
Event-Processing Middleware with Information Flow Control

Motivation
• Event processing systems have seen a recent surge in popularity and applicability
• Existing event-based systems have not focused on security issues
• Large-scale, multi-domain applications will require security
• Healthcare, e-Government and e-Business, are applicable domains

Example
• The diagram here shows an event-based healthcare system
• There is a strong case for collaboration between these organisations ...
• ... however strict access control policy must be maintained
• Policy enforcement that controls the information flow between components allows 

for overall system security properties to be verified

Securing data using Information Flow Control
• Information Flow Control (IFC) assigns labels to data, and to processes
• Processes can read or write data, only if a function of the current labels is satisfied
• Both data and processes can accumulate specific types of tainting
• Taint tracking allows containment of data until, for example, it is declassified

• Operating System IFC research includes Flume [1], HiStar [2], and AsbestosOS [3]. 
JIF [4] operates at programming language level, and DStar [5] in decentralised IFC.

DIFC is an attractive paradigm to apply in event-based systems, 
since events, and event sub-parts, can carry protection labels 

applied by different parts of a system.

Object Isolation in Modern Programming Languages
• SmartFlow engines' units will be grouped into isolates that communicate frequently
• However, IFC requires that unit code should not establish storage channels
• Isolation support in the programming language runtime will help effect containment
• Ideally, the runtime system of the language in which units are implemented should 

be modified as little as possible

Java Isolates
• Problem areas: native methods, static fields, and dynamic dispatch
• Past research efforts in Java Virtual Machine isolation include:

• I-JVM: duplicate all static fields per isolate. What about native methods?
• Sun's Barcelona Project: plug potential holes in the Java libraries manually

Our results so far...
• Java runtime library shrinking: only includes necessary reachable classes
• Classification of common coding patterns that are safe, but fail static analysis
• Use of aspect-oriented weaving tools to intercept call paths that have not been 

whitelisted by to static analysis or manual examination
• Investigating just-in-time application of I-JVM's static field techniques
• Appreciation that the Java type system, particularly type-erasure, makes makes 

some analyses more difficult than if using the .NET CLR.

Background Design Implementation
Isolation at Middleware Granularity

• The host for event processing at each site is a SmartFlow engine that provides:
• enforcement of the security of event data
• publish/subscribe, intra-node communication services
• application life-cycle management
• global naming services

• Event processing units are hosted by each engine.
• Units are programmed by the parties that want to share SmartFlow infrastructure.
• Units subscribe to events of interest, and may annotate events in transit, or emit 

their own events.

Anatomy of SmartFlow Events
• The engine passes events between units
• Each event is made up of a number of parts
• Event parts carry integrity and security tags
• Tag sets form labels that are used to effect IFC
• Terms are hierarchically-scoped names
• Terms allow distributed units to match tag semantics
• Engines record term/tag relationships if suitable digital certificates are available
• For details of the tag model, see the PrivateFlow demo [6].
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