
Optimizing Network Performance in Distributed Machine Learning

Luo Mai
Imperial College London

Chuntao Hong
Microsoft Research

Paolo Costa
Microsoft Research

Abstract
To cope with the ever growing availability of training
data, there have been several proposals to scale machine
learning computation beyond a single server and dis-
tribute it across a cluster. While this enables reducing
the training time, the observed speed up is often limited
by network bottlenecks.

To address this, we design MLNET, a host-based com-
munication layer that aims to improve the network per-
formance of distributed machine learning systems. This
is achieved through a combination of traffic reduction
techniques (to diminish network load in the core and
at the edges) and traffic management (to reduce average
training time). A key feature of MLNET is its compati-
bility with existing hardware and software infrastructure
so it can be immediately deployed.

We describe the main techniques underpinning ML-
NET and show through simulation that the overall train-
ing time can be reduced by up to 78%. While prelimi-
nary, our results indicate the critical role played by the
network and the benefits of introducing a new commu-
nication layer to increase the performance of distributed
machine learning systems.

1 Introduction

Over the last decade, machine learning has witnessed an
increasing wave of popularity across several domains, in-
cluding web search, image and speech recognition, text
processing, gaming, and health care. A key factor caus-
ing this trend is the availability of large amounts of data
that can be used for training purposes. This has led
to the appearance of several proposals aiming at scal-
ing out the computation by distributing it across many
servers [1, 13, 16, 24, 34, 35].

Typically, these systems adopt an approach referred to
as data parallelism [16]. Rather than training a single
model with all the available input data, they replicate the

model across many servers and feed each replica with
a subset of the input data. Since the model replicas are
trained using different input data, their model parameters
will typically diverge. To reconcile these parameters and
ensure that all model replicas eventually converge, each
replica periodically pushes its set of parameter values to a
centralized server, called the parameter server [24]. The
latter aggregates all the received updates for each param-
eter (e.g., by averaging them) and then sends back to all
replicas the newly computed set of values, which will be
used at the beginning of the next iteration. As the total
numbers of parameters can be very high (up to 1012 [9]),
multiple parameter servers are used, with each one being
responsible for a subset of the parameters.

A major challenge of this approach is the high com-
munication cost. Model replicas must frequently read
and write global shared parameters. This generates a
large amount of network traffic and, due to the sequen-
tial nature of many of the machine learning algorithms
used, it may also stall the computation if the synchro-
nization latency is high. Therefore, the network is of-
ten regarded as one of the main bottlenecks for dis-
tributed machine learning systems [13, 16, 25]. To al-
leviate this issue, these systems are often deployed on
high-performance network fabrics such as Infiniband or
RoCE [13, 23], while others have proposed to trade-off
algorithm training efficiency for system performance by
introducing asynchronous communication [10, 24], thus
removing some of the barriers. Unfortunately, neither of
these approaches is completely satisfactory as the former
significantly increases infrastructure costs while the lat-
ter reduces overall training efficiency.

In this paper, we explore a different yet complemen-
tary point of the design space. We argue that network
bottlenecks can be greatly reduced through a customized
communication layer. To demonstrate this, we designed
MLNET, a novel communication layer for distributed
machine learning. MLNET uses tree-based overlays to
implement distributed aggregation and multicast and re-



duce network traffic, and relies on traffic control and pri-
oritization to improve average training time.

A key constraint underlying our design is that we
wanted MLNET to be a drop-in solution for existing ma-
chine learning deployments. Therefore, we implemented
MLNET as a user-space process running on hosts with-
out requiring any changes in the networking hardware, in
the OS stack, or in the training algorithm code. Further,
by sitting in between workers and parameter servers, it
decouples these two classes of servers, enabling scal-
ing each one independently and efficiently masking net-
work and server failures. We evaluate its effectiveness
in Section 4 by means of large-scale simulations with
800 servers and 50 to 400 parameter servers. The results
show that MLNET reduces the training time by a factor
of up to 5x.

2 Background

In this section, we provide a brief introduction to ma-
chine learning, motivate the need for its distributed exe-
cution, and discuss the use of parameter servers for scal-
ing distributed machine learning.

