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ABSTRACT
With more sophisticated data-parallel processing systems, the new
bottleneck in data-intensive companies shifts from the back-end
data systems to the data integration stack, which is responsible for
the pre-processing of data for back-end applications. The use of
back-end data systems with different access latencies and data in-
tegration requirements poses new challenges that current data inte-
gration stacks based on distributed file systems—proposed a decade
ago for batch-oriented processing—cannot address.

In this paper, we describe Liquid, a data integration stack that
provides low latency data access to support near real-time in ad-
dition to batch applications. It supports incremental processing,
and is cost-efficient and highly available. Liquid has two layers: a
processing layer based on a stateful stream processing model, and
a messaging layer with a highly-available publish/subscribe sys-
tem. We report our experience of a Liquid deployment with back-
end data systems at LinkedIn, a data-intensive company with over
300 million users.

Categories and Subject Descriptors
H.2.4 [Database Management]: Systems

General Terms
Data integration, stateful stream processing, Big Data processing

1. INTRODUCTION
Web companies such as Google, Facebook and LinkedIn gener-

ate value for their users by analyzing ever-increasing amounts of
data. Higher user-perceived value means better user engagement,
which, in turn, generates even more data. While this high volume of
append-only data is invaluable for organizations, it becomes expen-
sive to integrate using proprietary, often hard-to-scale data ware-
houses. Instead, organizations create their own data integration
stacks for storing data and serving it to back-end data processing
systems. Today’s data integration stacks are frequently based on a
MapReduce (MR) model [5]—they run custom ETL-like MR jobs
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on commodity shared-nothing clusters with scalable distributed file
systems (DFS) such as GFS [10] or HDFS [32] in order to produce
data for back-end systems [22].

While in the past processing performance was limited, a new
breed of data-parallel systems such as Spark [42] and Storm [36]
has helped mitigate processing bottlenecks in back-end systems.
As a result, the pendulum has swung back, making the data inte-
gration stack performance critical. For example, for nearline data
processing systems, i.e. back-end systems that are stream-oriented
and therefore require low-latency, high-throughout data access, the
use of a DFS as the storage layer increases data access latency, thus
impacting the performance of applications.

Many organizations today use a MR/DFS stack for data integra-
tion: the storage layer uses a DFS to store data in a cost-effective
way, sharding it over nodes in a cluster; the processing layer exe-
cutes batch-oriented MR jobs, which clean and normalize the data,
perform pre-filtering or aggregation, before the data is used by
back-end systems. Such a design for a data integration stack, how-
ever, has several limitations, affecting performance and cost:
1. Intermediate results of MR jobs are written to the DFS, result-

ing in higher latencies as job pipelines grow in length. De-
spite many efforts to reduce access latencies [43, 7], the coarse-
grained data access of a MR/DFS stack is only appropriate
for batch-oriented processing, limiting its suitability for low-
latency nearline back-end systems.

2. To avoid re-processing all data after updates, back-end systems
must support incremental processing. This requires the data
integration stack to offer fine-grained access to the data and
maintain explicit incremental state. A MR/DFS stack lacks
these features—it can only offer coarse-grained access for batch-
oriented processing, and does not handle transient computation
state. While this facilitates failure recovery, it makes the imple-
mentation of efficient incremental processing challenging [4].

3. A data integration stack typically provides the raw “source-of-
truth” data that many back-end systems consume through ETL-
like jobs. As a result, the stack executes many jobs concur-
rently, and it must thus guarantee resource isolation so that
faulty jobs cannot compromise the infrastructure. Despite re-
cent efforts to control resources in clusters [16, 38], it is chal-
lenging to maintain resource isolation during low latency pro-
cessing without over-provisioning of the infrastructure.

To address the above challenges, a common approach is for back-
end systems to execute on their own duplicate copies of the “source-
of-truth” data [35, 25]. This approach breaks the single “source-
of-truth” abstraction and requires the handling of divergent data
replicas. It also introduces substantial engineering effort to provide
point-to-point channels from all data sources to all back-end sys-
tems, which does not scale with the number of back-end systems.
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Figure 1: Data integration with Liquid

Finally, it also increases the hardware footprint and adds opera-
tional challenges, leading to a more brittle infrastructure.

