CloudFilter: Practical Control of Sensitive Data
Propagation to the Cloud

loannis Papagiannis
Imperial College London
London, SW7 2AZ
United Kingdom

ip108@doc.ic.ac.uk

ABSTRACT

A major obstacle for the adoption of cloud services in enterprises
is the potential loss of control over sensitive data. Companies often
have to safeguard a subset of their data because it is crucial to their
business or they are required to do so by law. In contrast, cloud ser-
vice providers handle enterprise data without providing guarantees
and may put confidentiality at risk. In order to maintain control
over their sensitive data, companies typically block all access to a
wide range of cloud services at the network level. Such restrictions
significantly reduce employee productivity while offering limited
practical protection in the presence of malicious employees.

In this paper, we suggest a practical mechanism to ensure that
an enterprise maintains control of its sensitive data while employ-
ees are allowed to use cloud services. We observe that most cloud
services use HTTP as a transport protocol. Since HTTP offers well-
defined methods to transfer files, inspecting HTTP messages allows
the propagation of data between the enterprise and cloud services
to be monitored independently of the implementation of specific
cloud services. Our system, CLOUDFILTER, intercepts file trans-
fers to cloud services, performs logging and enforces data propaga-
tion policies. CLOUDFILTER controls where files propagate after
they have been uploaded to the cloud and ensures that only autho-
rised users may gain access. We show that CLOUDFILTER can be
applied to control data propagation to Dropbox and GSS, describ-
ing the realistic data propagation policies that it can enforce.

Categories and Subject Descriptors

H.3.2 [Information Storage and Retrieval]: Information Stor-
age; D.4.6 [Operating Systems]: Security and Protection; C.2.0
[Computer-Communication Networks]: General

General Terms

Security

Keywords

Information Flow Control, Cloud Storage, Data Loss Prevention

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

CCSW’12, October 19, 2012, Raleigh, North Carolina, USA.

Copyright 2012 ACM 978-1-4503-1665-1/12/10 ...$15.00.

Peter Pietzuch
Imperial College London
London, SW7 2AZ
United Kingdom

prp@doc.ic.ac.uk

1. INTRODUCTION

The potential loss of control over sensitive data is a major obsta-
cle for the adoption of cloud services in enterprises. Cloud services
typically do not provide strong guarantees regarding data confiden-
tiality. For example, Dropbox [4], a popular cloud storage service,
was shown to suffer from vulnerabilities that could disclose files in
various scenarios [15]. Enterprises, especially when legally liable
for data loss, are thus reluctant to adopt cloud services [23].

A common practice to maintain control over sensitive enterprise
data is to prohibit all communication with specific services at the
network level. This has two shortcomings: first, employees cannot
execute workflows involving cloud services with data that are not
sensitive. For example, blocking access to Dropbox would prevent
sales staff from collecting client requirements using a shared doc-
ument; second, blocking popular services makes it more likely for
users to bypass such a security policy completely. For example, an
ambitious salesperson may choose to rely on their personal laptop
and thus expose Dropbox to arbitrary company documents.

In general, enterprises impose different restrictions on different
data with regard to cloud usage: some data are public and no re-
strictions exist; others are sensitive and should never leave the en-
terprise network. Some categories of data may be stored in the
cloud as long as the enterprise has reasonable guarantees that only
specific users may have access, i.e. a specific data propagation pol-
icy is enforced. Moreover, and in contrast to military systems, the
decision to classify data in a particular category is often made by
employees, which assumes that employees are accountable for their
actions. Similar requirements may also be introduced by service
providers, e.g. a provider may choose not to host particular cate-
gories of data if it cannot provide adequate protection.

Existing access control schemes are insufficient to prevent data
disclosure when cloud services are used. Information Rights Man-
agement systems [18] expect employees to release only encrypted
documents but there is no guarantee that employees comply with
such a policy. Information Flow Control systems [26] can monitor
each employee’s actions transparently but are impractical to deploy
because they require that both employee machines and the cloud
provider’s systems are modified to propagate security labels.

Our work is based on the observation that, for most cloud ser-
vices, data is transfered between clients and services using HTTP.
In other words, HTTP replaces IP as the neck in the traditional
hourglass-shape model of the network protocol stack [2]. When
controlling data propagation, HTTP thus offers well-defined meth-
ods to transfer files [10], which are independent of a provider’s API
and are easy to intercept.

