
CONCURRENCYANDCOMPUTATION: PRACTICE AND EXPERIENCE
Concurrency Computat.: Pract. Exper. (2011)
Published online in Wiley Online Library (wileyonlinelibrary.com). DOI: 10.1002/cpe.1716

Configuring large-scale storage using a middleware
with machine learning

David M. Eyers1,∗,†, Ramani Routray2, Rui Zhang2,
Douglas Willcocks3 and Peter Pietzuch3

1Computer Laboratory, University of Cambridge, Cambridge, U.K.
2IBM Research—Almaden, 650 Harry Road, San Jose, CA, U.S.A.
3Department of Computing, Imperial College London, London, U.K.

SUMMARY

The proliferation of cloud services and other forms of service-oriented computing continues to accelerate.
Alongside this development is an ever-increasing need for storage within the data centres that host these
services. Management applications used by cloud providers to configure their infrastructure should ideally
operate in terms of high-level policy goals, and not burden administrators with the details presented by
particular instances of storage systems. One common technology used by cloud providers is the Storage
Area Network (SAN). Support for seamless scalability is engineered into SAN devices. However, SAN
infrastructure has a very large parameter space: their optimal deployment is a difficult challenge, and
subsequent management in cloud storage continues to be difficult.

In this article, we discuss our work in SAN configuration middleware, which aims to provide users of
large-scale storage infrastructure such as cloud providers with tools to assist them in their management
and evolution of heterogeneous SAN environments. We propose a middleware rather than a stand-alone
tool so that the middleware can be a proxy for interacting with, and informing, a central repository of SAN
configurations. Storage system users can have their SAN configurations validated against a knowledge
base of best practices that are contained within the central repository. Desensitized information is exported
from local management applications to the repository, and the local middleware can subscribe to updates
that proactively notify storage users should particular configurations be updated to be considered as
sub-optimal, or unsafe. Copyright � 2011 John Wiley & Sons, Ltd.

Received 31 May 2010; Revised 16 November 2010; Accepted 23 December 2010

KEY WORDS: SAN; configuration policy; middleware; best practices; machine learning

INTRODUCTION

The sophistication and deployment of cloud computing has significantly gathered pace in the recent
years [1]. In most cases, instances of cloud services require persistent data in the cloud, and thus
there has been a coupled demand for scalable, manageable and reliable storage systems. Even
outside the cloud (or in so-called ‘private clouds,’ that operate within one organization), there is
an increasing demand for scalable storage systems, just to meet the needs of storing ever-larger
data sets for analysis and data mining. Much of the growth of cloud computing has been on
the basis of cloud providers being able to lower the Total Cost of Ownership (TCO) for their

∗Correspondence to: David M. Eyers, Department of Computer Science, University of Otago, PO Box 56, Dunedin
9054, New Zealand.

†E-mail: dme@cs.otago.ac.nz

Copyright � 2011 John Wiley & Sons, Ltd.

D. M. EYERS ET AL.

cloud clients, as well as the elasticity provided by cloud infrastructure: economies of scale mean
that the cloud providers can cope with their clients’ dynamic requirements. The emergence and
significant expansion of cloud service providers such as Amazon S3 [2] and EC2 [3] have been the
result.

Within any data centre, it is usual that a highly heterogeneous collection of devices from different
vendors forms over time. This is often the result of rolling upgrades, and allows the equipment
to be used to provide a number of different graduations of service. However, this heterogeneity
makes the overall life cycle from data placement to retirement of workload a highly onerous task.
There will be requirements to plan, configure and to perform the migration of data on demand
[4, 5]. Owing to the complexity of the interrelated physical and logical systems, these provisioning
tasks are often error-prone.

This article focuses on assisting those organizations that employ Storage Area Network (SAN)
technologies: the authors have field expertize and experience regarding SAN deployment and
reconfiguration. Although in common use, SANs are not the only means of achieving reconfig-
urable, large-scale storage systems. Although cloud providers and other organizations that use data
centres, are generally highly secretive about the configuration of their infrastructure, the authors
have interacted with a number of these organizations in a business capacity.

There has been a proliferation of SAN devices, and indeed vendors, based on the growing demand
for them. One of the greatest challenges in terms of configuration of large-scale storage will often
be dealing with the extraordinary degree of heterogeneity and the consequent complexity involved
in SAN configuration. Teams of experts will often be employed to perform the initial deployment of
SANinfrastructure forcustomers.From that point onwards,management applicationswill be installed
that provide for the monitoring of the SAN, and troubleshooting faults in the system. In addition,
the software will facilitate the reconfiguration of the SAN system, and its performance tuning [6].

It is highly unusual for the configuration that is deployed initially to remain satisfactory for very
long into a SAN’s life cycle. Evolution will frequently be required due to capacity or bandwidth
issues, driven by client demand. The key step in the evolution workflow is to determine an
appropriate plan for converting a client’s application workload requirements into parameters that are
expressed in terms of the underlying infrastructure (for example, CPU, network throughput, memory
allocations, storage capacity and I/O). This configuration of parameters in a cloud provider’s case
needs to include both the initial resource allocation, and the considerations for elasticity in that
cloud client’s demand. Owing to the expense of consultant engineers from SAN manufacturers,
most large-scale storage users will choose to use their own staff to make changes to their SAN
configurations. However, this can lead to inefficiency of SAN performance, and at worst, possible
instabilities in the configuration. It has been shown that tracking down these types of configuration
issues using external consultants can be extremely expensive [7].

Any modified configuration should be tested to ensure that it meets the basic requirements
for performance and security as needed by the clients of the storage system. For example, cloud
providers must be able to establish, for each configuration, the estimated resource usage, avail-
ability and performance metrics based on the management tools and capabilities that are available.
Unfortunately, the presumption is usually that if these metrics are all met, the configuration is
performing as you designed it to, and thus the application user objectives are being met. However,
this is not always the case due to subtle interactions between subsystems that may not be clearly
visible. Furthermore, the cost to organizations of down-time is very high—consumers of online
services are highly agile and can often move their business to competitors’ services easily.

