
plementation of ALM systems and improves their reliability
by proactively addressing churn.

Figure 1 illustrates how Chams supports ALM systems
for P2P streaming. It provides a churn-aware overlay to
an ALM system (layer 3), which in turn is used to build a
P2P streaming application (layer 4). The streaming layer
(layer 4) is responsible for partitioning the outgoing stream
into stream packets containing video chunks of a certain
length. These packets are relayed by the ALM system (layer 3).

During topology construction, Chams takes the reliability
of the underlying network peers (layer 0) into account and
obtains the required overlay topology in a distributed fash-
ion using a hybrid approach (layer 2). This process leverages
a peer membership protocol (layer 1), which associates each
peer with a set of neighbours and notifies a peer of their
arrival or departure. Next we describe the functionality in
each layer in more detail and explain their interactions.

(1) Peering Membership. In a P2P system, a joining
peer executes a peering membership algorithm in order to
establish a peering relationship with a set of the existing
peers. Chams uses the peering membership protocol defined
in Streamline [20], which builds peering relationships in an
adaptive manner.

To establish peering relationships, Streamline defines a set
of candidates from the existing peers and orders them ac-
cording to weight. The weight a peer determines the prob-
ability of its selection for the peering relationship. It is pro-
portional to the peer bandwidth and the number of already
existing neighbours. Therefore the connectivity of each peer
depends on the available bandwidth of the peer. Based on
that, we assume that each peer has enough bandwidth to
gossip with all its direct neighbours.

As shown in Figure 1 (layer 1), Streamline informs each
peer about the set of its direct neighbours, denoted as Ni.

To keep a peer’s view of Ni up-to-date, Streamline notifies
each peer when a change occurs in its neighbourhood.

(2) Reliable Overlay Construction. Chams follows a
hybrid approach to create an overlay network implicitly by
operating a gossip protocol. To build and maintain an over-
lay, Chams performs a periodic gossip of control messages,
denoted as cmsg . The gossip protocol is deterministic—
each peer maintains a subset of its neighbours, referred to
as activeNeighbours, with which it exchanges control mes-
sages cmsg . The choice of neighbours to be added to the
activeNeighbours set ensures that the union of links among
those peers form the required overlay topology, such as a
single tree, multi-tree or forest of trees.

Gossip-style mechanism. The periodic gossip of cmsg mes-
sages has two purposes: it constructs the desired overlay
topology and it heals the overlay in case of disconnection.
The gossip of a control message cmsg starts by having the
stream source send cmsg to all its neighbours in its active
Neighbours set. Initially, each activeNeighbours set of a
peer pi is initialised with the set of its direct neighbours Ni.
Thus, the gossip of the first control message cmsg1 is per-
formed using flooding, where each peer sends cmsg1 to all
neighbours in its activeNeighbours set.

Reliable overlay construction. Some peers receive dupli-
cates of control message cmsg1. Based on reliability infor-
mation, some of these duplicate paths are pruned in the over-
lay so that only paths with low PR are kept. In Chams, a
peer pi prunes paths with undesirable properties by remov-
ing direct neighbours that provided messages on those paths
from its activeNeighbors set. Peer pi also sends a prune
message to these neighbours so that they will not forward
subsequent control messages to pi.

Overlay connectivity & healing. To ensure the connectiv-
ity of the overlay, a periodic exchange of information about
the received cmsg messages is performed between each peer
and its other neighbours (i.e., the neighbours that are not
in the activeNeighbours set). We refer to this subset of di-
rect neighbours as the backupNeighbours set. Based on this
exchange, a peer can detect if it has missed cmsg messages.
This may indicate that it has been disconnected from the
overlay. Typically, a peer is disconnected when churn oc-
curs at one of its ancestor peers in the upstream path.

To heal the overlay, the peer asks its neighbours within its
backupNeighbors set that hold the missed cmsg messages for
recovery. In turn, when a peer receives such a request, it first
sends back the missed cmsg and moves the requesting peer to
its activeNeighbors set. By doing so, the disconnected peer
is implicitly reconnected to the overlay because the overlay
is defined as the union of links among activeNeighbors peers.