We propose CLOUDFILTER, a practical and service-independent
system to restrict how data propagates between the enterprise and
the cloud provider. We exploit two ideas to enforce data propaga-

tion policies effectively. First, we bind data propagation policies to
the files controlled by these policies using security labels embedded
inside files. Since embedded labels remain associated with files, we
can decide how a particular file should propagate when it is first up-
loaded to a cloud storage service and then enforce this decision in
any subsequent attempt to download the same file. No additional
support is required from the cloud provider for this. Second, we
modify the employee’s browser to expose contextual information
such as the name of the user that performs each upload. Again, this
avoids the need for solutions specific to particular cloud providers.

The architecture of CLOUDFILTER consists of proxies that inter-
cept HTTP traffic at the perimeter of the enterprise and the cloud
provider’s networks and enforce data propagation policy. When a
file transfer is detected, proxies pause it, may ask the user for con-
firmation and log it for future audit. A browser extension lets users
choose propagation policies for their files. Proxies attach security
labels to files in transit. Labels store all the information required
to restrict file propagation, e.g. the domain that the document orig-
inates from or a list of users eligible to receive it.

CLOUDFILTER can ensure that, when an enterprise user uploads
a document to a cloud storage service, (1) the operation is logged,
(2) the action can be attributed to a user and (3) other users can
only access this document from a designated set of networks. This
makes an enterprise more likely to adopt a cloud service—at least
for a subset of its data—because monitoring, accountability and
policy-imposed restrictions on data propagation reduce the fear of
uncontrolled, accidental and large-scale data disclosure.

The paper is structured as follows. The next section introduces
the threat model that CLOUDFILTER is designed to protect against
and discusses existing solutions for controlling data propagation.
§3 presents an overview of CLOUDFILTER and describes the spec-
ification of data propagation policies. §4 demonstrates use cases
for CLOUDFILTER with two representative cloud storage providers
and discusses limitations. The paper closes in §5 with future work.

2. BACKGROUND

Maintaining control over data is an important concern for organ-
isations considering migration to the cloud, particularly in govern-
ment and commerce [23]. Cloud providers offer services that are
easy to access and less expensive than in-house equivalents but they
seldom offer strong guarantees about data confidentiality. This cre-
ates a hybrid policy in many enterprises: the propagation of a subset
of enterprise data must be strictly controlled while the cloud should
only be used for files that are not sensitive.

2.1 Threat Model

We aim to control the propagation of data for cases, in which
users are not malicious. The scenario that we protect against is of a
user who inadvertently uploads sensitive data to the cloud and then
shares or accesses the data in a way that violates company policy.
Users are considered trusted to decide whether a document falls
under a particular security category and how a document should be
shared with other users. At the same time, employees can be held
accountable for their actions. Scenarios in which a user actively
tries to circumvent the protection mechanism can be handled using
disciplinary actions.

We believe that these assumptions capture the trust that most en-
terprises have in their employees. Employees can typically send
arbitrary documents to any recipient, e.g. via company email. At
the same time, an enterprise wants assurance that certain policies
are enforced (e.g. no large messages can be sent) and that any vi-
olations can be attributed to a particular employee for disciplinary
actions (i.e. by keeping email logs).

For data propagation policies that require the collaboration of
the cloud service, we assume that the enterprise trusts the cloud
provider to correctly deploy and configure a local installation of
CLOUDFILTER. We anticipate that cloud providers have an incen-
tive to collaborate with enterprises: allowing enterprises to restrict
the propagation of their data can give cloud providers a distinguish-
ing feature in the marketplace. It also means that they cannot be
held liable after confidential data was compromised.

Many solutions have been proposed to control the propagation of
sensitive data. Representative schemes employ Information Rights
Management (IRM) and Information Flow Control (IFC). In addi-
tion, Data Loss Prevention (DLP) systems target specifically confi-
dential data disclosure in enterprises.

2.2 Information Rights Management

IRM systems [18, 12] (also known as Digital Rights Manage-
ment systems) control access to sensitive enterprise documents.
Typically, a server stores an unencrypted version of the document
along with access control lists. When a document is retrieved from
the server, it is encrypted for distribution. Recipients of the docu-
ment need to access the server, authenticate and obtain a decryption
key before displaying it.