When addressing SAN configuration challenges, it has been shown that accurate and up-to-date
configuration best practice descriptions are a highly valuable tool [8]. The best practice rules
provide a reference point against which to perform ‘what-if’ analyses before the new configuration
is actually deployed, in an effort to discover any potentially problematic parameters. In addition,
when problems occur in the field, the best practice rules can help administrators to more quickly
complete root cause analysis. The SAN Central team at IBM has the job of examining all known
SAN configuration issues so that they can develop and document best practices. From experiences
in the field, about 80% of the configuration problems that the SAN Central team have encountered
also violate one of the best practices contained within the IBM repository. Use of the best practices

Copyright � 2011 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2011)
DOI: 10.1002/cpe

SAN CONFIGURATION MIDDLEWARE THAT UTILIZES MACHINE LEARNING

has led to a drastic reduction in the amount of time required to resolve configuration errors, from
the order of weeks to the order of days.

Experts in SAN configuration usually have a significant amount of real-world experience, and are
able to apply intuition to situations above and beyond what the specified configuration guidelines
provide to them. Unfortunately, it is extremely costly—in the order of man-years of data collection
and analysis—to generate best practices using manually driven methods. Rather than having to
rely on expensive, potentially error-prone, and time-consuming analyses performed by expert
technicians, a better situation would be for machine learning (ML) techniques to be able derive
best practices, or at least to focus the efforts of the previously manual efforts. One problem with
the use of ML is that training can only be done effectively—for the derivation of salient rules—if
a large number of problematic configurations can be collected. In our past work on SPIKE [7],
synthetically data were generated so as to match the distribution of observed field data, and to
create problem reports that contain both the problematic entities and a complete description of the
rest of the SAN configuration, which may not have anything wrong with it. In order to generate
four best practices from that set, the SPIKE system requires 500 problem reports. Further, SPIKE
was unable to produce any best practice rules before it had digested 150 problem reports.

Given this significant need for training data, combined with the huge variety of different SAN
devices on offer, and the vast parameter spaces of configurations, it is not going to be practical
to expect state-of-the-art manual reporting methods of reporting problem cases to provide a suffi-
cient number of samples to generate good best practices. Further, the attention of manual methods
necessarily focuses on a few SAN deployments at a time, and often those SANs will have been
deployed for one large-scale storage customer. Instead, it would be better if storage providers
were able to contribute information about their bad configurations effortlessly, for the sake of
the overall greater good. The expansion of a comprehensive best practice knowledge base would
benefit all of the storage providers who cooperate: they can test their current and future SAN
configurations comprehensively. This article explores our proposal for filling the gap in the infras-
tructure that currently prevents storage experts from reaching the vision of automated best practice
generation.

This article’s main focus is the introduction of a SAN configuration middleware for validating
SAN configurations. The middleware facilitates checking whether proposed changes to a config-
uration violate best practice rules—regardless of whether the rules have been generated from
the work of human domain experts or from the application of ML techniques. The middleware
exposes its results to the set of management applications that are used for planning and problem
diagnosis within the SAN infrastructure. By adding another layer of abstraction, we present these
management applications with a view that avoids the need to manage the heterogeneity of the
SAN infrastructure itself, and thus can reduce the apparent complexity of configuration changes.

Figure 1 provides a high-level overview of the infrastructure that we propose for the case of
cloud storage providers. These providers are shown at the centre of the figure; their customers are
displayed on the right of the figure. All the SAN systems of the cloud providers connect with the
repository of best practices shown on the left of the figure. The repository of best practices stores
configuration snapshots derived from the data of each cloud provider, it uses ML algorithms to
update the best practices collection, removes old best practices from the knowledge base when they
are no longer useful, and provides indices over the configuration data to allow for fast searches
to be performed. Newly acquired knowledge about both good and bad SAN configurations is
sent to the central knowledge base by the middleware, after the anonymizing of any information
within the SAN configuration report that might be sensitive to the companies that are participating
in this system. At each site, the middleware can subscribe to salient updates from the central
knowledge base. This might mean that a local configuration that was considered to be safe, is
subsequently determined to actually be risky. Thus, external experience can be brought to bear on
the management applications, allowing them to react near real-time to problems and insights (or
reflect them to their operators) that are determined from throughout the global cloud connected to
the shared repository.

This article is organized as follows. In the following section, we provide a brief overview
of SANs, and the subsystems that they include. We also introduce the ML techniques that we

Copyright � 2011 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2011)
DOI: 10.1002/cpe

D. M. EYERS ET AL.

Azaleos

Nirvanix

Force.com

Amazon S3

Amazon EC2

Best Practice
Repository

Cloud
Consumers

Cloud Providers
(Compute, Storage, Application, Service)

Consumers’ requests
trigger the reconfiguration

actions for the cloud provider
(e.g. provisioning, migration, ...)

Periodically upload configuration/stats OR
Upload best practice violations with snapshots OR

Upload problem tickets with snapshots

Customers download best practices OR
Customers validate configurations online

Internal
Management
Application

Figure 1. Customers taking advantage of cloud storage infrastructure trigger storage reconfiguration.

apply in our work. We follow this with the presentation of a case study that motivates the need
for a SAN configuration middleware. Our particular middleware system is then presented in the
following section: we discuss its operation, the abstraction of SAN configuration parameters, key
types of best practice rules, and some techniques for optimizing searches being performed over
the repository. The end of the article includes coverage of related research work, before providing
some concluding remarks.

BACKGROUND

In this section, we provide a quick introduction to the SAN technology, and the ML approaches
that we apply in our work.

Storage area networks

SANs operate at the block level as opposed to the file system level (NAS does the latter). SANs
provide this block-level service over a dedicated network to attached hosts. The key point is that
the SAN devices provide for a more manageable interface to the underlying storage devices (e.g.
hard disks) than would be possible were the storage to be directly connected to the host servers
that utilize it. Figure 2 shows the components within a typical SAN deployment.

Hosts that use SAN storage connect to storage network switches using one or more host bus
adapters (HBA). Often these switches, and the HBAs, will use Fibre Channel cables. The network
formed by the interconnected Fibre Channel switches is referred to as the Fibre Channel fabric.
These storage networks are likely to incorporate properties such as redundant network paths
between storage subsystems and the hosts. Also, security is integrated, usually with the concept
of ‘zoning’.

The storage subsystems, tape libraries and other storage network devices are connected to switch
ports so that they can provide block storage access to the hosts. The storage is encapsulated in
the notion of a ‘volume’. Admission control is applied to data paths through the storage network
fabric: masking and mapping are two common access control functions that are provided by the
storage controller.

In contrast to the SAN approach, Network Attached Storage (NAS) provides a file-based interface
to a storage service, as opposed to a block-based interface. It is expected that the boundaries
between NAS and SAN systems will blur in the future. This is due to NAS heads increasingly
exposing data paths to their back-end storage. The interlinks between storage components are being
further opened up by technologies such as iSCSI, that facilitate reuse of existing IP technology
within large-scale storage systems.