2.1 Machine Learning
The goal of a machine learning algorithm is to construct
a prediction model that extracts useful knowledge from
training data, and uses it to make inferences about future
arrival data. This can be formalized as an optimization
problem: Given a set of training data X , it tries to find a
model W that minimizes the error of a prediction func-
tion F(X ,W ). Typically, a machine learning algorithm
approaches this problem iteratively, starting from a ran-
domly generated W and then refining its solution gradu-
ally as more and more data are processed.

Complex models are usually able to capture the
knowledge hidden in training data. To an extreme, a suf-
ficiently complex model can “memorize” all the infor-
mation contained in the data. In this case, it can give the
correct prediction for any sample it has seen before, but
may perform poorly for unseen samples. This is called
over-fitting: a model fits its training data well, but does
not generalize to others. This is why a large amount of
training data is necessary for machine learning. By using
more data, a model can generalize sufficiently, reducing
the risk of over-fitting.

2.2 Distributed Machine Learning
As the size of training data can significantly affect pre-
diction accuracy, it has become common practice to train
models with large datasets. To speedup these training
tasks, they are often distributed across many servers.

In a distributed setting, a server iteratively refines a
shared model by learning from a local data partition,
and periodically synchronizes this model with the other
servers. More specifically, after each iteration, it calcu-
lates a refinement ∆Wi to the model W . To make sure that
all servers eventually converge to the same model, they
can synchronize every iteration, every n iterations, or
completely asynchronously. When machine learning al-
gorithms are implemented on traditional distributed plat-
forms such as Hadoop [38] or Spark [39], servers have to
synchronize every iteration. This requires placing a bar-
rier at the end of a iteration, incurring increasing over-
head as the system scales.

Parameter Server [24] is another approach to imple-
ment synchronization in distributed machine learning.
It outperforms the aforementioned platforms thanks to
domain-specific engineering and algorithmic optimiza-
tions. In this approach, a set of servers act as param-
eter servers that store the model W . The other servers
process the training data and act as workers. After ∆Wi
are calculated, workers do not communicate with each
other directly, but push ∆Wi to the parameter servers
and then pull a new W to be used in the next itera-
tion. By tuning push/pull frequencies, programmers can
balance the training efficiency and system performance.
For example, in the Stale Synchronous Parallel (SSP)
model [12, 15], workers are allowed to cache W and use
it in the next iteration while sending the ∆Wi of the pre-
vious iteration to servers, as long as the cached version
is within a staleness threshold s. In this way, communi-
cation can be overlapped with computation. Neverthe-
less, as workers still have to periodically synchronize the
model, the network can quickly become a bottleneck. In
the next section we show how MLNET can alleviate this
problem using a customized communication layer.

3 MLNET Design

We begin the section by describing the MLNET archi-
tecture and then we show how this makes it easy to im-
plement our two techniques to optimize network perfor-
mance, namely traffic reduction and traffic prioritization.
While we believe that this is a contribution per se, we
also see this a first step towards a deeper rethinking of
the network design for distributed machine learning. We
will elaborate on this point in Section 5.

3.1 Architecture
MLNET is a communication layer, running as a local
process on workers and parameter servers, similar to
Facebook mcrouter setup [30]. These local processes
behave like proxy, intercepting all exchanges between
workers and parameter servers. To push training results,

2



a worker initiates a normal TCP connection to a param-
eter server that is actually emulated by a local MLNET
process. Regardless of the actual numbers of parameter
servers and workers, MLNET maintains a single param-
eter server abstraction to workers, and symmetrically a
single worker abstraction to parameter servers. This de-
sign decouples workers and parameter servers and allows
them to scale in and out independently. Further, it makes
it easy to change the communication logic, e.g., to which
server and when send the traffic to, without requiring
modifications in the worker’s or parameter server’s code.

To achieve transparency w.r.t. both workers and pa-
rameter servers, MLNET inherits the standard commu-
nication APIs from the Parameter Server [24] where data
is sent between nodes using push and pull operations:

• weights = pull(modelId, staleness): Pull the weights
of a model within a staleness gap.

• push(modelId, gradients): Push the gradients of the
weights of a model.