(3) Application-Level Multicast. When a peer in the
ALM system wants to send a stream packet, it asks Chams
for the subset of neighbours to which the packet should be
propagated. The union of links between that peer and this
subset of its neighbours is guaranteed to be part of the over-
lay requested by the ALM system. The constructed overlay
remains scalable because the full topology is not known to
any single peer but it is defined implicitly by the union of
the activeNeighbours sets. Therefore, Chams never has to
expose the complete overlay topology to the ALM system.

5. THE CHAMS ALGORITHM
In this section, we describe the algorithm at the heart of

Chams middleware (Algorithms 1 and 2). Various tree-like
structures can be constructed and maintained using Chams,
by passing it the desired overlay topology as parameter, as
suggested in Figure 1. Hereafter, we give a brief description
of each tree-like topology that Chams can build.

Tree. This structure is widely used [13, 2, 16] because its
acyclicity simplifies routing and avoids redundancy which
saves node resources and limits produced network traffic.
Multi-trees. This structure includes several trees covering
the same set of peers but rooted at different source peers.
This topology is particularly used in P2P multi-party con-
ferencing applications.
Forest of disjoint trees. This structure was first proposed
by [7]. It represents a special type of multi-tree structure
with one source but where each node is internal in only one
tree and is a leaf in the other trees. Based on this condition,
the trees of the forest structure are disjoint. In [7], the
stream is divided into multiple sub-streams named stripes.
Each stripe is routed through a dedicated disjoint tree of the
forest. The number of stripes is noted K. In our algorithms,
we also use this notation to refer to the forest’s trees and
their number.

5.1 Data Structures & Initialisation
Algorithm 1 depicts the data structure maintained at each

node performing Chams as well as its initialisation. As ex-
plained in the previous section, the implicit definition of the
reliable overlay relies on the diffusion of control messages
cmsg . Each control message cmsg being diffused holds a
set of information necessary for the overlay definition. This
information includes the source node that initiates the dif-
fusion of the current cmsg , the neighbour that forwards this
cmsg , sender , and the reliability metric PR of the path
serving this message. This metric, computed according to
Equation 1, represents the key information that influences
the implicit definition of the reliable overlay.

To define a tree-like overlay, we associate each tree of the
overlay with a flow of control messages cmsg (line 6). Each
node maintains a set of flows corresponding to the trees on
which that node is included. In the single tree overlay, only
one flow is defined at each node. In the multi-tree overlay,
the number of flows corresponds to the number of trees; in
the forest overlay, the number of flows corresponds to the
number of stripes of the forest. Each flow has a unique ID,
which is either the id of the source node—in the case of tree
and multi-tree topologies—or the id of the stripe for the
forest topology.

At each node, a flow data structure includes the set ac-
tive Neighbors, with which the current node gossips stream
packets and our control messages cmsg , and the set backup
Neighbors used to ensure connectivity of the tree. In addi-
tion, each flow data structure indicates the reliability met-
ric PR perceived so far.

A flow is created first at the source of the corresponding
tree (line 11). For the case of forest , a flow is created for each
stripe (line 14). In our algorithm, we assume that the num-
ber of stripes in the forest is K is given. Note that, when a
flow is initialised, all neighbours are in the backupNeighbours
set. Before disseminating control messages cmsg , a subset of
these neighbours moves to the activeNeighbours by calling
the initActiveNeighbor() procedure. The subset of neigh-

bours to include to the activeNeighbours set depends on the
required topology.

5.2 Parameterisation by Tree-like Topologies
The initialisation of the activeNeighbours set depends on

the target topology overlay, i.e., tree, multi-tree or forest.
In the case of single tree of multi-trees, this set is initialised
with the set of direct neighbours Ni (line 33). This reflects
the fact that our periodic gossip starts initially as a flooding
where the first control message is sent to all neighbours,
as explained in Section 4. For the forest topology, however,
the disjointedness condition should be verified. That is, each
node can be an internal node in only one flow. At a node
pi, this means that pi can have only one flow where the
size of its activeNeighbours set exceeds 1. In that flow, the
activeNeighbours set is also initialised with the set of direct
neighbours Ni (line 30). For any other flow f ′, this set
contains only one element—the neighbour that provides pi

with f ′ control messages (line 29).