IRM systems are impractical when used with cloud services.
They normally require customised client software (e.g. document
editors) and access to a shared trusted authentication server. While
this is a reasonable assumption within a single enterprise, it is sel-
dom the case when two employees in different enterprises collab-
orate on a shared document. Second, there is no guarantee that
employees use the IRM system before uploading a document to the
cloud. Overall IRM can provide an additional protection mecha-
nism for enterprise documents that are allowed to be stored in the
cloud, yet are not sufficient to control all data propagation.

2.3 Information Flow Control

IFC [24, 9] is a mandatory access control model that uses secu-
rity labels attached to data to control propagation. It ensures that
labels propagate with the data during processing, which typically
requires modification to operating systems or the end-user applica-
tions. Decentralised IFC [26] permit the owners of data, i.e. users
and applications, to create unique labels and to control data propa-
gation inside a single [13, 26] and across machines [27, 14]. Labels
have also been suggested to track the propagation of data within ap-
plications to mitigate injection attacks [21, 19] and for monitoring
applications for privacy-violating information flows [3].

Despite shown to be effective, using labels to track data flow
has often resulted in systems that are not practical. Since labels
have to propagate at runtime in a transparent fashion, the result-
ing overhead makes applications execute several times slower [8].
Some systems achieve better performance but often only target a
particular class of applications [13] or require modifications to the
execution platform [26, 25].

2.4 Data Loss Prevention

Data Loss Prevention (DLP) systems [17, 22] safeguard confi-
dential enterprise data. They typically introduce a proxy that inter-
cepts and analyses all outgoing traffic from the enterprise network.
The proxy identifies confidential data that must not leave the enter-
prise using various methods ranging from pattern matching to file
fingerprinting with hashes [11]. While these techniques detect con-
fidential enterprise data, DLP systems are not designed to control
data propagation after a file was uploaded to the cloud.

CLOUDFILTER selectively protects specific categories of data
(inspired by IRM systems), uses labels based on IFC and checks

request

" Service Proxy

Client Proxy

© A =
SEET | HTTPE)

-Ox

|

Browser

Enterprise Network

Cloud Provider

Figure 1: CLOUDFILTER architecture

traffic at the boundary of the enterprise network, similar to DLP
systems. In contrast to IRM systems, CLOUDFILTER can ensure
that users protect the data that they upload. Since labels embed-
ded inside files are left unchanged by typical file operations such
as copy or move, CLOUDFILTER avoids the practical issues associ-
ated with most IFC systems. With regard to DLP systems, CLOUD-
FILTER can be seen as an extension, which focuses on monitoring
sensitive data after it has left the enterprise network.

3. CLOUDFILTER DESIGN

The goal of CLOUDFILTER is to provide an easy-to-use and
practical solution for controlling data propagation between an en-
terprise and cloud services. We focus on cloud storage providers,
which represent stored data as files. An important requirement is
for the system to be easily applicable across different cloud storage
providers with minimal configuration. At the same time, it should
be able to adapt to the API of specific cloud storage services. For
example, CLOUDFILTER should be able to enforce data propaga-
tion policies that prevent users from uploading files to particular
folders; such information exists in the HTTP methods invoked.

The need to support existing cloud storage providers imposes a
set of requirements on how labels propagate with the data. First,
the labels should remain associated with files while stored by the
cloud storage provider. Many cloud services allow remote file op-
erations such as copy, move and access to previous versions. Such
operations should preserve the labels associated with the files inde-
pendently of how the operations are implemented. This favours a
design, in which labels are embedded inside files. Second, labels
should remain associated with files if a file is downloaded at an em-
ployee’s machine. Labels stored locally capture how the file was
handled by CLOUDFILTER in the past and such information can be
used to reduce the need for user input if the file is uploaded again.
In order to maximise the potential for adoption, the mechanism of
storing labels should be platform-agnostic. This precludes the use
of features specific to file systems (e.g. Extended File Attributes
in Linux or Alternate Data Streams in NTFS) that would require
translating labels between different representations and may not be
supported by cloud storage services. We describe an approach to
embed labels in files in §3.2.

CLOUDFILTER consists of the following components (Figure 1):
Client and Service Proxy. Two CLOUDFILTER proxies, the client

and the service, intercept HTTP traffic between the enterprise
and the cloud provider. Each proxy inspects the data being
transferred on behalf of the domain that it is part of. In ad-
dition, the service proxy may enforce policy specified by the
provider’s clients. Proxies are responsible for labelling data.