Copyright � 2011 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2011)
DOI: 10.1002/cpe

SAN CONFIGURATION MIDDLEWARE THAT UTILIZES MACHINE LEARNING

Storage Virtualization Appliance

Server

Virtual
Machine

Virtual
Machine

Virtual
Machine

Server

Virtual
Machine

Virtual
Machine

Virtual
Machine

Configuration Connectivity Performance Events Analytics
Systems Management Suite

Disk Disk Disk Disk Disk

Storage Controller

Disk Disk Disk Disk Disk

Storage Controller

Application Application Application

Virtualized
IP Network

Virtualized
FC Network

Figure 2. An overview of a typical Storage Area Network (SAN) deployment.

Another approach is Direct-Attached Storage (DAS). In this case, the disks are contained within
dedicated infrastructure that is separate from the hosts that utilize the storage. At the high-end,
DAS devices strongly resemble SAN devices, but for using a single point-to-point link instead of
a network topology.

Finally, it may be that software in the application layer is in the best position to manage an
extensible storage system. Such systems often use local disks. It is likely that the application-level
storage abstraction will be applied throughout clusters of computers: this sort of storage system
is appropriate for service providers that run highly customized operating systems (e.g. Google),
or have homogeneous application loads that can be partitioned effectively (e.g. e-mail storage, or
certain types of database systems).

Recent technological introductions, such as virtualization and new types of devices and inter-
connects, have caused the storage infrastructure in data centres to become more and more heteroge-
neous. In the face of this, uniform end-to-end management is key to the provision of mission-critical
analytics. These analytics include storage provisioning, performance tuning, migration of volumes
and applications, configuration analysis and fault determination. Many storage and system manage-
ment software products are on the market that aim to assist with the aforementioned management
tasks. These include IBM TotalStorage Productivity Center (TPC) [9], IBMDirector [10], Microsoft
System Center [11], HP System Insight Manager [12] and EMC Control Center [13]. Nonetheless,
the currently available products for unified management are generally special-purpose solutions:
they will facilitate administrators performing particular tasks such as the creation of storage volumes
on a variety of devices produced by different manufacturers. However, they do not aim to share
information across the customer base to advise against potentially problematic configurations, and
to validate the decisions made by local administrators.

Machine learning

ML refers to a collection of widely used techniques that provide computer systems with the ability
to automatically learn to recognize complex patterns. ML techniques utilize some form of provided
domain knowledge and a set of observed examples referred to as training data.

Broadly, learning is classified into two categories: supervised learning and unsupervised
learning. In supervised learning, the possible set of output classifications from the system is
known in advance. Training data input to the system is labeled with the output classification
that is desired from the system for each data. In unsupervised learning, it is desired that the

Copyright � 2011 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2011)
DOI: 10.1002/cpe

D. M. EYERS ET AL.

system produce some sort of classification from input data, but those data are not labeled—often
unsupervised learning systems perform some type of clustering of the input data. There are various
ML techniques applicable to different domains and data types.

The class of system management problems that we have explored present multi-dimensional
interrelationships as input and require deterministic, discrete, interrogable outputs from the ML
system. This type of supervised learning is well suited to ILP (Inductive Logic Programming)
techniques [14]. ILP evaluates positive and negative examples based on background knowledge
to generate hypotheses. Other ML techniques applied, such as decision trees, were discovered to
deal poorly with multi-dimensional data [7], and some impose significant preprocessing costs.

We have evaluated four specific implementations of ILP: Aleph [15], HR [16], Progol [17] and
ProGolem [18]. Both Aleph and Progol are top-down, relational ILP systems based on inverse
entailment. In contrast, HR is a Java-based automated reasoning tool for theorem generation.

Many ILP systems are written to support a fairly specific input domain. For example, we ran into
limitations in the form of a lack of support for arithmetic operations, comparison and cardinality
in Progol. We then discovered that the preprocessing and background knowledge encoding were
going to be too expensive for use within the HR tool (although parts of this system are undergoing
redevelopment at the moment, and should improve the situation).

We found the ProGolem to be useful for our needs: it generates its hypotheses in the form of
first-order logic expressions with quantifiers.

A CASE STUDY OF LARGE-SCALE STORAGE USE

There are numerous success stories emerging of applications being hosted within the cloud [19].
We thus motivate the need for our SAN configuration middleware against the backdrop of a
hypothetical scenario involving a cloud service provider. In this case, the cloud provider aims to
facilitate the running of online retail stores, packaged as a service. This involves both compute
needs (e.g. analytics and search), and storage.

To justify the need for SAN reconfiguration, we assume that a highly successful seasonal sales
drive is run by one of the cloud provider’s clients, and that this causes a 50% increase in the
number of online shoppers that had been previously projected by the cloud provider. The client
of the cloud provider, in this case, is an e-business web site, and makes use of cloud facilities
to host two specific applications. These applications have contrasting requirements in terms of
quality-of-service (QoS), however.

1. The main use is for the web-facing online shopping application itself. This is a typical,
multi-tier web application that is built using application servers, web servers, edge servers
(for caches, etc) and database servers.
Focusing on storage, the database servers use cloud storage to persist the transactions occur-
ring due to the online shopping. These data require both reliability and availability, and thus
are stored on high-end equipment. The changes made to the storage here are replicated onto
another high-end storage controller, as required for the e-business’ disaster recovery process.
For long-term storage onto offline media, a backup to a tape library is performed on a nightly
basis.

2. A less critical use for the cloud infrastructure by the same e-business, is their e-mail system.
Although the data in the e-mail system are important, in terms of a cost to risk balance,
only mid-range storage infrastructure is needed to house it. Again based on cost, the e-mail
application has incremental backups done on a nightly basis, and full backups done weekly.
The target for these backups is onto low-range storage infrastructure.

Any data centre will employ a number of administrators of various types. In this study, we
consider application administrators, network administrators and storage system administrators. The
cloud that hosts the e-business uses some sort of software suite to perform management tasks such
as IBM’s TPC. This sort of product provides salient notifications to the administrators regarding the

Copyright � 2011 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2011)
DOI: 10.1002/cpe

SAN CONFIGURATION MIDDLEWARE THAT UTILIZES MACHINE LEARNING

current operating conditions of the SAN infrastructure. A common alert might be something along
the lines of: ‘notify me when file system capacity utilization reaches 80%’. In SAN monitoring,
alerts might relate to particular volume statistics, or they may relate to the conditions on a particular
network port—causing an alert when utilization of a port’s bandwidth rises over a determined
threshold, for example.