Algorithm 1 : data structures & initialisation at pi

1: uses: Streamline
2: input: topology
3: input: K

4: data structure: cmsg {periodically diffused message}
5: fields: mID, flowID, source, sender, PR

6: data structure: Flow {flow of cmsg messages}
7: fields: ID, source, activeNeighbors, backupNeighbors,

sender, PR, receivedMsgs

8: joinTimei←− ... {join time of pi}

9: initialization:
10: flows ←− ∅ {set of flows}
11: at source:
12: if topology = Forest then
13: for all stripeID ∈ K do
14: f ←− new Flow(stripeID,pi,∅,Ni,pi, joinTimei,∅)
15: flows ←− flows ∪ f
16: call initActiveNeighbor(f)
17: else
18: f ←− new Flow(pi.ID, pi, ∅, Ni, pi, joinTimei, ∅)
19: flows ←− flows ∪ f
20: call initActiveNeighbor(f)

21: procedure initActiveNeighbors(f)
22: if topology=forest then
23: if f.source = pi then

24: {At the source of the forest.}
25: let n: 6 ∃ f ′ ∈ flows | n ∈ f ′.activeNeighbors
26: f .activeNeighbors ←− n
27: f .backupNeighbors ←− Ni \ n
28: else
29: if (6 ∃ f ′ ∈ flows : | f ′.activeNeighbors | > 1) then
30: f .activeNeighbors ←− Ni

31: f .backupNeighbors ←− ∅
32: else
33: f .activeNeighbors ←− Ni

34: f .backupNeighbors ←− ∅

5.3 Reliable Overlay Construction
Algorithm 2 depicts the implicit construction of a tree-

like overlay. As already mentioned, this construction relies
on the diffusion of control messages, which is initiated peri-
odically at the source node (line 1). During each period, the
source node creates a new control message, noted m, (line 4)
and gossips it to its active neighbours (line 6). Each control
message is tagged with a unique identifier and stored in the
receivedMsgs set of the corresponding flow (lines 17 and 28).

When a node pi receives a control message m from a neigh-
bour sender (line 12), it first checks whether it already has

the corresponding flow f . This means that pi checks if it is
already included in the tree of f . If not, then the new flow
is added to the set of flows known at pi (line 15). After that,
pi initialises its set of active neighbours in f (line 16).

If the flow f already exists, pi checks whether the current
flow is still served by the same sender neighbour (line 22).
The sender of the flow may change due a change in the
underlying P2P network, e.g., a churn event occurs. In this
case, pi simply updates the information related to f with the
new sender and reinitialises its set of its active neighbours
(lines 23 to 26).

Next pi checks whether the current control message m
has already been received by checking in the receivedMsgs
set (line 27). If m is received for the first time, then it is
added to the receivedMsgs set and gossiped to pi’s neigh-
bours in the activeNeighbors set (line 29). During this gos-
sip, when a node sends a message m to a neighbour, it also
sends additional information representing the reliability of
the path traversed by m (line 9). The reliability metric PR
is computed iteratively at each node pi that forwarded m by
incrementing m’s PR with pi’s joinTimei.

Otherwise, if m is a duplicate sent by a new neighbour,
it corresponds to an alternative branch for including pi in
the current tree. As already mentioned, it is the reliability
information brought by the duplicate messages that allows
to select the most reliable branch as part of the tree. To
decide whether to switch to this new branch as part of the
current tree or to keep its current branch pi compares the
current reliability metric f.PR (line 31) of the flow f and the
reliability metric m.PR of the new path serving f ’s messages
via another neighbour sender .

When PR via sender is lower, a switch to this more re-
liable branch is performed (lines 32–36). To switch under
the sender , pi keeps sender as its flow provider by adding
it to its activeNeighbors set and prunes the previous path of
f ’s tree. This pruning consists of removing previous sender
f .Sender from the activeNeighbors set and sending a prune
message to it.