Policy store. Each proxy maintains a policy store. The policy store
accumulates a set of Event-Condition-Action (ECA) rules.

ECA rules specify data propagation policy when a file trans-
fer occurs and therefore control the actions of the proxies.
The ECA format is easy to understand and facilitates en-
forcement when proxies communicate (c.f. §3.1.3).

Browser extension. A browser extension collects information used
to label uploaded files. It communicates with the client proxy
and may explicitly prompt the user for confirmation when the
proxy detects a file upload.

Figure 1 illustrates how a file upload occurs between an enter-
prise and a cloud provider. In step 1, the user submits the file via
a web form. The browser plugin attaches to the outgoing HTTP
request a set of identification information for the current user along
with meta-data about the file, such as the location where the file is
stored locally. In step 2, the client proxy intercepts the request, in-
spects its content and retrieves the user-identifying information. It
then matches the request against the ECA rules in its policy store.

When an ECA rule matches a request, the proxy executes an ac-
tion. In step 3, the action queries the user about the confidentiality
of the file being uploaded. The user’s reply results in a label that is
attached to the file. After the request is logged for future audit, it is
forwarded to the cloud service.

In step 4, the service proxy inspects the request along with its
labels. The local policy store maintains policy expressed as ECA
rules that the cloud provider enforces on client data. For example, a
cloud provider may deny hosting sensitive files originating from a
particular enterprise to avoid future legal disputes. If the file upload
is accepted, the request is forwarded to the storage service.

In step S, a subsequent HTTP request retrieves the file uploaded
in steps 1-4. The service proxy intercepts the response of the stor-
age service and uses the label attached to the data to decide how
it should respond to the request. The service proxy may also con-
tact the client proxy to obtain a policy to enforce on its behalf, e.g.
to avoid releasing the data to a user who is not located inside the
enterprise network.

3.1 Specifying data propagation policy

CLOUDFILTER controls data propagation using labels and Event-
Condition-Action (ECA) rules. ECA rules encode different policies
and the labels attached to files specify which particular policy to
enforce when a proxy intercepts a file in transit.

3.1.1 Labels

CLOUDFILTER attaches labels to the files being transferred be-
tween domains. Because labels stay associated with files as these
propagate between organisations, labels act as a reliable binding of
files with the policies that govern their propagation. Labels also
store additional meta-data relevant to the enforcement of a particu-
lar policy. Since labels encapsulate all the meta-data necessary for
policy enforcement, CLOUDFILTER proxies may enforce their des-
ignated policies only by inspecting labels, enabling a simple state-
less proxy design.

Each label consists of three parts: (1) an identifier, (2) a set of
named parameters and (3) the address of the authoritative CLOUD-
FILTER proxy for that label. The identifier is a textual, human-
friendly name of a particular data propagation policy. For example,
the identifier user-private may be used by an organisation to refer to
a policy that restricts the sharing of files in a cloud storage service.
The named parameters in a label permit the customisation of the
data propagation policy with arbitrary meta-data. For example, the
parameter user=[ip108, prp] for the user-private policy further spec-
ifies that a file may only be shared between a particular list of users.
As will be explained in §3.1.3, an authoritative proxy address en-
sures the unique binding of the label with a data propagation policy.

Method | Description

issue Issues an HTTP request to its intended destina-
tion. Returns the response of the remote service.
return Returns an HTTP response to the client the is-

sued the corresponding request.

log Logs an HTTP request/response.

getLabels | Returns the labels of a file stored in an HTTP
request, response or HTTP request parameter.
attLabel Attaches a label to a file stored in an HTTP re-
quest, response or HTTP request parameter.
detLabel Detaches a label (similar to attLabel).
getContent | Returns the content of an HTTP message (e.g.
method, status code, headers and body).
setContent | Sets the content of an HTTP message (e.g.

method, status code, headers and body).

ask Contacts the issuer of an HTTP request to sug-
gest a label for the data it contains (§3.2).

Table 1: API available to action scripts

3.1.2 ECA rules

Each ECA rule is triggered when an event occurs. If the condi-
tion associated with the event is satisfied, the action is executed.

Events.