• clock(): Increment the clock of a worker process.
We give an example of using this interface. The train-

ing of a shared model consists of multiple iterations. At
the end of an iteration, a worker pushes the newly cal-
culated gradients of model weights to a parameter server
and increases its local clock cworker by calling clock().
The parameter server aggregates all pushes to update
model weights and maintains a vector of the clocks of
all workers. A model clock cmodel is defined as the min-
imum worker clock in the vector. To start the next iter-
ation, the worker then pulls the model weights that have
to be within a staleness threshold s (see Section 2.2) by
checking if cmodel ≥ cworker − s.

3.2 Distributed Aggregation and Multicast
The push and pull phases are the primary sources of net-
work traffic in distributed machine learning. In the push
phase, workers send the gradients of model weights to
parameter servers, while in the pull phase they receive
the new weights generated after aggregating the gradi-
ents from all model replicas. These two operations can
generate high congestion at servers and, if the network
fabric is over-subscribed, in the core of the network too.

Adding more parameter servers would reduce the edge
congestion by spreading the traffic (albeit at the expenses
of increasing the overall server count) but it is of little
help to reduce congestion in the core. We propose, in-
stead, a different yet complementary approach that aims
at reducing, rather than simply re-routing, network traffic
by exploiting its domain-specific characteristics.
Aggregation and multicast tree. The aggregation func-
tions used by parameter servers are typically associa-
tive and commutative, e.g., an average function is often
used. This means that gradients can be aggregated in-

crementally and the final result is still correct. We lever-
age this property to reduce traffic during the push phase.
For each parameter server, MLNET uses it as the root
and builds a spanning tree connecting all workers. The
workers in the leaves send gradients to their parent nodes.
The latter aggregate all received gradients and push the
results upstream towards the root where the last step of
aggregation is performed.

Assuming that a node has an in-degree d. For each
parameter, this node receives d values and transmits only
one value (i.e., the aggregated result), thus drastically re-
ducing the network traffic at each hop. This not only
helps alleviating the load on parameter servers (avoiding
the so-called in-cast effect), but also reduces the load in
the network core too, which is beneficial in case of over-
subscribed networks. As shown in Section 4, depending
on the network fabric characteristics and the system load,
different values of d may be preferable.

A dual technique is also used during the pull phase.
In this case, rather than aggregating values on path, we
use the same tree to multicast the weights to all replicas.
By using a multicast tree, only d values per server are
transmitted, which reduces the load on the outbound link
of a parameter server (we expect d �W , where W is the
number of workers in the system).
Synchronous vs. asynchronous operations. MLNET
use the staleness threshold s to determine how push/pull
operations are performed. In a synchronous setting, i.e.,
s = 0, a worker needs to wait for all its child nodes on
the spanning tree in each iteration. In this case, a ML-
NET process uses its position on the tree to figure out the
number of pushes in an aggregation window as well as
the pull responses to multicast.

When s > 0, a MLNET process needs to decide when
to perform push/pull operations. If a pull request can be
satisfied with the cached weights (cmodel ≥ cworker − s),
the process responds it immediately, without incurring
extra upstream network traffic. If not, the request is
forwarded upstream, until it is satisfied with a cached
weight, or it waits on the parameter server. When re-
ceiving a push message, the process first updates its own
model with this message. It then pushes this message
upstream if and only if the gradients carried by this mes-
sage are not within the staleness thresholds compared to
its parent node. This means that the degree of asynchrony
is controlled by MLNET and it does not have to be hard-
coded in a training algorithm.
Fault tolerance. To detect failures, a MLNET process
uses heartbeats to check the liveness of its parent node on
the spanning tree. If a node fails, the downstream nodes
are connected to the parent of this failed node. They
then exchange model information to ensure that stale-
ness bounds are not broken. If the root of the tree, i.e.,
a parameter server, fails, its children wait for it to be re-

3



placed and then re-initiates a connection. If a failed node
is back, it asks its neighbors to restore its local model and
re-enters the tree. In case of multiple concurrent failures,
the above mechanism may incur high overhead. MLNET
then tears down the tree entirely and reverts to the tradi-
tional setup where workers directly communicate with
parameter servers.