Upon receiving a prune message (line 42) from a neigh-
bour sender , pi also removes sender from its activeNeighbors
set, hence pi will not propagate the following control mes-
sages to sender . This mechanism implicitly defines the tree
part of the tree-like overlay that includes the most reliable
paths.

5.4 Overlay Healing
The selection of the most reliable paths to be part of the

overlay does not completely avoid overlay partitions but only
minimises the number of times that they occur. Thus, a
reactive strategy to reconnect the reliable overlay when a
churn occurs is still required. Here, we briefly describe a
simple healing mechanism inspired by [17, 10].

First, the detection of a partition in tree of flow f re-
lies on the periodic exchange of a summary of the received
cmsg messages between each node and its neighbours in
the backupNeighbors set of f . When a node pi receives a
summary, it verifies if all indicated messages exist in its f ’s
receivedMsgs set. For each, missed message missed , pi waits
for a timeout to receive it through its current flow sender. If
the message missed has not been received, pi assumes that it
either has never been included in the tree of f (e.g., a newly
joining peer) or has been disconnected from that tree.

To incorporate the tree, pi sends a Graft message to all
backupNeighbours that announced the message missed to pi

Algorithm 2 : periodic gossiping at pi

1: To update overlay, do periodically at source:
2: for all f ∈ flows: f .source = pi do
3: mID ←− hash(f .ID, seqNbr)
4: m ←− new cmsg(mID, f.ID, pi, pi, 0)
5: f .receivedMsgs ←− f .receivedMsgs ∪ {m}
6: call gossip(m, pi, pi, f.ID)

7: procedure gossip(m, sender, source, flowID)
8: for all pj ∈ flows.get(flowID).activeNeighbors: pj 6= sender

do
9: m.PR ← m.PR + joinTimei {the reliability metric

PR to pj via pi}
10: m.sender ←− pi

11: Send(Gossip, m, source, flowID) to pj

12: upon Receive(Gossip, m, source, flowID) from sender do
13: if 6 ∃ f ∈ flows : f .ID = flowID then
14: f ←− new Flow(flowID, source, {sender}, Ni \ {sender},

sender, m.PR)
15: flows ←− flows ∪ f
16: call initActiveNeighbor(f)
17: f .receivedMsgs ←− f .receivedMsgs ∪ m
18: call gossip(m, f.sender, f.source, f.ID)
19: else
20: let f ∈ flows : f .ID = flowID
21: f .PR ←− m.PR
22: if f .sender 6= sender then
23: f .activeNeighbors ←− {sender}
24: f .backupNeighbors ←− Ni \ {sender}
25: f .sender ←− sender
26: call initActiveNeighbors(f)
27: if 6 ∃ e ∈ f.receivedMsgs : e.mID = m.mID then
28: f .receivedMsgs ←− f .receivedMsgs ∪ m
29: call gossip(m, f.sender, f.source, f.ID)
30: else
31: if m.PR <f.PR then
32: f .activeNeighbors←− f .activeNeighbors ∪ {sender}
33: f .backupNeighbors ←− f .backupNeighbors

\ {sender}
34: f .activeNeighbors ←− f .activeNeighbors \ {f.sender}
35: f .backupNeighbors ←− f .backupNeighbors

∪ {f.sender}
36: Send(Prune, f .ID) to f.sender
37: f .sender ←− sender
38: f .PR ←− m.PR
39: else
40: Send(Prune, f .ID) to sender
41: activeNeighbors ←− activeNeighbors \ {sender}

42: upon Receive(Prune, flowID) from sender do
43: let f ∈ flows : f.ID = flowID
44: f .activeNeighbors ←− f .activeNeighbors \ {sender}
45: f .backupNeighbors ←− f .backupNeighbors ∪ {sender}

in their summaries. When receiving a Graft message from
pi, the pi’s neighbour moves pi from its backupNeighbours
set to its activeNeighbours set and sends the control message
missed to pi. Since the missed message can be announced
by several neighbours, pi could be reconnected by several
backupNeighbors. In this case, our mechanism selects the
branch with the best reliability. Note that to preserve the
required topology, e.g., a forest, only peers that are willing to
accept new children announce their summary of the received
cmsg messages periodically. In other words, a peer pi will
not announce received messages of flow f if pi is unable to
serve neighbours with f ’s messages.