Provisioning of resources in such an environment is only semi-automated. While some resources
can be allocated automatically, others will be the result of resource requests that arrive to the
administrators through request tickets, and are managed through workflows defined by the cloud
provider. This is necessary to record an adequate audit-trail regarding the service level agreements
between the cloud provider and its client. Examples are given below as to the type of resource
requests that might be made in the course of operation of the above applications.

A storage capacity problem: The main application file system raises an alert that the utilization
of storage space has risen above 80%. In this case, more storage is required. Within certain
quanta, this sort of allocation can be automated (and if so is also carefully monitored), but in
other cases it may require approval through a specific workflow that leads to provisioning: for
example in the case that there is an accounting impact of the change.

A security-related request: The tape library that stores backups of the company e-mail system
should not be participating on the storage network except when backups are in progress. This
restriction can be effected using zoning to preclude paths through the Fibre Channel network to
the tape library. However, there may be a need to fine-tune the window of time that is provided
for the tape library to be accessed: for example in the case that the storage used by the e-mail
system grows significantly.

Software updates: Either through security or application feature requests, applications are continu-
ously updated. A request may arrive that involves the application servers having a patch applied
that implements a particular new feature.

New systems: The organization might purchase a new software system that performs a type of
business analytics. This application’s own requirements will need to be met in terms of storage
system configuration, and careful consideration will need to be given to any access that the new
application requires to existing storage subsystems.

Server capacity requests: The seasonal sales drive discussed above, which causes an impact on
the front-end servers, will cause the deployment of replicated servers in the application and
database domains, and will probably also have an associated storage allocation increase.

When issues such as those described above arrive are raised with the administrators, either
manually or through automated workflow systems, the administrators will together determine how
to best incorporate the changes required. It is common for request tickets to have a connection to
service level agreements, and thus to define a particular expected turn around time for the issue
to be resolved. The changes that are required will be done using semi-automated planning, and
may include: the installation of new servers, modification of file systems, reconfiguration of the
patching of servers to the FC fabric of the storage network, creation of security zones, capacity
modifications to databases, modification of the zones that are contained in the active zonesets,
storage volume creation, storage volume assignment and migration of applications and data. All
the changes need to be approved by the administrators through some sort of explicit validation
process before they are deployed.

As a specific example, the second request described in the list above that relates to zone security
will require network connectivity changes, and also potentially changes to the storage subsystem
devices. However, simply shifting the time periods in which the tape library is in a particular zone
may risk violating one of the well established, real-world, best practices, that ‘no zone should
contain both tapes and disks’.

If the cloud provider in this case was using our SAN configuration middleware, we would be
able to validate the proposed changes to the tape-library zone assignment against a comprehensive
library of best practices, both before and after the proposed change. We discuss this process
in the following section. Beyond catching serious potential misconfigurations, by using periodic
validation against this library of best practices, the cloud provider can be more confident that the

Copyright � 2011 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2011)
DOI: 10.1002/cpe

D. M. EYERS ET AL.

health of their data centre is at its best, and that they have avoided potential problems that might
lead to data loss, or more general forms of sub-optimal performance.

A MIDDLEWARE FOR CONFIGURING SANS

We propose that SAN infrastructure is modified to include a middleware component, as shown in
Figure 3. The middleware and other elements introduced into the SAN infrastructure support the
validation of its configuration. As seen on the right-hand side of this figure, each large-scale storage
system ‘client organization’ that manages SANs also runs an instance of a SAN configuration
middleware that is interposed between the existing ‘management applications’, and the ‘SAN’
itself. In addition to the reconfiguration interactions within the client organization, the middleware
performs external interactions with a central service that provides a SAN best practice repository.
This is shown as ‘desensitized reconfiguration request’ message flows from right to left and vice
versa for the relevant responses. The best practices are managed by an organization independent
to the large-scale storage provider. The repository is used as a basis for the validation of SAN
configurations, incorporating the aggregated knowledge of best practices that have been derived
from a large set of all of the different large-scale storage users’ SAN deployments. The repository
is informed by a collection of data in a ‘configuration log’. The aggregated data is developed into
best practice rules by performing periodic data mining of the configuration log using the ‘ML’
component.

We have elided one detail in the above description. From the perspective of the individual users
of the SAN configuration middleware, validation against best practices appears to occur at a central
service. This is intended to be a logical view of the best practice repository rather than a physical
view. On the one hand, having the illusion of a central repository will most easily facilitate the
establishment of trust from the storage system users of the central repository. However, it would

Figure 3. An overview of the SAN configuration middleware.

Copyright � 2011 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2011)
DOI: 10.1002/cpe

SAN CONFIGURATION MIDDLEWARE THAT UTILIZES MACHINE LEARNING

also cause scalability and reliability risks, due to being a single point of failure. We expect that a
highly available, distributed deployment of the repository would be the actual means used to effect
physical deployment. Having said that, if the middleware repository was not available, the SAN
configuration middleware can switch to reactive validation (described below) in order to allow local
operation to continue. Eventually, it may be useful to further partition the best practice repository,
operating as an entirely distributed system. However, it remains an open research question as to
whether the ML that needs to be done over the configuration data can operate in this environment.
On the other hand, it might allow for less desensitizing of the data to need to occur: distributed
participants may be able to assist distributed training without needing to disclose their configuration
data.

How the middleware operates

Figure 3 indicates that the SAN configuration middleware is able to access the current configuration
information from the local configuration database that is included as a subsystem of the SAN
infrastructure. There are two broad modes of operation supported by the middleware in terms of
configuration validation, reactive and proactive. In addition, there are also two types of participation
by the large-scale storage users who run the SAN configuration middleware instances: sharing and
non-sharing.

Reactive validation. In the reactive mode of validation, the middleware collects SAN configuration
data periodically from the local configuration database, and sends these batches of information
to the central repository for validation. The central validator determines whether any of the best
practice rules have been violated. If so, these rules are collected and sent back as an alert to the
management applications operating at that client’s site. These alerts could be used, for example,
to provide extra information to an existing local SAN configuration viewing tool, allowing it to
highlight areas of potential problems in the SAN infrastructure informed from the aggregated
knowledge base, as opposed to only operating on the basis of alerts raised by devices within
the local SAN. The reactive validation approach has the advantage of being non-intrusive to
organizations that utilize it. However, this is also a disadvantage: configurations of the SAN that
are potentially unsafe can be allowed to run for some time before the alerts can be generated by
the central repository.