3.3 Network Prioritization

The second technique used by MLNET is network prior-
itization. Mainstream congestion control protocols such
as TCP strive to provide per-flow fairness. This can
be particularly detrimental in a multi-tenant environment
where different models are trained in parallel because
contention on network resources will delay the training
time of all models sharing that bottleneck.

To address this issue, we implemented a network pri-
oritization mechanism in MLNET to arbitrate access to
network resources. We do not constrain how priorities
are defined. For example, a model with relatively smaller
communication cost could be given a high priority in
order to complete earlier, leading to a shorter average
model training time. Hereafter, we only assume that the
MLNET process has a way to extract the priority from
a flow (e.g., this can be encoded in the first transmitted
byte).

A key challenge of implementing this feature is how to
achieve this functionality without requiring any change
in existing network infrastructure. Recent proposals,
e.g., [3, 18, 36], require custom switch hardware and,
hence, do not fulfill our requirements.

In contrast, we opted for a software only solution.
If the network fabric provides full bisection bandwidth,
e.g., through a fat-tree design [2,20], contention only oc-
curs at the edge [22], i.e., at either the worker’s or param-
eter server’s uplink. When the destination machine, ei-
ther a worker or a parameter server, receives a new TCP
connection, it can inspect the relative priority (e.g., by
looking at the first byte) in order to decide whether to re-
ject the connection or to accept it by possibly dropping
some of the existing ones if they have lower priority than
the new one. As we show in the Section 4, this simple
mechanism is effective in reducing the median training
time without hurting the tail performance.

If the network is over-subscribed, the above mecha-
nism is not sufficient as congestion can occur in the net-
work core. If switches support enough priority queues,
we can extend the above mechanism to take advantage
of them, similar to recently proposed solutions [6, 28].
For the cases in which switch queues are not available,
an alternative approach is to extend our previous work
on bandwidth guarantees in a multi-tenant data center [8]
to allocate bandwidth to flows according to their priority.

This, however, would require knowledge of worker and
parameter server locations and, hence, it might not be
suitable for public cloud deployments. We are currently
working on a decentralized solution that does not suffer
from this limitation, possibly reusing some ideas from
recent work on coflow scheduling [11, 18].

4 Preliminary Results

We use simulations to evaluate the performance of
MLNET. While preliminary, the results indicate that
our design can i) reduce the end-to-end training time
(makespan), by performing distributed aggregation and
multicast, and ii) shorten the median makespans of con-
current machine learning tasks by prioritizing flows.

We use OmNET++ [44], a discrete event simulator, to
model a mid-size cluster with a three-tier, multi-rooted
network topology based on popular scalable data center
architectures [2,20]. The cluster comprises 1,024 servers
connected by 320 16-port switches via 10 Gbps links.
We model the TCP max/min fairness model and we use
the standard Equal Cost Multi Path (ECMP) routing pro-
tocol.

We adopt a synthetic workload modeled after a re-
cently published machine learning algorithm for sparse
logic regression [24]. The model has 65 billion param-
eters and is trained with a 141 TB dataset. The dataset
is evenly partitioned and consumed by 800 workers. We
vary the number of parameter servers between 50 and
400. The parameter space is equally divided across the
parameter servers. Both workers and parameter servers
are randomly deployed on the 1,024 servers.

Based on our experience in training models with Min-
erva [35], we assume that workers process training data
at a rate, uniformly randomly chosen between 100 MB/s
and 200 MB/s. They use synchronized push and pull, and
communicate with the parameter servers every 30 s.
Distributed Aggregation and Multicast. We begin our
analysis by focusing on the benefits of using our aggre-
gation and multicast mechanism. To show the impact of
the node in-degree d, we compare the performance of to-
day’s approach (BASELINE) against two strategies that
use a different value of d. The first one, RACK, uses a
single aggregator per rack, i.e., d = 7, as in our experi-
ments we assumed eight servers per rack. The other one,
BINARY, instead, uses binary trees, i.e., d = 2.