6. EVALUATION
We present experiments designed to evaluate the benefit

of Chams. Our evaluation goals are to investigate the gain
in overlay reliability when using Chams and the latency of
the constructed overlays. Our results show that Chams can

build reliable overlays that reduce significantly the impact of
churn in terms of disruptions experienced by peers. In terms
of latency impact, overlays built by Chams have depth close
to overlays designed to minimise latency.

Due to space constraints, we focus on single tree and forest
overlays. Given the simplicity of the multi-tree overlays,
which are multiple instances of single trees, their behaviour
is similar to single tree overlays.

6.1 Evaluation Set-up
We evaluate the performance of Chams using the Sinalgo

simulator. Sinalgo acts in rounds, which we consider as our
time unit. In each round, a node receives and sends messages
from/to its direct neighbours.

Our reliability definition is related to peer lifetimes. In
simulation, we obtain join and departure times of peers from
real P2P application traces. Next we describe the traces
and the peer connectivity that defines the number of direct
neighbours of each peer.

Traces. To consider various types of P2P networks, we
select traces with different sizes in terms of numbers of peers.
PPLive: This trace comes from the PPLive streaming ap-
plication. They were collected and analysed after taking a
snapshot of the PPLive network with 3449 peers[29]. The
measurement includes two video channels. We use a trace
of a single channel (referred to as PPLive-ch1 in [29]).
Bittorrent: This trace was collected from a Bittorrent file
sharing application in 2005. It consists of the file distribu-
tion of the SlackWare Linux distribution and includes 14 Bit-
torrent swarms. We only use swarm number 7 (referred to
as T705’P2P-S7 in [29]) with 226 peers.

Connectivity. The peer connectivity (i.e., the number of
direct neighbours at each peer) impacts the structure of the
built overlay. When peer connectivity is low, the tree-like
overlay tends to be “long and skinny”. Conversely, when
connectivity is high, the overlay tends to be compact. To
show the effect of peer connectivity, we vary this parameter,
denoted as c, which is the number of peers that a newly
joined peer connects to.

Protocol comparison. To show the reliability gain of
Chams, we compare it to other hybrid protocols that define
the same overlay topology optimised for latency. For single
tree construction, we compared to Plumtree [17], which
defines a minimum latency spanning tree. For the forest
overlay construction, we use Thicket [10], which implicitly
constructs a forest of trees with minimum latency. We im-
plement Plumtree and Thicket in the Sinalgo simulator1

and execute them in the same scenarios as Chams.
Note that both of these protocols have an advantage in

terms of minimising the impact of churn. They construct
a minimum latency tree, with each peer keeping the path
through which it received messages first. This path tends to
minimise the number of intermediate peers. Thus, the tree
built by Plumtree and the forest built by Thicket tend
to be shallow. In such an overlay, the number of disruptions
due to churn is reduced because the included paths have
small numbers of internal peers and the number of leaves
peer is high. When churn occurs at leaf peer, it does not
result in a disruption. Defining a minimum depth tree to
enhance the reliability was studied in [23]. However, this

1http://dcg.ethz.ch/projects/sinalgo

0

1000

2000

3000

4000

5000

6000

6 10 14 18

!
"#

$%
&'
()
'*
+,
&"
-.

(/
,'

0(//%1.2+34'

Plumtree
CHAMS

0
50

100
150
200
250
300
350
400

6 10 14 18

!"##$%&'()*+

Plumtree

CHAMS

(a) PPLive trace (b) Bittorrent trace

Figure 2: Number of disruptions due to churn in a
single tree topology.

0
1000
2000
3000
4000
5000
6000
7000
8000
9000

10000

20 25 30 35

!
"#

$%
&'
()
'*
+,
&"
-.