By default, the aforementioned process documents the non-sharing case. If the client is addition-
ally a sharing participant, then sanitized and anonymized snapshots of that SAN user’s data will
be stored at the central repository for subsequent detailed examination. The snapshots are tagged
with an ID to indicate the organizational provenance of the data, and with timing information
so that subsequent analyses can determine interactions between SAN middleware alerts and the
configuration changes that were made. Participants that share their data assist learning by providing
both good and bad configurations. Note that it is still the case that non-sharing clients can have
their configurations validated. If there is a failure in the validation, then the non-sharing client will
be asked whether they give permission for further specifics of the configuration that is causing the
problem to be uploaded and examined further—potentially just by ML algorithms.

Proactive validation. The proactive validation mode of operation requires that the SAN config-
uration middleware be placed directly between existing SAN management applications and the
actual SAN devices that are being configured—in other words, all requests to make configuration
changes must be able to be intercepted by the middleware. Thus, it is possible for the middleware
to ensure that all changes to the SAN configuration must be successfully validated against the best
practice repository before they will be allowed. This validation would apply equally to the initial
configuration parameters, and any changes that are made in response to some sort of management
event (e.g. responding to resource allocation request tickets, or the reporting of an outage). Note
that the use of proactive validation does not require that clients be sharing participants in the
infrastructure: it is still possible for validation of all actions to occur even if the storage system
user does not give permission for these data to be retained by the central repository.

Copyright � 2011 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2011)
DOI: 10.1002/cpe

D. M. EYERS ET AL.

In Figure 3, the dotted rectangle indicates that the ML component of the infrastructure runs
independently from, and also in parallel to, the proactive and reactive queries from clients. This is
because results fromML analyses may require that further enquiries are made back to sharing clients
for information about their SAN configurations. Also, ML processes may require running for long
periods of time, as a consequence of the very large search spaces of possible configurations. This
will often make the timescales unsuitable for real-time decision making. Indeed, the organization
that runs the central repository may want to perform carefully targeted experiments in their own
labs to validate the new problem reports. If all of these stages progress, then there will be the
explicit declaration of a new best practice rule. This publication will propagate to the relevant
instances of the SAN configuration middleware instances.

We do not explore the ML methodology in detail in this paper—more specific examples are
described in [20].

A declarative policy language [21] is used to encode the best practice rules that are stored in
the central repository. For convenience, these best practice rules are divided into two main classes:
parametric and non-parametric rules. Parametric rules accept particular input parameters that are
used as thresholds in the rules. To help the organizations running SAN configuration middleware
instances manage their analyses, notions of scope and profile are exposed. The scope defines the
extent of the SAN configuration that requires validation. In a particular query, validation might
centre around a single Fibre Channel fabric, it might relate to a set of Fibre Channel zones or it
might involve the entire SAN configuration at the organization’s data centre. A profile in the SAN
configuration space is a collection of sets of best practices to validate for some particular scope
of configuration. Profiles are provided to help simplify management, and potentially to accelerate
the process of validation for large and complex SAN deployments.

When performing reactive verification, a call to an API target validateConfiguration is made,
that takes as arguments Scope and Profile. The result of this call is a returned set of Violation
references, which is empty if the configuration does, in fact, validate successfully. The Violation
references are accompanied with indicators of the potentially responsible (or at least involved)
entities, as well as what has been considered as their parent entities. As a specific example, if
a Fibre Channel Port violates some best practice, the result Violation reference will indicate its
encompassing HBA, the server it is connected to and also the FC switch interconnections that are
involved.

Whenever the central repository performs an update of its model, or salient retraining takes
place, the SAN configuration middleware at each site receives a re-validation alert if: (a) a change
has been made to a best practice rule that was recently used to validate a local configuration or
(b) extra rules have been added that might potentially show the current local configuration to be
invalid.

Abstractions utilized over configuration parameters

Each deployment of the SAN configuration middleware will see a different underlying SAN
infrastructure (i.e. the myriad different data centres of different cloud providers), each with its
own custom set of configuration parameters. Transporting these data to and from the best practice
repository will require the use of an abstract data format for SAN configuration snapshots. We
translate the heterogeneous SAN configuration parameters into a common representation. One
important side effect of the mapping functions defined to do this translation is the removal of
parameter values that might disclose confidential information about the environment of particular
clients.

The best practice repository stores data in an object-oriented, hierarchical format that extends the
CIM/SMI-S profiles. For further details, see the DMTF Common Information Model specification
[22], and the SNIA Storage Management Initiative Specification [23]. These profiles are defined
by standard bodies that include most of the significant industry participants. All snapshots are
tagged with timestamps and collect information about the open or unresolved problem tickets that
have been raised in that particular data centre. The problem tickets also require translation into a
standard format. In this case, particular classifications are required to be applied by the user raising

Copyright � 2011 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2011)
DOI: 10.1002/cpe

SAN CONFIGURATION MIDDLEWARE THAT UTILIZES MACHINE LEARNING

the ticket, for example whether the issue affects performance degradation, loss of data, violation
of security or general problems involving access to data. The user is requested to report on the
entities that they believe are involved with the problem.

Using a high-level configuration description has benefits beyond it meeting the needs of the SAN
configuration middleware. Large-scale storage users can express their management goals using the
same description language. In the typical sense of declarative representations, organizations such
as cloud providers can use the high-level descriptions to indicate their motivation for intending
to perform a particular reconfiguration, rather than having to consider the specific steps that are
required to bring about the desired change. A common requirement is to make storage capacity
increases—this can be expressed as such, without having to tightly couple the changes being made
to the specifics of particular SAN subsystems.

The best practice repository

This section explores the way in which we manage rules within the best practice repository. We
define R to be the set of IDs for all possible best practice rules. Each r ∈ R will be an identifier that
is associated with a rule written in some particular policy language. In principle, policy languages
can be of unbounded complexity, and Turing complete. In practice, however, it is possible to
express useful rules using much simpler policy languages. One such rule representation simply
indicates the set of entities and attributes that should not feature in the same SAN configuration
(mutual exclusion). This can express a real-world rule such as ‘tapes and disks should not share a
zone’, or hypothetical examples ‘Windows and Linux operating systems should not be mixed in a
zone’ or ‘HBA firmware version X should not be used with the Solaris operating system’.