Figure 1a shows the makespan of these configurations
against the number of parameter servers together with
800 workers in a non-oversubscribed network. When
there are 50 parameter servers, BINARY and RACK out-
perform BASELINE, taking only 22% and 42% of the
time used by BASELINE. This shows the benefits of
reducing the inbound and outbound load at the param-

4



��

��

��

��

��

���

���

�� ��� ���� ���� ���� ���� ���� ���� ����

�
�
�
�
�
�
�
�
��
�
�
�
��
�

���������������������������

����
�����������

��������

(a) No over-subscription.

��
��
��
��
��
���
���
���

�� ��� ���� ���� ���� ���� ���� ���� ����

�
�
�
�
�
�
�
�
��
�
�
�
��
�

���������������������������

����
�����������

��������

(b) 1:4 over-subscription.

Figure 1: Training makespan against the number of pa-
rameter servers.

eter servers. However, with a large number of param-
eter servers, the load is already sufficiently spread and
our solutions become less effective compared to BASE-
LINE. Finally, when the number of parameter servers is
very high (≥ 300), the cost of re-directing traffic through
the tree dominates and the performance of both BINARY
and RACK gets worse than BASELINE. This shows the
trade-off between the number of parameter servers and
traffic reduction. Having more parameter servers helps
to spread the load across the fabric and alleviate network
bottlenecks. However, this comes at the cost of using
more machines and is only effective when the network is
not oversubscribed.

We then repeated the same experiment assuming a
more realistic network setup with an over-subscription
ratio of 1:4. In this case, congestion occurs in
the network core too and, hence, unlike in the non-
oversubscribed case, just increasing the number of pa-
rameter servers does not help in removing the main bot-
tlenecks. In contrast, by reducing the overall network
traffic, MLNET is also able to reduce the congestion in
the core. This explains why, as shown in Figure 1b,
RACK and BINARY outperform BASELINE in all con-
figurations. For example, with 50 parameter servers,
RACK reduces the makespan compared to baseline by
73% (resp. 66% for BINARY) and with 400 parameter
servers, the makespan is reduced by 71% (resp. 40% for
BINARY). Interestingly, in this configuration, BINARY
achieves a worse performance than RACK. The reason
is that since the height of BINARY’s trees is higher, the
path length increases accordingly and, hence, BINARY
consumes more bandwidth than RACK. While this is not
an issue in a non-oversubscribed network in which the

��

�����

����

�����

��

�� ���� ���� ���� ���� ����� �����

�
�
�

����������������

����
�����������

��������

Figure 2: CDF of link traffic for different configurations.

��

�����

����

�����

��

�� �� �� �� �� ��� ��� ���

�
�
�

����������������

��������
��������������

����������������
���������������������������������

Figure 3: CDF of model makespans for different config-
urations.

core bandwidth is abundant, this becomes problematic in
this setup where the core bandwidth is scarce.

In Figure 2, we show the CDFs of traffic across net-
work links. In this experiment, we consider a non-
oversubscribed network with 800 workers and 200 pa-
rameter servers. As expected, both RACK and BINARY
exhibit a lower traffic per link, which explains the over-
all improvement in performance. We observed a qual-
itatively similar result in the over-subscribed case too
(omitted for space reasons).

Flow Prioritization. Next, we explore the impact of net-
work prioritization. We consider a workload in which 20
different models are trained concurrently. To reduce the
computation load of our simulations, we scale down each
mode to use only 200 workers and 50 parameter servers,
and reduce the input data size proportionally. We ran-
domly assign priority to each model and we start all the
models at the same time. In Figure 3, to understand the
impact of using prioritization alone and combined with
traffic reduction, we show the CDF of the makespan for
these configurations. As a comparison, we also report
the CDF achieved when using traffic reduction alone and
when using our TCP-based baseline.

Just using network prioritization reduces the median
make span by 25% while only increasing the tail by 2%.
Combining traffic reduction and prioritization together
further improves the performance by reducing the me-
dian by 60% (resp. 54% for the 95th-percentile) com-
pared to baseline, and reducing the median by 13.9%
compared to using traffic reduction only.