Since CLOUDFILTER specifically targets cloud storage services
where HTTP is the dominant transport protocol, the event that trig-
gers the activation of an ECA rule is the invocation of an HTTP
method. A rule may be triggered for incoming HTTP requests that
originate from outside a domain or for outgoing HTTP requests in-
voked from within the domain. An administrator can specify events
to be triggered on specific HTTP method invocations or for requests
towards particular URIs.

As an example, consider the event:

€uploads: {out} {put post} { (.x\.)xdropbox.com(/.x)* }
This event matches all outgoing PUT and POST requests towards
the servers of Dropbox. It uses a regular expression to match the
HTTP request URI. An enterprise may use such a rule to prevent
all file uploads to Dropbox.

Conditions.

CLOUDFILTER uses labels as necessary preconditions to trigger
actions. Each condition is satisfied by the existence of a labelled
file in an HTTP request or response.

Conditions can be service-agnostic or service-specific. For ser-
vice-agnostic conditions, the HTTP API of the service is ignored.
Such conditions are satisfied by the existence of any labelled file in
an HTTP request or response. Instead, service-specific conditions
require the existence of a label in a particular parameter or part of
a request/response. Since HTTP requests and responses may store
different files in different parameters and each file may be labelled
with a different label, a service-specific condition specifies a set of
HTTP parameters and the labels that must be attached to the value
of each parameter.

As an example, consider the service-specific condition:

Coank: file = {secret} {cf\.bank\.com }.
This condition matches all HTTP requests that contain a parameter
called file with a value labelled secret as defined by the CLOUD-
FILTER proxy at cf.bank.com (again a regular expression). This
condition may be used by a service proxy to prevent file uploads
that contain secret data.

Actions.

An action specifies the data propagation policy of an organisation
or cloud service with regard to the class of data that activates the
particular rule. Actions are scripts that use the particular CLOUD-
FILTER API shown in Table 1 and are executed by a proxy.

The three basic operations available to action scripts are issue,
return and log. These are used to create, reply to, and store
HTTP requests for future audit, respectively. An action script can
use these methods to achieve the traditional allow/deny seman-
tics of network-level firewalls. The next three methods, get Labels
attLabel and detLabel manipulate the labels of the files in tran-
sit. Labels are the sole mechanism available to action scripts for
storing data across different HTTP requests—scripts themselves
are stateless. The decision to attach a label to a file may depend on
the actual data being transferred, which are accessed via getCon-—
tent, or on user input using the ask method (c.f. §3.2).

3.1.3 Distributed data propagation policy

A proxy may obtain and enforce ECA rules on behalf of another
proxy. This situation occurs when an enterprise is willing to store
data in the cloud, yet it imposes restrictions on how the data may
be accessed there. In such scenarios, the client proxy must trust
the service proxy and provide it with ECA rules while the service
proxy must trust the client proxy as a source of ECA rules.

ECA rule propagation between proxies occurs when a proxy in-
tercepts an HTTP request. Two preconditions must be satisfied:
(1) the HTTP request should contain a label that has an authori-
tative address different from the address of the current proxy and
(2) the proxy has no ECA rules with conditions that reference this
label. The proxy then directly contacts the authoritative proxy to
receive the set of ECA rules that it must enforce. Such external
ECA rules can only reference in their conditions labels that have
the same authoritative address as their origin. This ensures that
external ECA rules cannot interfere with the enforcement of other
data propagation policies in the same proxy.

In addition, external ECA rules specify a domain parameter that
restricts the remote proxies eligible to receive them and a t imeout
parameter to ensure freshness. These rules are not used locally—
instead they are disclosed to remote proxies upon request. Since
ECA rule propagation occurs lazily after an actual file transfer is
detected, new policies do not need to be deployed explicitly.

3.2 Enforcing data propagation policy

For CLOUDFILTER to be practical, we must minimise the need
for user input when attaching labels to files and we should allow for
labels to propagate effectively across domains. We have developed
an early system prototype, in which the proxy is implemented in
Python and the browser extension is a JavaScript add-on for Fire-
fox. We discuss these issues in the context of our prototype.

3.2.1 Label Instantiation

Action scripts attach labels to files when a file transfer activates
an ECA rule. Four different methods may be used to infer the cor-
rect label for the file in transit. First, action scripts can access the
file itself. This enables labelling based on the use of specific con-
tent in the file to mark security classification, e.g. the use of the
word “classified” in documents.