In order to describe aspects of how we manage the best practice repository, we need to fix the
meaning of a number of sets that we use. We describe the sets P , E and A:

Problem types P : We define the set P to include all the general terms collected to describe prob-
lems in SAN systems. Values will include performance degradation, data access problem
and data loss. The set P will include all the terms that users must refer to when lodging
problem tickets, and that are used to classify bad SAN configurations.

Entities E : We define the set E to contain all the values that can describe the different potential
components that are used to build a SAN. Values will include server, data-path, FC switch,
IP switch, application, disk array and HBA. Although these top-level terms will be useful
for description, many of them will carry extra attributes that describe aspects such as the
manufacturer of a given component, the firmware version of some particular entity and so on.

Attributes A : Related to the set E above, the set A contains all the possible values for attributes
that can be applied for some e∈ E . Thus, an example value might include IBM as an indicator
of the manufacturer of some particular piece of SAN equipment.

Best practice categorization

In this section, we outline some of the best practice rule representations that were found to be useful
by manual, expert analysis of the results of field studies (see [20] for further details). In particular,
we describe Cartesian restrictions, connectivity conditions, exclusion requirements, many-to-one
and one-to-one mapping restrictions.

Cartesian: In Cartesian restrictions, given a set of values v1, . . . ,vm for attributes a1, . . . ,am in A,
we seek to avoid configurations in which an element ei belonging to E satisfies

m∧
j=1

ei [a j]=v j ,

where square brackets are used to denote the accessing of an attribute of an entity. An example
of this type of restriction would be to want to avoid all HBAs made by Vendor A of type B that
are not running firmware versions f20 or f21.

Copyright � 2011 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2011)
DOI: 10.1002/cpe

D. M. EYERS ET AL.

Connectivity: For this type of constraint, if we are given an association m between two distinct
entities ea and eb, we require that the number of instances of the association m j exceeds some
threshold value k. This type of best practice relates to requirements such as having more than
one independent network path from a given host to the storage subsystems that it uses.

Exclusion: Exclusion constraints take two sets of values v11, . . . ,v1m and v21, . . . ,v2m for attributes
a1, . . . ,am , and seek to avoid configurations of the elements ei and e j (both of which belong to
E) being configured such that:

(
m∧

k=1

ei [ak]=v1k

)
∧
(

m∧
k=1

e j [ak] �=v2k

)
.

In other words, an example of such a constraint would be that tape libraries should not be
contained in a zone if that zone also contains disk subsystems.

Many-to-one: In this type of rule, configurations are avoided if they do not have the same values
for a set of attributes a1, . . . ,am across all the entities ei within the configuration. A common
use of this type of rule would be to require that a particular host computer only uses HBAs that
are produced by one manufacturer, and have identical model and firmware versions across all
instances.

One-to-one: Finally, in this type of rule we avoid configurations, in which the values of a set of
attributes a1, . . . ,am is not unique and distinct for all the entities ei that are contained within
that configuration. A use of this type of rule is the requirement that ports in a storage network
must all have unique port world-wide names (WWNs).

Optimizing repository searches

For the best practice repository to be useful, it is likely to contain a very large number of rules.
A number of techniques can be applied to structure the repository so that this size does not preclude
being able to query its data efficiently. This section explores some of the possible approaches.

We employ the definitions of the sets R, P , A and E as given above. Whatever policy language
is used for r , we can significantly narrow down the candidate set C⊆ R for any given query,
using relationships between r ∈C and sets P , E and A that we describe below. Other useful
metadata for r ∈ R includes which organization reported the rule, the organizations that have current
subscriptions for notification when r changes and so on.

Given the sets P , E and A, we define three functions: fP : R→P(P), fE : R→P(E) and
fA : R→P(A). These functions map each rule r ∈ R into the relevant parts of P , E and A. It is
worth highlighting that these three sets are in fact operating over data that contain a much richer
structure than is encoded here (e.g. internal interrelationships). Even so, significant filtering of
information will be possible and effective just using set-oriented matching, in many cases.

Consider our discussion of the best practice rule that tapes and disks should not be mixed in a
zone. If a particular large-scale storage system owner does not have any tape libraries within their
infrastructure, we want to avoid evaluating parts of the best practice repository that can only be
grounded on the basis of a tape library being present. This can be expressed more formally as for
a candidate rule set C⊆ R, we have ∀c∈C , tape /∈ fE (c).

Once elements of the sets P , E and A have been collected, it is straightforward to measure the
selectivity of each element with respect to particular subsets of R. This knowledge can be used
to form efficient indices over R. The method that we have discussed above allows each matching
criteria to be considered independently, and partial patch retrieval approaches can be applied from
database research. For example, when the number of filtering attributes is small, bitmap indices
may be an appropriate mechanism. In more general situations, Bloom filters have been shown to
be effective in the formation of signatures over the attributes in rule sequences. Once the signatures
have been collected, they can be used to rapidly determine that a block does not contain rules of
interest, and thus can be skipped, tuned for a given probability of false positives occurring (lower
false positive rates incur larger space requirements).

Copyright � 2011 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2011)
DOI: 10.1002/cpe

SAN CONFIGURATION MIDDLEWARE THAT UTILIZES MACHINE LEARNING

It is crucial that the knowledge base of best practices stays current. Updates to the repository
may occur for a number of reasons, including:

• Whenever a large number of new configuration snapshots are submitted by sharing participants,
there is the possible need to update existing best practice rules to reflect the salient trends in
the new data. If a large number of organizations deploy the SAN configuration middleware,
we expect that these updates to the repository could be rather frequent: as more and more
organizations deploy different configurations, larger numbers of bugs will be reported back
to vendors and manufacturers.
If configuration snapshots and problem reports arrive at high speed, it may be possible to
apply ML techniques that only perform incremental model updates. Thus, only a subset of
the existing model needs to be considered. However, for techniques such as ILP, incremental
learning may not be straightforward. The Progol and ProGolem systems that we used do not
support incremental learning, although other ILP systems do. Even so, beyond the incremental
addition of positive and negative snapshots, we may have the need to purge snapshots and
their dependent rules, which may fall outside ILP systems’ capacity for incremental learning.
In the future, we plan to investigate whether incremental learning can be used effectively in
our SAN middleware.
Regardless of whether the complete model needs to be retrained or not in each case, the
results of model update will usually only cause some subset of the rules to change. Clients
of the configuration middleware will only need to react to those entries in their cached rule
sets that are updated.