5



5 Discussion and Research Directions

We conclude the paper by highlighting current limita-
tions and future research directions.
Model parallelism. The current design of MLNET tar-
gets the data parallelism model, in which multiple model
replicas are trained concurrently, each using a different
subset of input data. A complementary form of paral-
lelism is the so-called model parallelism [16] in which a
large neural network is partitioned across multiple work-
ers. This exhibits a different communication pattern than
the data parallelism model being explored in this paper.
While some of the techniques discussed here might also
be beneficial in this context, our next step is to under-
stand the peculiarity of these patterns and design tailored
solutions. One possibility is to extend recently proposed
solutions for graph processing [19,32]. However, despite
some similarities, deep neural networks differ from ordi-
nary graphs as they are more structured and constrained
but their sizes can be 10-100x larger.
Adaptive communication. Existing frameworks,
e.g., [12, 15, 24, 25], trade-off training efficiency for net-
work performance by tolerating some degree of asyn-
chrony through the staleness threshold s. The value of
s, however, is usually determined a priori and cannot be
easily changed at runtime. In contrast, we are currently
exploring the feasibility of dynamically tuning this value
based on i) the network load and ii) the convergence rate
of individual parameters / models. This is particularly
important for long-running training models, executing on
public cloud infrastructure, in which the network perfor-
mance is highly variable [8]. For example, in case of a
highly loaded network, higher values of s (i.g., higher
asynchrony) can be selected while, when network uti-
lization drops, more synchronous configurations can be
used. A similar approach can also be adopted to identify
the best value of the node in-degree d.

This direction is complementary to recent work inves-
tigating similar trade-offs in the context of computation
resources [21, 29] and memory bandwidth [37].
Network infrastructure. A key design goal in our de-
sign was to maintain compatibility with the existing net-
work deployments. Next, however, we want to explore
the trade-offs of customizing the hardware as well. A
first step in this direction is to investigate the feasibility
of offloading our distributed aggregation to the switch
hardware, e.g., using recently available programmable
switch platforms [17, 40, 42, 43] or middleboxes [4, 26,
27,33]. In the longer term, we intend to assess the poten-
tial benefits of designing a machine learning rack-scale
appliance from the ground up, including chip design, net-
work fabric, and storage infrastructure, following the ex-
ample of recently proposed rack-scale architectures for
computation and storage [5, 7, 14, 31, 41].

References
[1] AHMED, A., ALY, M., GONZALEZ, J., NARAYANAMURTHY,

S., AND SMOLA, A. J. Scalable inference in latent variable mod-
els. In WSDM (2012).

[2] AL-FARES, M., LOUKISSAS, A., AND VAHDAT, A. A Scalable,
Commodity Data Center Network Architecture. In SIGCOMM
(2008).

[3] ALIZADEH, M., YANG, S., SHARIF, M., KATTI, S., MCKE-
OWN, N., PRABHAKAR, B., AND SHENKER, S. pFabric: Mini-
mal Near-optimal Datacenter Transport. In SIGCOMM (2013).

[4] ANDERSON, J. W., BRAUD, R., ET AL. xOMB: Extensible
Open Middleboxes with Commodity Servers. In ANCS (2012).

[5] ASANOVIC, K. FireBox: A Hardware Building Block for 2020
Warehouse-Scale Computers. In FAST (2014). Keynote.

[6] BAI, W., CHEN, L., CHEN, K., HAN, D., TIAN, C., AND
WANG, H. Information-Agnostic Flow Scheduling for Commod-
ity Data Centers. In USENIX NSDI (2015).

[7] BALAKRISHNAN, S., BLACK, R., DONNELLY, A., ENGLAND,
P., GLASS, A., HARPER, D., LEGTCHENKO, S., OGUS, A.,
PETERSON, E., AND ROWSTRON, A. Pelican: A Building Block
for Exascale Cold Data Storage. In OSDI (2014).

[8] BALLANI, H., COSTA, P., KARAGIANNIS, T., AND ROW-
STRON, A. Towards Predictable Datacenter Networks. In SIG-
COMM (2011).

[9] CANINI, K., CHANDRA, T., IE, E., MCFADDEN, J., GOLD-
MAN, K., GUNTER, M., HARMSEN, J., LEFEVRE, K., LEP-
IKHIN, D., LLINARES, T. L., MUKHERJEE, I., PEREIRA, F.,
REDSTONE, J., SHAKED, T., AND SINGER, Y. Sibyl: A sys-
tem for large scale supervised machine learning, 2012. Machine
Learning Summer School, Santa Cruz, CA.

