
Event-Processing Middleware with Information Flow Control

Motivation
• Event processing systems have seen a recent surge in popularity and applicability
• Existing event-based systems have not focused on security issues
• Large-scale, multi-domain applications will require security
• Healthcare, e-Government and e-Business, are applicable domains

Example
• The diagram here shows an event-based healthcare system
• There is a strong case for collaboration between these organisations ...
• ... however strict access control policy must be maintained
• Policy enforcement that controls the information flow between components allows

for overall system security properties to be verified

Securing data using Information Flow Control
• Information Flow Control (IFC) assigns labels to data, and to processes
• Processes can read or write data, only if a function of the current labels is satisfied
• Both data and processes can accumulate specific types of tainting
• Taint tracking allows containment of data until, for example, it is declassified

• Operating System IFC research includes Flume [1], HiStar [2], and AsbestosOS [3].
JIF [4] operates at programming language level, and DStar [5] in decentralised IFC.

DIFC is an attractive paradigm to apply in event-based systems,
since events, and event sub-parts, can carry protection labels

applied by different parts of a system.

Object Isolation in Modern Programming Languages
• SmartFlow engines' units will be grouped into isolates that communicate frequently
• However, IFC requires that unit code should not establish storage channels
• Isolation support in the programming language runtime will help effect containment
• Ideally, the runtime system of the language in which units are implemented should

be modified as little as possible

Java Isolates
• Problem areas: native methods, static fields, and dynamic dispatch
• Past research efforts in Java Virtual Machine isolation include:

• I-JVM: duplicate all static fields per isolate. What about native methods?
• Sun's Barcelona Project: plug potential holes in the Java libraries manually

Our results so far...
• Java runtime library shrinking: only includes necessary reachable classes
• Classification of common coding patterns that are safe, but fail static analysis
• Use of aspect-oriented weaving tools to intercept call paths that have not been

whitelisted by to static analysis or manual examination
• Investigating just-in-time application of I-JVM's static field techniques
• Appreciation that the Java type system, particularly type-erasure, makes makes

some analyses more difficult than if using the .NET CLR.

Background Design Implementation
Isolation at Middleware Granularity

• The host for event processing at each site is a SmartFlow engine that provides:
• enforcement of the security of event data
• publish/subscribe, intra-node communication services
• application life-cycle management
• global naming services

• Event processing units are hosted by each engine.
• Units are programmed by the parties that want to share SmartFlow infrastructure.
• Units subscribe to events of interest, and may annotate events in transit, or emit

their own events.

Anatomy of SmartFlow Events
• The engine passes events between units
• Each event is made up of a number of parts
• Event parts carry integrity and security tags
• Tag sets form labels that are used to effect IFC
• Terms are hierarchically-scoped names
• Terms allow distributed units to match tag semantics
• Engines record term/tag relationships if suitable digital certificates are available
• For details of the tag model, see the PrivateFlow demo [6].

System
Headers Part B Part C

Part A
Name

Part A
Data

Privacy
Tags

Integrity
Tags

Part A

Event

Event part

SmartFlow suits environments in which different organisations
process the same event streams, but have a requirement for

mutual isolation.

Subscription

External Event Source
Engine 1

K
er

ne
l

Pub/sub
matcher

Unit 2

Processing
Thread

Blue tag
Clearance

Red tag
Clearance

Unit 1

Processing
Thread

Blue tag
Privilege

Red tag
Privilege

Blue tag
Clearance

Red tag
Clearance

Unit 3

Processing
Thread

Blue tag
Clearance

Unit 3 only has
clearance to
see the blue
event part

P
ub

lication

Unit Lifecycle
Management

Unit 1 can read
red and blue

event parts, and
can declassify

event parts also

Tag and Term
Store

Policy
Database

Subscription

The kernel creates
tags on behalf of

the units

Pu
bl

ic
at

io
n

Engine 2

K
er

ne
l

Pub/sub
matcher

Unit 1

Processing
Thread

Blue tag
Privilege

Red tag
Privilege

Blue tag
Clearance

Red tag
Clearance

Unit 3

Processing
Thread

Unit 3 only has
clearance to
see the red
event partSubscription

Unit Lifecycle
Management

Tag and Term
Store

Policy
Database

These units can send data
between engines, since

they are able to declassify
all event data

Red tag
Clearance

Unit 2

Processing
Thread

Pu
bl

ic
at

io
n

Unit 2 has no
clearance, and
will not see any
event activity

Subscription

References:
[1] M. Krohn, A. Yip, et al. Information flow control for standard OS abstractions. In SOSP ’07: Proceedings, pp. 321–334, New York, NY, USA, 2007. ACM.
[2] N. Zeldovich and S. Boyd-Wickizer, et al. Making information flow explicit in HiStar. In OSDI '06: Proceedings, Seattle, WA, USA, 2006.
[3] S. Vandebogart, P. Efstathopoulos, et al. Labels and event processes in the Asbestos operating system. ACM Trans. Comput. Syst., 25(4):11, 2007.
[4] A. Myers and B. Liskov. Protecting privacy using the decentralized label model. ACM Trans. Softw. Eng. Methodol., 9(4):410–442, 2000.
[5] N. Zeldovich and S. Boyd-Wickizer, et al. Securing distributed systems with information flow control. In NSDI'08: Proceedings, pp. 293–308 San

Francisco, CA, USA, 2008.
[6] I. Papagiannis, M. Migliavacca, et al. PrivateFlow: Decentralised Information Flow Control in Event Based Middleware. Demonstration at DEBS'09. See

http://platypus.doc.ic.ac.uk/research/node/34

Matteo Migliavacca, Ioannis Papagiannis, Peter Pietzuch
migliava@doc.ic.ac.uk ip108@doc.ic.ac.uk prp@doc.ic.ac.uk

David Eyers, Ben Roberts, Jean Bacon
David.Eyers@cl.cam.ac.uk bgr25@cam.ac.uk Jean.Bacon@cl.cam.ac.uk

Brian Shand
Brian.Shand@cbcu.nhs.uk