Second, the browser extension attaches contextual information
from the user’s machine to HTTP requests. Currently this includes
the user login, the file location in the file system and its attributes.
An action script may use this information, for example, to infer
confidentiality for files stored in a particular network location.

Third, files downloaded from a cloud storage service may al-

<rdf:Description rdf:about=""
xmlns:cf0="http://cloudfilter.doc.ic.ac.uk/0">
<cf0:domain>cf.doc.ic.ac.uk</cf0:domain>
<cf0:id>user-private</cf0:id>
<cf0:parameters>
<rdf:Seqg>
<rdf:li>user</rdf:1li>
</rdf:Seg>
</cf0:parameters>
<cf0:user>ipl08, prp</cfl:user>
</rdf:Description>

Figure 2: An CLOUDFILTER label encoded using XMP

ready contain labels from previous interactions with CLOUDFIL-
TER. Such labels are useful if a file is then re-uploaded: they can
be used to avoid querying the user. To ensure that no decision is
taken based upon labels that are no longer valid, we can store file
hashes inside labels and detect file modifications.

Finally, the client proxy can ask the user for input during upload
(i.e. using the ask method in Table 1). The browser extension re-
ceives an HTML form generated dynamically by the action script,
displays it in an overlay to the user and sends the response back to
the proxy. The form content depends on the policy being enforced.

3.2.2 Label Propagation

In order to embed CLOUDFILTER labels in files, we can leverage
the concept of meta-data that many file formats support. In our pro-
totype, we use Adobe’s Extensible Meta-data Platform (XMP) [1].
XMP is a specification for representing arbitrary meta-data in RD-
F/XML and storing it inside various file formats. There exists an
SDK for programmatically embedding XMP meta-data in multiple
popular file formats (e.g. PDF, EPS and JPEG). Figure 2 shows how
the label user-private from §3.1.1 can be represented in XMP.

We also use XMP to store labels inside Microsoft Office docu-
ments. Office file formats after version 2007 conform to the Open
Packaging Conventions [7]. Each package (e.g. a Word document
file) is an Zip archive of both text (e.g. XML) and binary (e.g. im-
ages) files that are known as parts. Application-specific properties,
such the total character count in a Word document or XMP-encoded
CLOUDFILTER labels, can be stored in additional parts inside the
package. Since Office applications ignore parts of unknown docu-
ment types, XMP labels do not incur compatibility issues.

4. APPLICATION USE CASES

For CLOUDFILTER to be an effective mechanism for controlling
data propagation, it must be applicable to representative cloud stor-
age service and be capable of enforcing useful data propagation
policies. This section presents representative policies for two such
systems, Dropbox and GSS, and we discuss their limitations.

4.1 Dropbox

Dropbox [4] is a cloud storage service that has popularised the
concept of online storage. Typically, it uses a native client to achieve
transparent synchronisation. The service supports an HTTP API
and exposes a web interface with most of the native client’s func-
tionality. Since the native Dropbox client does not rely on the
HTTP API [15], the use of Dropbox is supported by CLOUDFIL-
TER only via the web interface.

The simplest policy that can be enforced by CLOUDFILTER is:

Policy 1: Prevent the upload of any enterprise files to Dropbox. |

This policy, albeit restrictive, is nevertheless an improvement over
a network-level blocking of Dropbox. Employees maintain access

to personal files, which may be useful while at work, and they are
able to receive files from external collaborators. The ECA rule to
capture this policy is:

Action
return ("403")

Event Condition
euploads (§312) -

A second, more permissive policy is:

Policy 2: Only allow uploading public documents to Dropbox.

To enforce this policy, a more elaborate action script is required to
infer when a document is considered public. A simple example that
repeatedly queries the user is:

Event | Condition Action

form=createHTMLForm ()
resp=ask (form)
if resp=="public":
- log()

return (issue())
else:

return ("403")

Cuploads

Policies 1 and 2 can be expressed as ECA rules without consid-
ering the Dropbox HTTP API. Their enforcement depends on the
proxy’s ability to detect all file transfers over HTTP. Using HTTP
files may be transferred (1) in the body of an PUT request, (2) in
the body of a response to a GET request or (3) via POST as a result
to an HTML form submission. Since binary file upload via POST
is standardised [10], the proxy can reliably intercept files in transit.
Therefore the same ECA rules that implement Policy 1 and 2 can
be used for a different provider without modifications.