[10] CHILIMBI, T., SUZUE, Y., APACIBLE, J., AND KALYANARA-
MAN, K. Project Adam: Building an Efficient and Scalable Deep
Learning Training System. In OSDI (2014).

[11] CHOWDHURY, M., ZHONG, Y., AND STOICA, I. Efficient
Coflow Scheduling with Varys. In SIGCOMM (2014).

[12] CIPAR, J., HO, Q., KIM, J. K., LEE, S., GANGER, G. R., GIB-
SON, G., KEETON, K., AND XING, E. Solving the Straggler
Problem with Bounded Staleness. In HotOS (2013).

[13] COATES, A., HUVAL, B., WANG, T., WU, D., CATANZARO,
B., AND ANDREW, N. Deep learning with COTS HPC systems.
In ICML-13 (2013).

[14] COSTA, P., BALLANI, H., RAZAVI, K., AND KASH, I. R2C2: A
Network Stack for Rack-scale Computers. In SIGCOMM (2015).

[15] CUI, H., CIPAR, J., HO, Q., KIM, J. K., LEE, S., KUMAR, A.,
WEI, J., DAI, W., GANGER, G. R., GIBBONS, P. B., GIBSON,
G. A., AND XING, E. P. Exploiting Bounded Staleness to Speed
Up Big Data Analytics. In ATC (2014).

[16] DEAN, J., CORRADO, G. S., MONGA, R., CHEN, K., DEVIN,
M., LE, Q. V., MAO, M. Z., RANZATO, M., SENIOR, A.,
TUCKER, P., YANG, K., AND NG, A. Y. Large Scale Distributed
Deep Networks. In NIPS (2012).

[17] DOBRESCU, M., EGI, N., ARGYRAKI, K., CHUN, B.-G.,
FALL, K., IANNACCONE, G., KNIES, A., MANESH, M., AND
RATNASAMY, S. RouteBricks: Exploiting Parallelism To Scale
Software Routers. In SOSP (2009).

[18] DOGAR, F. R., KARAGIANNIS, T., BALLANI, H., AND ROW-
STRON, A. Decentralized Task-aware Scheduling for Data Center
Networks. In SIGCOMM (2014).

[19] GONZALEZ, J. E., LOW, Y., GU, H., BICKSON, D., AND
GUESTRIN, C. Powergraph: Distributed graph-parallel compu-
tation on natural graphs. In OSDI (2012).

6



[20] GREENBERG, A., HAMILTON, J. R., JAIN, N., KANDULA, S.,
KIM, C., LAHIRI, P., MALTZ, D. A., PATEL, P., AND SEN-
GUPTA, S. VL2: A Scalable and Flexible Data Center Network.
In SIGCOMM (2009).

[21] HUANG, B., BOEHM, M., TIAN, Y., REINWALD, B.,
TATIKONDA, S., AND REISS, F. R. Resource Elasticity for
Large-Scale Machine Learning. In SIGMOD (2015).

[22] JEYAKUMAR, V., ALIZADEH, M., MAZIÈRES, D., PRAB-
HAKAR, B., KIM, C., AND GREENBERG, A. EyeQ: Practical
Network Performance Isolation at the Edge. In NSDI (2013).

[23] LI, H., KADAV, A., KRUUS, E., AND UNGUREANU, C. MALT:
Distributed Data-parallelism for Existing ML Applications. In
EuroSys (2015).

[24] LI, M., ANDERSEN, D. G., PARK, J. W., SMOLA, A. J.,
AHMED, A., JOSIFOVSKI, V., LONG, J., SHEKITA, E. J., AND
SU, B.-Y. Scaling Distributed Machine Learning with the Pa-
rameter Server. In OSDI 14 (2014).

[25] LI, M., ANDERSEN, D. G., SMOLA, A., AND YU, K. Commu-
nication Efficient Distributed Machine Learning with the Param-
eter Server. In NIPS (2014).