(/
,'

0(//%1.2+34'

Thicket
CHAMS

0

100

200

300

400

500

600

700

20 25 30 35

!"##$%&'()*+

Thicket

CHAMS

(a) PPLive trace (b) Bittorrent trace

Figure 3: Number of disruptions due to churn in a
forest topology (K = 2)

work does not use a hybrid approach to build such an over-
lay.

6.2 Reliability Gain
To show the reliability gain, we measure the total number

of disruptions seen by peers during the whole simulation.
An disruption is caused by a churn event. When such an
event occurs at a peer, i.e., when it leaves the system, all its
descendant peers in the overlay observe a disruption. Note
that, as argued in Section 1, a disruption does not mean
an end of the streaming service. When churn occurs, our
reactive healing mechanism reconnects the overlay and hence
reestablishes service availability. The aim of Chams is to
reduce the number of times that this reactive mechanism
has to be invoked.
Single tree. Figure 2 shows the total number of disruptions
experienced by peers in a single tree overlay. The number
of disruptions when using the Chams tree is significantly
lower compared to the Plumtree overlay. In both cases,
the number of disruptions decreases as the connectivity c
increases. As c increases, the reliability of both Chams tree
and Plumtree tree goes up. This is because, as the number
of links in the overlay increases, more links associated with
peers are available. In Plumtree, this enables the construc-
tion of a more shallow tree with more leaf peers. In Chams,
the tree is more reliable due to larger choice of alternative
paths. As the connectivity increases, more links are created,
offering a larger choice of paths.

Note, however, that the reliability gain of Chams against
Plumtree decreases when the connectivity c increases. For
instance, the number of disruptions seen in the Bittorrent
trace when c is high (e.g., c = 18) is almost the same for
both approaches. As we discuss in Section 6.4, this is due to
the trade-off between the depth of a path and its reliability.
Forest of disjoint trees. In Figure 3, we show the total
number of disruptions seen by peers in a forest overlay com-

Table 1: Tree overlay coverage (%)
Trace PPLive Bittorrent

c Plumtree CHAMS Plumtree CHAMS
6 88.77 84.89 99.5 99.25
10 87.79 85.21 99.55 99.34
14 88.52 84.42 99.56 99.40
18 86.37 84.43 99.55 99.42

Table 2: Forest overlay coverage (%)
Trace PPLive Bittorrent

c Thicket CHAMS c Thicket CHAMS
20 81.13 77.925 16 98.165 98.12
25 82.65 79.305 20 97.745 96.905
30 80.565 75.92 24 94.855 97.345
35 81.18 77.47 28 96.735 97.83

posed of two disjoint trees, i.e., K = 2. As can be seen, the
number of disruptions for this topology is higher than for
the single tree overlay in Figure 2. This is related to the
fact that the forest overlay tends to minimise the number
leaves in order to maximise the use of available resources.
Therefore, the majority of peers are internal. Due to the
disjointness property of the forest overlay, they are internal
in only one tree of the forest.

Due to the proactive nature of our solution, the total num-
ber of disruptions in Chams is lower than in Thicket. How-
ever, the advantage of Chams in the forest topology is less
pronounced than in the tree overlay. Again, this is due to the
property of the forest topology, which forces the majority of
peers to be internal in one of the forest trees. Therefore even
unreliable peers are included as internal nodes in one tree.
Although this optimises the use of available resources [7], it
increases the impact of churn.

6.3 Overlay coverage
At any time t, the constructed overlay topology may not

cover all peers. This is caused by churn that temporarily dis-
connects peers. To reconnect the overlay, our healing mech-
anism is performed as described in Section 5. To show its
effectiveness, we discuss the overlay coverage. We measure
it as the percentage of peers that are included in the overlay
at a given time. Tables 1 and 2 show the average coverage of
the tree and the forest overlays, respectively. Note that the
presented average also includes the coverage at the start of
the simulation when the first gossip round did not yet reach
all peers.

As shown in these tables, the percentage of covered peers
using both Chams and the comparison protocols is very
high. This confirms the efficiency of the healing mechanism
in Chams. The coverage of the Chams overlay is marginally
lower than in the comparison protocols.