• The snapshots that have been used for training may eventually be considered obsolete, or might
be revoked for other reasons. When this occurs, rules that used to depend on these snapshots
will now need to be reevaluated without using those snapshots. Otherwise, stale knowledge
might result in exerting an undue influence that is no longer applicable to current SANs.
One possible illustration of this effect would be if there was a particular interaction problem
between a pair of device types, but that hardware and/or software updates had mitigated the
problem. The best practice rules that were previously required to protect against this SAN
component bug would no longer be required (or at least should not be included for checking
by default).

RELATED WORK

In the recent years, the research community has discovered log files and configuration data as a
resource to troubleshoot configuration and performance problems [24, 25]. The goal is to try to
solve problems that occur when validating or attempting to guide the actions of administrators. For
example, the Artemis system [26] provides a framework to collect, store, analyze and visualize
data from system log files. It is extensible with a plug-in mechanism to include ML algorithms for
the data analysis. In contrast to our work, the focus is on data collection and visualization instead
of concrete ML approaches for knowledge generation.

Systems management research has applied ML to data that are collected by management middle-
ware. For example, ML techniques have been used to generate robust signatures for performance
problems in complex distributed systems [27]. These types of automatically extracted signatures
can help with root cause analysis [24]. However, configuration best practices contrast with these
approaches in that best practices deal with more abstract concepts—common component types
across deployments, for example. As opposed to learning patterns from a homogeneous data
source, determining best practices requires the ML to derive complex relationships, and needs
large amounts of training data. The performance and availability data collected over time by the
current system management software tend to lead to proposed solutions that are only applicable
at sites that have equivalent infrastructure.

In addition, a number of performance models have been proposed that project the QoS impact of
run-time resource allocation actions in cloud contexts, as well as determining appropriate capacity

Copyright � 2011 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2011)
DOI: 10.1002/cpe

D. M. EYERS ET AL.

planning at the time of deployment [28–30]. These models can also be used as a basis for the
localization and repair of performance problems. Along the lines of our focus on reconfiguration,
a number of systems facilitate ‘what-if’ analyses to determine whether service and/or application
reliability, or indeed general up-time, will be impacted by a change [31, 32]. Many of the tasks in
these systems are more easily made quantitative than the tasks that we are trying to address.

There has been a large amount of work on wide-area middleware abstractions that attempt to
help manage the growing complexity of heterogeneous, distributed computer systems. In Grid
computing, the nature of the infrastructure makes it natural to deploy middleware, and thus manage-
ment of Grid resources with middleware is commonplace. TheGlobus [33] andOGSA specifications
[34] both provide standard sets of services that facilitate the engineering, deployment and execution
of wide-area applications on Grids. As for our SAN configuration middleware, Grids comprise
heterogeneous resources that must be managed by the Grid middleware. In contrast, however, Grid
infrastructure tends to focus on software abstraction instead of management of the configuration
of the underlying physical system resources.

Middleware systems that collect performance and diagnostic statistics from clusters of machines
are also mature technologies, e.g. Ganglia [35]. However, unlike SAN configuration middleware,
while these systems collect data from multiple deployments of their middleware, they do not
reflect these measurements back to the middleware instances in order to try to improve behaviour
throughout the whole, distributed system.

CONCLUSIONS

Cloud computing, and other large-scale computing users, need the support of extensible storage
systems in their data centres. However, the complex and heterogeneous infrastructure makes it
difficult to correctly configure overall systems with the current management tools. Our proposed
solution introduces a layer of abstraction: a SAN configuration middleware. This middleware
collects configuration data from each deployment site, translates it into a standard, homogeneous
representation, delivers it to a centralized knowledge base, and thus detects problems or potential
problems in configurations. This knowledge base—a repository of best practices—is shared between
all the middleware deployments for their collective benefit. The middleware provides a uniform,
high-level abstraction that can be linked to SAN management applications, making reconfiguration
and troubleshooting of storage infrastructures easier and much more cost effective.

The introduction of configuration middleware into the SAN space is an important step toward
the vision of general purpose, policy-based management for cloud storage infrastructure. Providing
a uniform middleware abstraction across multiple data centres will enable previously impossible
extents of coordination in the enforcement of configuration polices. Optimal policies can lead to
cost reductions, regulation of power consumption, increases in the achievement of ‘green’ operation
and safer maintenance of privacy protection. Meeting these desirable, but high-level policies will
require tuning a large number of parameters in each large-scale storage provider. Cooperation
across data centres to both generate and to consult a shared configuration knowledge base will be
key to the future achievement of these important management goals.

REFERENCES

1. Armbrust M, Fox A, Griffith R, Joseph AD, Katz RH, Konwinski A, Lee G, Patterson DA, Rabkin A,
Stoica I et al. Above the clouds: A Berkeley view of cloud computing. Technical Report UCB/
EECS-2009-28, EECS Department, University of California, Berkeley, February 2009. Available at:
http://www.eecs.berkeley.edu/Pubs/TechRpts/2009/EECS-2009-28.html [May 2010].

2. Amazon Simple Storage Service (S3). Available at: http://aws.amazon.com/s3/ [May 2010].
3. Amazon Elastic Compute Cloud (EC2). Available at: http://aws.amazon.com/ec2/ [May 2010].
4. Anderson E, Spence S, Swaminathan R, Kallahalla M, Wang Q. Quickly finding near-optimal storage designs. ACM

Transactions on Computer Systems 2005; 23(4):337–374. DOI: http://doi.acm.org/10.1145/1113574.1113575.
5. Ward J, O’Sullivan M, Shahoumian T, Wilkes J. Appia: Automatic storage area network fabric design. FAST’02:

Proceedings of the First USENIX Conference on File and Storage Technologies. USENIX Association: Berkeley,
CA, U.S.A., 2002; 15.

Copyright � 2011 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2011)
DOI: 10.1002/cpe

SAN CONFIGURATION MIDDLEWARE THAT UTILIZES MACHINE LEARNING

6. Tate J, Lucchese F, Moore R. Introduction to Storage Area Networks. Vervante, 2006. ISBN: 0738495565.
Available at: http://www.amazon.ca/Introduction-Storage-Area-Networks-Tate/dp/0738495565.