[26] MAI, L., RUPPRECHT, L., ALIM, A., COSTA, P., MIGLI-
AVACCA, M., PIETZUCH, P., AND WOLF, A. L. NetAgg: Us-
ing Middleboxes for Application-specific On-path Aggregation
in Data Centres. In CoNEXT (2014).

[27] MARTINS, J., AHMED, M., ET AL. ClickOS and the Art of
Network Function Virtualization. In NSDI (2014).

[28] MUNIR, A., BAIG, G., IRTEZA, S. M., QAZI, I. A., LIU,
A. X., AND DOGAR, F. R. Friends, Not Foes: Synthesizing
Existing Transport Strategies for Data Center Networks. In SIG-
COMM (2014).

[29] NARAYANAMURTHY, S., WEIMER, M., MAHAJAN, D.,
CONDIE, T., SELLAMANICKAM, S., AND KEERTHI, S. S.
Towards Resource-Elastic Machine Learning. In NIPS 2013
BigLearn Workshop (2013).

[30] NISHTALA, R., FUGAL, H., GRIMM, S., KWIATKOWSKI, M.,
LEE, H., LI, H. C., MCELROY, R., PALECZNY, M., PEEK, D.,
SAAB, P., STAFFORD, D., TUNG, T., AND VENKATARAMANI,
V. Scaling Memcache at Facebook. In NSDI 13 (2013).

[31] PUTNAM, A., CAULFIELD, A., CHUNG, E., CHIOU, D., CON-
STANTINIDES, K., DEMME, J., ESMAEILZADEH, H., FOWERS,
J., GOPAL, G. P., GRAY, J., HASELMAN, M., HAUCK, S.,
HEIL, S., HORMATI, A., KIM, J.-Y., LANKA, S., LARUS, J.,
PETERSON, E., POPE, S., SMITH, A., THONG, J., XIAO, P. Y.,
AND BURGER, D. A Reconfigurable Fabric for Accelerating
Large-Scale Datacenter Services. In ISCA (2014).

[32] SALIHOGLU, S., AND WIDOM, J. Gps: A graph processing
system. In SSDBM (2013).

[33] SEKAR, V., EGI, N., RATNASAMY, S., REITER, M. K., AND
SHI, G. Design and Implementation of a Consolidated Middle-
box Architecture. In NSDI (2012).

[34] SMOLA, A. J., AND NARAYANAMURTHY, S. An Architecture
for Parallel Topic Models. In VLDB (2010).

[35] WANG, M., XIAO, T., LI, J., ZHANG, J., HONG, C., AND
ZHANG, Z. Minerva: A scalable and highly efficient training
platform for deep learning. In NIPS Workshop, Distributed Ma-
chine Learning and Matrix Computations (2014).

[36] WILSON, C., BALLANI, H., KARAGIANNIS, T., AND
ROWTRON, A. Better Never Than Late: Meeting Deadlines in
Datacenter Networks. In SIGCOMM (2011).

[37] ZHANG, C., AND RE, C. DimmWitted: A Study of Main-
Memory Statistical Analytics. In VLDB (2014).

[38] Apache Hadoop. https://hadoop.apache.org.

[39] Apache Spark. https://spark.apache.org/.

[40] Arista EOS+ Platform for Network Programmability. http://

www.arista.com/en/solutions/eos-platform.

[41] HP Moonshot System. http://bit.ly/1mZD4yJ.

[42] NetFPGA. http://netfpga.org/.

[43] Netronome FlowNICs. http://netronome.com/product/

flownics/.

[44] OmNET++ Discrete Event Simulator. https://omnetpp.org.

7

https://hadoop.apache.org
https://spark.apache.org/
http://www.arista.com/en/solutions/eos-platform
http://www.arista.com/en/solutions/eos-platform
http://bit.ly/1mZD4yJ
http://netfpga.org/
http://netronome.com/product/flownics/
http://netronome.com/product/flownics/
https://omnetpp.org

	Introduction
	Background
	Machine Learning
	Distributed Machine Learning

	MLNet Design
	Architecture
	Distributed Aggregation and Multicast
	Network Prioritization

	Preliminary Results
	Discussion and Research Directions

