
PrivateFlow: Decentralised Information Flow Control in
Event Based Middleware (Demo) ∗

I. Papagiannis?, M. Migliavacca?, P. Pietzuch?, B. Shand+, D. Eyers† , J. Bacon†
Imperial College London?, Clinical and Biomedical Computing Unit+, University of Cambridge†
{ip108, migliava, prp}@doc.ic.ac.uk, Brian.Shand@cbcu.nhs.uk, {dme26, jmb25}@cl.cam.ac.uk

ABSTRACT
Complex middleware frameworks are made out of interact-
ing components which may include bugs. These frameworks
are often extended to provide additional features by third-
party extensions that may not be completely trusted and,
as a result, compromise the security of the whole platform.
Aiming to minimize these problems, we propose a demon-
stration of PrivateFlow, a publish/subscribe prototype sup-
ported by Decentralized Information Flow Control (DIFC).
DIFC is a taint-tracking mechanism that can prevent com-
ponents from leaking information. We will showcase a sim-
ple deployment of PrivateFlow that incorporates third-party
untrusted components. In our demonstration, one of these
components will try to leak sensitive information about the
system’s operation and it will fail once DIFC is activated.

1. MOTIVATION
Computer systems are frequently subject to attacks that

not only stop their operation but also result in leaking in-
appropriate information to the attackers. These problems
are often the outcome of poor system design, bugs in the
application code or malevolent components destined to leak
information. Event-based systems similarly suffer from the
above issues that only get worse as systems increase in size,
incorporate a greater number of third party extensions and
manipulate sensitive data. While a third party extension
that generates a financial statement for an incoming event
might be generally acceptable, in a privacy-aware health-
care environment guarantees must exist that it will never
leak irrelevant sensitive patient data from the event to other
components. Puting poor design aside, we focus on protec-
tion from programming errors and rogue components.

Decentralised Information Flow Control [2] (DIFC) is be-
coming an attractive paradigm for enforcing security prop-
erties in a collaborative setting. DIFC labels the data ex-
changed between components and assigns clearance levels to

∗This work has been partially funded by ESPRC SmartFlow
grants EP/F042469/1 and EP/F044216/1.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
DEBS’09, July 6-9, Nashville, TN, USA.
Copyright 2009 ACM X-XXXXX-000-0/00/0004 ...$10.00.

components. Using these labels, the system can monitor all
information flows and actively prevent any interactions that
could leak information to untrusted components.

DIFC was introduced as an extension to traditional In-
formation Flow Control systems by allowing the system’s
components to take part in the creation of labels and the
assignment of clearance levels. Since its introduction, DIFC
has been used as a paradigm to build a new generation of
operating systems [3] or existing operating systems’ exten-
sions [1]. These systems have demonstrated how existing
software platforms, such as web servers and their hosted ap-
plications, can benefit from DIFC by introducing guarantees
for users’ data confidentiality and integrity.

2. DEFCON
Decentralised Event Flow Control (DEFCon) is our frame-

work for building extensible middleware systems. It uses
DIFC to control the isolation between components. DEF-
Con applications are composed of a set of units that run
within a processing engine. The engines track information
flow using labels assigned to units and ensure that units’
operations do not violate flow constraints. DEFCon’s label
model builds upon Flume [1]. Each label is a set of tags while
each tag is a randomly generated integer that expresses in-
formation flow concerns. Units have the ability to generate
arbitrary tags and thus, they can express flexible policies.

DEFCon events consist of a set of parts and each part is
protected by an individual label. As a result, parts represent
data that must be equally treated in terms of information
flow. This approach permits configurations where a given
unit can have only partial view of an event, a view that is
controlled by the unit assigned labels. Once a unit has ob-
served confidential data, the tags protecting the data will
be attached to the unit’s labels. From now on, the unit will
have to obey any restrictions that these tags introduce, thus
it will lose the ability to communicate with other compo-
nents not tainted with these tags. The unit is effectively
“jailed” by its engine. The privilege to access data is called
clearance over a tag.

On the other hand, declassification privileges allow a unit
to ignore restrictions over a given tag and effectively escape
the “jail” that clearance introduces. Giving untrusted units
particular clearance privileges allows such units to do useful
work, while still respecting security requirements.

3. PRIVATEFLOW
PrivateFlow is our prototype implementation of a simple

topic-based, DIFC-enabled, publish/subscribe system built

on top of DEFCon. PrivateFlow’s purpose is to demonstrate
the possibilities that DIFC introduces for a publish/subscribe
middleware system: to operate using untrusted components
and yet guarantee the user’s data confidentiality.