7. Sarkar P, Routray R, Butler E, Tan Ch, Voruganti K, Yang K. SPIKE: Best practice generation for storage area
networks. SYSML’07: Proceedings of the Second USENIX Workshop on Tackling Computer Systems Problems
with Machine Learning Techniques. USENIX Association: Berkeley, CA, U.S.A., 2007; 1–6.

8. Agrawal D, Giles J, Lee KW, Voruganti K, Filali-Adib K. Policy-based validation of SAN configuration. POLICY
’04: Proceedings of the Fifth IEEE International Workshop on Policies for Distributed Systems and Networks.
IEEE Computer Society: Washington, DC, U.S.A., 2004; 77.

9. IBM Total Storage Productivity Center (IBM TPC). Available at: http://www-306.ibm.com/software/tivoli/products/
totalstorage-data/ [May 2010].

10. IBM Systems Director. Available at: http://www-03.ibm.com/systems/management/director/ [May 2010].
11. Microsoft System Center. Available at: http://www.microsoft.com/systemcenter/en/us/default.aspx [May 2010].
12. Hewlett Packard Systems Insight Manager (HPSIM). Available at: http://h18002.www1.hp.com/products/

servers/management/hpsim/index.html [May 2010].
13. EMC Control Center. Available at: http://www.emc.com/products/family/controlcenter-family.htm [May 2010].
14. Muggleton SH. Inductive logic programming. New Generation Computing 1991; 8(4):295–318.
15. Srinivasan A. Aleph. Available at: http://web.comlab.ox.ac.uk/activities/machinelearning/Aleph/ [May 2010].
16. Colton S. The HR program for theorem generation. Proceedings of CADE’02, Copenhagen, Denmark, 2002.
17. Muggleton SH. Progol. Available at: http://www.doc.ic.ac.uk/∼shm/progol.html [May 2010].
18. Muggleton S, Santos JCA, Tamaddoni-Nezhad A. ProGolem: A system based on relative minimal generalisation.

ILP (Lecture Notes in Computer Science, vol. 5989), Raedt LD (ed.). Springer: Berlin, 2009; 131–148.
19. Case studies in cloud computing. Available at: http://www.informationweek.com/cloud-computing/blog/archives/

2008/09/case_studies_in.html [May 2010].
20. Routray R, Zhang R, Eyers DM, Willcocks D, Pietzuch P, Sarkar P. Policy generation framework for large-scale

storage infrastructures. POLICY ’10: Proceedings of the 11th IEEE International Symposium on Policies for
Distributed Systems and Networks. IEEE Computer Society: Fairfax, VA, U.S.A., 2010.

21. Gopisetty S, Agarwala S, Butler E, Jadav D, Jaquet S, Korupolu M, Routray R, Sarkar P, Singh A, Sivan-Zimet M,
Tan C-H, Uttamchandani S, Merbach D, Padbidri S, Dieberger A, Haber EM, Kandogan E, Kieliszewski CA,
Agrawal D, Devarakonda M, Lee K-W, Magoutis K, Verma DC, Vogl NG. Evolution of storage management:
Transforming raw data into information. IBM Journal of Research and Development 2008; 52(4):341–352.

22. DTMF. Common Information Model (CIM). Available at: http://www.dmtf.org/standards/cim [May 2010].
23. Storage Management Initiative Specification (SMI-S). Available at: http://www.snia.org/forums/smi/tech_programs/

smis_home/ [May 2010].
24. Cohen I, Zhang S, Goldszmidt M, Symons J, Kelly T, Fox A. Capturing, indexing, clustering, and retrieving

system history. SIGOPS Operating Systems Review 2005; 39(5):105–118. DOI: http://doi.acm.org/10.1145/
1095809.1095821.

25. Kiciman E, Maltz D, Platt J, Goldszmidt M. Mining web logs to debug distant connectivity problems. ACM
SIGCOMM Workshop on Mining Network Data (MineNet), Pisa, Italy, 2006.

26. Cretu G, Budiu M, Goldszmidt M. Hunting for problems with Artemis. USENIX Workshop on the Analysis of
System Logs (WASL), San Diego, CA, 2008.

27. Bodik P, Goldszmidt M, Fox A. HiLighter: Automatically building robust signatures of performance behavior
for small- and large-scale systems. Usenix Workshop on Tackling Computer Systems Problems with Machine
Learning Techniques, Cambridge, MA, 2007.

28. Zhang Q, Cherkasova L, Smirni E. A regression-based analytic model for dynamic resource provisioning of
multi-tier applications. ICAC ’07: Proceedings of the Fourth International Conference on Autonomic Computing.
IEEE Computer Society: Washington, DC, U.S.A., 2007; 27. DOI: http://dx.doi.org/10.1109/ICAC.2007.1.

29. Zhang S, Cohen I, Symons J, Fox A. Ensembles of models for automated diagnosis of system performance
problems. Proceedings of the International Conference on Dependable Systems and Networks. IEEE Computer
Society: Washington, DC, U.S.A., 2005; 644–653. DOI: http://dx.doi.org/10.1109/DSN.2005.44.

30. Barham P, Donnelly A, Isaacs R, Mortier R. Using Magpie for request extraction and workload modelling.
Proceedings of the Sixth Symposium on Operating Systems Design and Implementation (OSDI’04), San Francisco,
CA, 2004.

31. Su YS, Huang CY. Neural-network-based approaches for software reliability estimation using dynamic
weighted combinational models. Journal of Systems and Software 2007; 80(4):606–615. DOI: http://dx.doi.org/
10.1016/j.jss.2006.06.017.

32. Herbrich R, Graepel T, Murphy B. Structure from failure. Proceedings of the 2nd USENIX Workshop on Tackling
Computer Systems Problems with Machine Learning Techniques, Cambridge, MA. USENIX Association: Berkeley,
CA, U.S.A., 2007; 10:1–10:6.

33. Foster I. Globus toolkit version 4: Software for service-oriented systems. IFIP International Conference on
Network and Parallel Computing (Lecture Notes in Computer Science, vol. 3779). Springer: Berlin, 2005; 2–13.

34. Foster I, Kesselman C, Nick J, Tuecke S. The physiology of the grid: An open grid services architecture for
distributed systems integration, 2002. Available at: http://www.globus.og/research/papers/ogsa.pdf [May 2010].

35. Massie ML, Chun BN, Culler DE. The Ganglia distributed monitoring system: Design, implementation and
experience. Parallel Computing 2004; 30:817–840.

Copyright � 2011 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2011)
DOI: 10.1002/cpe