42 GSS

GSS [6] is an open-source cloud file storage system used in
Greece to offer public university staff and students 50 GiB of free
online storage space. The system supports many advanced features,
such as versioning, file sharing and full-text search. It can be ac-
cessed via a web client over HTTP and using WebDAV, i.e. an ex-
tension to HTTP for file storage in the web [5].

A policy that a participating university U may declare is:

Policy 3: Ensure that all documents uploaded from university
staff are only shared between staff of the same university.

This policy can reduce the scope for disclosing sensitive informa-
tion to student users of the service. To enforce it, a proxy in U
attaches to files uploaded by members of staff a label with the iden-
tifier U-confidential. It also stores an external ECA rule. Assume
that such a file is shared with a student user of GSS. If the student
user tries to download the file, a CLOUDFILTER proxy deployed in
the network where GSS is installed observes the label and fetches
the external ECA rule from U’s proxy. The action script identifies
that the request came from a student user and aborts it.

Key to enforcing Policy 3 is collecting contextual information
about the documents being uploaded. CLOUDFILTER’s ability to
adapt to the API of a particular service is beneficial because the
GSS API uses usernames and university domains as part of file
URIs. ECA rules can thus reliably obtain the required information
by accessing the HTTP requests directly without input from the
browser plugin. For GSS, this means that Policy 3 can be enforced
even for non-browser, WebDAV-based access.

4.3 Limitations

A limitation when enforcing Policy 2 is the need for user input
when deciding on labels. A strict policy that repeatedly prompts the
user before every file upload will gradually become less effective
because users will ignore the prompts. If a provider does not have a

CLOUDFILTER proxy installed, policies that restrict downloading
(e.g. Policy 3) cannot be enforced.

All the above policies can only be enforced for a fixed set of
file formats. For CLOUDFILTER to be effective, it must be able
to embed labels for all file types used in a particular environment.
Ideally, this can be achieved by using native meta-data support of
many file formats or, in the worst case, by encoding labels as data.

CLOUDFILTER should also be able to intercept and decrypt net-
work traffic. To achieve this, all HTTP traffic between enterprise
clients and cloud storage services should be routed via the CLOUD-
FILTER proxies. Proxies can handle HTTPS traffic by acting as a
man-in-the-middle using—in the client case—certificates added to
the browser’s trust set. The company firewall should deny direct
client communication with the cloud storage services to prevent
unmonitored file transfers via unsupported application protocols.

In practice, users may connect directly to the service provider
bypassing the CLOUDFILTER client proxy if they are able to con-
nect to arbitrary networks or administer their own machines. Ma-
licious users and providers may also circumvent proxies: they can
thus abuse HTTP for file transfers. However, we believe that (1) it
is realistic to assume control of client equipment in scenarios when
data propagation is important and (2) cloud storage providers have
an incentive to support the operation of CLOUDFILTER.

Overall CLOUDFILTER is a mechanism to control data propaga-
tion to the cloud but does not make cloud storage services more
secure. An attacker who compromises a cloud service may still
transfer arbitrary data, for example, by removing labels from files.

S. CONCLUSIONS

In this paper, we proposed a practical method to control the prop-
agation of data between enterprises and cloud storage services. We
showed that the use of HTTP exposes an interception point at which
traffic can be inspected reliably. We also suggested a method to
specify data propagation policy and shown that it can capture rel-
evant policies for enterprises that consider migrating to the cloud.
We believe that our approach can promote the use of cloud storage
in enterprise environments.

We plan to build upon this research and explore different types of
cloud services apart from storage. Open challenges include how to
correctly propagate labels from input to output if a service does not
use a file abstraction. We want to explore whether service providers
themselves can provide us with such information.

Regarding our prototype implementation, we plan to explore dif-
ferent isolation strategies (e.g. PyPy’s sand-box [20]) to ensure that
external action scripts do not interfere with the correct operation of
proxies. We will also investigate embedding XMP labels to more
popular document formats. Another worthwhile direction is to in-
tegrate our work with provenance-aware file systems [16] in order
to improve CLOUDFILTER’s ability to infer labels.