PrivateFlow is deployed as a set of units in two DEFCon
engines. As illustrated below, the first engine includes a
launcher unit to register new subscribers and a communi-
cations unit that connects the engine with a second engine.
Label information is being preserved on that link. The sec-
ond engine houses another communications unit as well as
the message producer. Additionally, the second engine uses
a third-party untrusted matcher that registers users’ sub-
scriptions and then matches them against publications.

Engine 2Engine 1

Communications CommunicationsLauncher

Subscriber Subscriber

Producer

Untrusted
Matcher

PrivateFlow showcases two DIFC features. First, it pro-
tects the data within the messages from the matcher while
avoiding intra-node encryption. Second, it protects the de-
tails of subscriptions so that the matcher is unable to com-
municate logs of the users’ topic choices. Thus, both pro-
ducers and receivers can use the untrusted matcher with
confidence that it will not leak their sensitive information.

Publication data protection relies on DEFCon’s multiple
labeled event parts. Each published message is captured
as a DEFCon event with three parts: a type part, a topic
part and a data part. Each unit has different privileges over
the tags protecting each part; the matcher specifically is
prohibited to access the data part at all. The result is that
the matcher is limited to only access the required topic part
and it cannot leak other relevant information.

Subscription protection is achieved by introducing dynam-
ically allocated per-subscriber tags. Unlike data part pro-
tection that can be enforced by a single statically allocated
tag, each subscriber has to allocate its own tag at runtime.
It uses this tag to protect its subscription and must dele-
gate clearance over it to the matcher. PrivateFlow invokes
a new instance of the matcher for each subscriber and taints
each instance so that it is able to communicate only with the
appropriate subscriber. This approach, imposed by DIFC,
creates independent matcher states, so a matcher will never
be able to send to a subscriber sensitive information (i.e.
data and/or subscriptions) of another subscriber.

4. DEMONSTRATION OUTLINE
The demonstration will focus on presenting the two fea-

tures described above that DIFC introduces to our publish/
subscribe system. In order to do so, we will deploy two en-
gines and some units, as described in the last section. When
a new subscriber unit is instantiated, we are presented with
the main subscriber interface.

The subscriber interface uses Twitter’s search API to get
a public preview of the current trend topics discussed in
Twitter. It then populates a small form with possible sub-
scription topics and waits for user interaction. Each user
can select one or more topics to subscribe to.

In the second engine, the producer unit will do a similar
job of fetching the trend topics and start publishing events
on them to its engine. The demonstration will take place
with two different settings: DIFC off and on.

DIFC turned off. The untrusted matcher will try and
succeed in capturing both users’ subscription information
and the content of the messages that get delivered to them.
Two subscriber instances will be instantiated and from each
one of them, some subscriptions will be submitted. While
the subscribers will be receiving their first events, a new out-
put form will be generated by the matcher. The form will be
dynamically updated with every subscription submitted by
the subscribers and the data of each message that matched.
Moreover, a third subscriber will be instantiated at engine
1 that will subscribe to a previously unknown topic named
“hacker”. This keyword will be understood by the matcher
which, in response, will start to forward the above log to it.
The subscriber’s screen will then output a full log of other
users’ subscriptions, violating their privacy.

DIFC tuned on. We will repeat the steps of the previous
case. Here the matcher will fail to generate an output form
and a log message will be displayed stating that the matcher
unit tried to violate DIFC. As more subscribers are instan-
tiated, each corresponding matcher will fail to show output
forms and it will correctly operate only with the correspond-
ing user’s subscriptions. Finally, another subscriber will be
instantiated that will again issue the malevolent “hacker”
subscription. Since the matcher instance that will receive
it has no access to other units’ subscriptions, the malicious
subscriber will not receive any information.

5. CONCLUSION
DIFC provides a new paradigm for building secure event

based systems. While the overhead that it introduces is yet
to be explored, we believe that its advantages will enable
more secure complex distributed applications.

6. REFERENCES
[1] M. Krohn, A. Yip, et al. Information flow control for

standard OS abstractions. In SOSP ’07: Proceedings,
pages 321–334, New York, NY, USA, 2007. ACM.

[2] A. Myers and B. Liskov. Protecting privacy using the
decentralized label model. ACM Trans. Softw. Eng.
Methodol., 9(4):410–442, 2000.

[3] S. Vandebogart, P. Efstathopoulos, E. Kohler, et al.
Labels and event processes in the Asbestos operating
system. ACM Trans. Comput. Syst., 25(4):11, 2007.