6.4 Path Latency
As argued in [17, 10], avoiding long paths in the overlay

topology is desirable for minimising latency. For this, we in-
vestigate the depth of Chams overlays in comparison with
Plumtree and Thicket. In Chams, the path reliability is
calculated iteratively at each internal peer by simply adding
join times. Thus, a long path has its reliability metric PR
increased proportionally to the number of peers. Unless in-
dividual peer join times are significantly different, a long
path tends to be less reliable. As a result, Chams prefers
shorter paths.

6 8 10 12 14 16 18

Connectivity

3

4

5

6

7

8
A

ve
ra

ge
 t

re
e

de
pt

h
CHAMS
Plumtree

6 8 10 12 14 16 18 20

Connectivity

3

3.2

3.4

3.6

3.8

4

4.2

A
ve

ra
ge

 t
re

e
de

pt
h

CHAMS
Plumtree

(a) PPLive trace (b) Bittorrent trace

20 25 30 35

Connectivity

4

5

6

7

8

A
ve

ra
ge

 t
re

e
de

pt
h

CHAMS
Thicket

16 18 20 22 24 26 28

Connectivity

3

3.2

3.4

3.6

3.8

4

A
ve

ra
ge

 t
re

e
de

pt
h

CHAMS
Thicket

(c) PPLive trace (d) Bittorrent trace

Figure 4: Average overlay depth in terms of number
of peer hops relaying messages from the source to all
peers.

Figures 4(a) and (b) show the average depth of the Chams
and Plumtree tree overlays, respectively; Figures 4(c) and
(d) show the average depth for a two-tree forest overlay. At
each peer, the depth represents the number of peer hops
relaying a message from the source to that peer. The aver-
age depths in the Chams overlays are close to the ones in
the compared protocols, although, as expected, Chams has
marginally longer paths. Overall, while improving reliabil-
ity, Chams does not compromise latency.

7. CONCLUSION
In this paper, we presented Chams, a scalable system for

constructing reliable tree-like overlays that support application-
level multicast for P2P streaming. Chams minimises the
impact of churn by taken the churn risk of individual peers
into account while constructing an implicit topology using
a hybrid approach. Our experimental evaluation shows that
Chams can construct churn-aware overlays while incurring
a low latency penalty when compared to other protocols. In
future work, we plan to extend Chams to construct overlays
optimising bandwidth and latency in addition to reliability.
In addition, we want to explore a real-world deployment on
the public Internet as part of a P2P streaming system.

8. REFERENCES
[1] M. Allani, B. Garbinato, and F. Pedone. Application layer

multicast. In B. Garbinato, H. Miranda, and L. Rodrigues,
editors, Middleware for Network Eccentric and Mobile
Applications, chapter 9. 2009.

[2] M. Allani, B. Garbinato, F. Pedone, and M. Stamenkovic.
A gambling approach to scalable resource-aware streaming.
In Proceedings of SRDS, 2007.

[3] M. Allani, J. Leitao, B. Garbinato, and L. Rodrigues.
Rasm: Reliable algorithm for scalable multicast. In
Proceedings of PDP, 2010.

[4] S. Banerjee, B. Bhattacharjee, and C. Kommareddy.
Scalable application layer multicast. In SIGCOMM, 2002.

[5] K. P. Birman, M. Hayden, O. Ozkasap, Z. Xiao, M. Budiu,
and Y. Minsky. Bimodal multicast. ACM Transactions on
Computer Systems, 17(2):41–88, May 1999.

[6] N. Carvalho, J. Pereira, R. Oliveira, and L. Rodrigues.
Emergent structure in unstructured epidemic multicast. In
Proceedings of DSN, Edinburgh, UK, June 2007.

[7] M. Castro, P. Druschel, A. M. Kermarrec, A. Nandi,
A. Rowstron, and A. Singh. Splitstream: high-bandwidth
multicast in cooperative environments. In Proceedings of
SOSP, pages 298–313, 2003.