Finally, we want to explore the performance impact of our sys-
tem. To improve performance, we plan to integrate a CLOUDFIL-
TER proxy with an open-source storage system such as GSS. With
access to the storage service we can identify any labels embedded
in each file once and then supply these labels to the proxy during
download. The proxy can then use such pre-identified labels to
avoid the cost of checking every file in transit for labels.

Acknowledgements. This work was supported by grant EP/J020370
(“CloudFilter: Practical Confinement of Sensitive Data Across Cl-
ouds”) from the UK Engineering and Physical Sciences Research
Council (EPSRC).

(1]
(2]

(3]

(4]

(3]

(6]
(71

(8]

(9]

(10]

(1]
[12]

[13]

(14]

[15]

[16]
(17]
(18]
[19]
[20]

[21]

[22]

[23]
[24]

[25]
[26]

[27]

REFERENCES

Adobe. XMP Specification Parts 1-3, 2012.

S. Akhshabi and C. Dovrolis. The evolution of layered
protocol stacks leads to an hourglass-shaped architecture. In
SIGCOMM, Toronto, Canada, 2011. ACM.

J. Dongseok, R. Jhala, et al. An empirical study of
privacy-violating information flows in JavaScript web
applications. In CCS, Chicago, IL, 2010. ACM.

Dropbox Website. http://www.dropbox.com.

E. Dusseault. HTTP Extensions for Web Distributed
Authoring and Versioning (RFC 4918). IETF, 2007.

GSS Project. http://code.google.com/p/gss/.
ISO/IEC 29500-2:2011. Office Open XML File Formats Part
2: Open Packaging Conventions, 2011.

V. Kemerlis et al. libdft: Practical dynamic data flow tracking
for commodity systems. In VEE, London, UK, 2012. ACM.
P. Loscocco and S. Smalley. Integrating flexible support for
security policies into the Linux operating system. In ATC,
Boston, MA, 2001. USENIX.

L. Masinter. Returning Values from Forms:
multipart/form-data (RFC 2388). IETF, 1998.

McAfee. Demystifying Data Loss Prevention, 2010.
Microsoft. Information Rights Management in SharePoint
Foundation, 2010.

M. Migliavacca, 1. Papagiannis, D. Eyers, B. Shand,

J. Bacon, and P. Pietzuch. DEFCon: High-performance event
processing with information security. In ATC, Boston, MA,
2010. USENIX.

M. Migliavacca, 1. Papagiannis, D. M. Eyers, B. Shand,

J. Bacon, and P. Pietzuch. Distributed middleware
enforcement of event flow security policy. In Middleware,
Bangalore, India, 2010. ACM/IFIP/USENIX.

M. Mulazzani et al. Dark clouds on the horizon: using cloud
storage as attack vector and online slack space. In Security
Symposium, San Francisco, CA, 2011. USENIX.

K. Muniswamy, D. Holland, et al. Provenance-Aware
Storage Systems. In ATC, Boston, MA, 2006. USENIX.
MyDLP. http://www.mydlp.com/.

Oracle. Information Rights Management Data Sheet, 2010.
I. Papagiannis, M. Migliavacca, and P. Pietzuch. PHP Aspis:
using partial taint tracking to protect against injection
attacks. In WebApps, Portland, OR, 2011. USENIX.

PyPy’s sandboxing features. http:
//doc.pypy.org/en/latest/sandbox.html.

E. Schwartz, T. Avgerinos, and D. Brumley. All you ever
wanted to know about dynamic taint analysis and forward
symbolic execution (but might have been afraid to ask). In
Security & Privacy, Berkeley, CA, 2010. IEEE.

Symantec Data Loss Prevention. http:
//www.symantec.com/data-loss-prevention/.
Symantec. State of cloud survey: Global findings, 2011.

US Department of Defense. Trusted Computer System
Evaluation Criteria (Orange Book), 1983.

A. Yip, X. Wang, et al. Improving application security with
data flow assertions. In SOSP, Big Sky, MT, 2009. ACM.

N. Zeldovich, S. Boyd, et al. Making information flow
explicit in HiStar. In OSDI, Seattle, WA, 2006. USENIX.
N. Zeldovich, S. Boyd, and D. Maziéres. Securing
distributed systems with information flow control. In NSDI,
San Francisco, CA, 2008. USENIX.