[8] Y. Chawathe, S. McCanne, and E. A. Brewer. RMX:
Reliable multicast for heterogeneous networks. In
INFOCOM, pages 795–804, 2000.

[9] Y. Chu, S. Rao, and H. Zhang. A case for end system
multicast. In Proceedings of ACM Sigmetrics, 2000.

[10] M. Ferreira, J. Leitão, and L. Rodrigues. Thicket: A
protocol for building and maintaining multiple trees in a
p2p overlay. In Proceedings of SRDS, 2010.

[11] D. Frey, R. Guerraoui, A.-M. Kermarrec, M. Monod,
K. Boris, M. Martin, and V. Quéema. Heterogeneous
gossip. In Proceedings of Middleware, 2009.

[12] B. Garbinato, F. Pedone, and R. Schmidt. An adaptive
algorithm for efficient message diffusion in unreliable
environments. In Proceedings of IEEE DSN, 2004.

[13] J. Jannotti, D. K. Gifford, K. L. Johnson, M. F. Kaashoek,
and J. J. W. O’Toole. Overcast: reliable multicasting with
on overlay network. In OSDI, 2000.

[14] M. Jelasity and O. Babaoglu. T-Man: Gossip-based overlay
topology management. In Proceedings of ESOA, 2005.

[15] A. M. Kermarrec, L. Massoulié;, and A. J. Ganesh.
Probabilistic reliable dissemination in large-scale systems.
IEEE Trans. Parallel Distrib. Syst., 2003.

[16] D. Kostić, A. Rodriguez, J. Albrecht, and A. Vahdat.
Bullet: high bandwidth data dissemination using an overlay
mesh. In Proceedings of SOSP, 2003.

[17] J. Leitao, J. Pereira, and L. Rodrigues. Epidemic broadcast
trees. In Proceedings of SRDS, 2007.

[18] H. C. Li, A. Clement, M. Marchetti, M. Kapritsos,
L. Robison, L. Alvisi, and M. Dahlin. Flightpath:
Obedience vs choice in cooperative services. In OSDI, 2008.

[19] F. Liu, X. Lu, Y. Peng, and J. Huang. An efficient
distributed algorithm for constructing delay and
degree-bounded application-level multicast tree. In
Proceedings of ISPAN, Washington, DC, USA, 2005.

[20] A. Malekpour, F. Pedone, M. Allani, and B. Garbinato.
Streamline: An architecture for overlay multicast. In
Proceedings of NCA, 2009.

[21] L. Massoulié, A.-M. Kermarrec, and A. J. Ganesh. Network
awareness and failure resilience in self-organising overlay
networks. In SRDS, 2003.

[22] S. Ratnasamy, M. Handley, R. Karp, and S. Shenker.
Application-level multicast using content-addressable
networks. In NGC ’01, pages 14–29, 2001.

[23] K. Sripanidkulchai, A. Ganjam, B. M. Maggs, and
H. Zhang. The feasibility of supporting large-scale live
streaming applications with dynamic application
end-points. In SIGCOMM, 2004.

[24] G. Tan, S. A. Jarvis, and D. P. Spooner. Improving the
fault resilience of overlay multicast for media streaming. In
DSN, pages 558–567, 2006.

[25] C. Tang and C. Ward. GoCast: Gossip-enhanced overlay
multicast for fast and dependable group communication. In
Proceedings of DSN, 2005.

[26] Y. Tian, H. Shen, and K.-W. Ng. Improving reliability for
application-layer multicast overlays. IEEE Trans. Parallel
Distrib. Syst., pages 1103–1116, 2010.

[27] E. Veloso, V. A. F. Almeida, W. M. Jr., A. Bestavros, and
S. Jin. A hierarchical characterization of a live streaming
media workload. IEEE/ACM Trans. Netw., 2006.

[28] M. Yang and Z. Fei. A proactive approach to reconstructing
overlay multicast trees. In INFOCOM, 2004.

[29] B. Zhang, A. Iosup, J. Pouwelse, and D. Epema. The
peer-to-peer trace archive: design and comparative trace
analysis. In Proceedings of the CoNEXT Student
Workshop, 2010.