Instead, we argue that it is time to rethink the architecture of a
data integration stack. Rather than using the legacy MR/DFS model
for data integration shown on the left of Figure 1, we describe Liq-
uid, a new nearline data integration stack used at LinkedIn, as
shown on the right. The Liquid stack has the following properties:

(i) Low latency. Fast data access to new data should be the default
behavior. Liquid provides online data access to satisfy the stringent
requirements of nearline back-end systems, and it also pushes data
to batch-processing systems for offline processing.
(ii) Incremental processing. Liquid supports efficient incremental
processing. It annotates data with metadata such as timestamps or
software versions, which back-end systems can use to read from a
given point. This rewindability property is a crucial building block
for incremental processing and failure recovery.
(iii) High availability. Liquid provides the “source-of-truth” data
that different back-end systems consume. For this reason, the data
must be highly available for both reads and writes under common
cluster failures [39].
(iv) Resource isolation. Liquid permits ETL-like jobs to execute
centrally, instead of being managed by independent product teams
in an organization. This allows for easier control of job resources
and service guarantees.
(v) Cost effectiveness. Liquid must store a high volume of incom-
ing data with high throughput, while maintaining low operational
cost. This means that Liquid cannot keep all data in RAM to reduce
access latency [24].

As shown in Figure 1, Liquid consists of two cooperating layers
in order to achieve the above properties:
1. a messaging layer provides data access based on metadata,

which permits back-end systems to read data from specific points
in time. It is distributed to scale to high data volumes while re-
maining highly available;

2. a processing layer executes ETL-like jobs for back-end sys-
tems, guaranteeing low-latency data access. This layer can per-

form arbitrary data processing before passing data to back-end
systems, ranging from data cleaning and normalization, to the
computation of aggregate statistics or the detection of anoma-
lies in the data.

As a result of this design, Liquid inherits the beneficial separa-
tion of storage and computation from the MR/DFS stack, resulting
in two advantages: (i) it can scale storage and computation inde-
pendently; and (ii) when fault tolerance is hard to achieve in the
processing layer, e.g. with explicit state as part of the computation,
it is possible to fall back to the highly-available messaging layer.

The messaging layer uses Apache Kafka [19], a highly-available
distributed publish/subscribe messaging system. Data is stored per-
sistently in distributed commit logs, which are replicated for high
availability. For high-throughput data access, the messaging layer
exploits the default “anti-caching” behavior [6] of modern OS file
system caching, in which data is kept in RAM by default and evicted
to disk if not used for a period of time. Since commit logs are
append-only, it becomes possible to define accurately the period of
time after which data should be flushed to disk, improving perfor-
mance for back-end systems reading the head of the log.

The processing layer is implemented using Apache Samza [30],
a distributed stream processing framework that follows a stateful
processing paradigm [3, 4]. It executes ETL-like jobs efficiently
and with low latency, representing state explicitly as part of the
computation. The processing layer stores annotated data in the
messaging layer as metadata, which permits jobs to choose input
data streams dynamically.

In the next section, we motivate the need for a new nearline data
integration stack in more detail. We explain the design of Liquid
in §3 and its implementation in §4. In §5, we describe our experi-
ence running Liquid at LinkedIn as part of production systems with
300 million users. §6 discusses related work, and §7 concludes.

2. MOTIVATION
Modern web companies have specialized data processing sys-

tems that can be classified as online, nearline, and offline. At
LinkedIn, the resource distribution for back-end systems according
to these classes is approximately 25%, 25%, and 50%, respectively.
Online systems, e.g. for processing business transactions, are han-
dled by front-end relational databases and serve results within mil-
liseconds. Nearline systems typically operate in the order of sec-
onds, and offline systems within minutes or hours. As companies
realize the increased business and user value of analyzing data with
low latency, the trend is towards an increased number of resources
for nearline back-end systems.

Both nearline and offline systems ingest data from a data integra-
tion stack. Next we discuss some requirements of these back-end
systems, highlighting the problems of current stacks.

2.1 Requirements
Nearline applications. Applications that query a social graph,
search data, normalize data, or monitor change are classified as
nearline: the sooner they provide results, the higher the value to
end users. As processing pipelines have more stages, the end-to-
end latency also increases, which makes nearline processing more
challenging. Fundamentally, DFS-based stacks do not support low-
latency processing because they have a high overhead per stage:
they are designed for coarse-grained data reads and writes.
Offline applications. Typical offline applications in web compa-
nies are recommendation systems, OLAP queries and batch-oriented
MR-style jobs, e.g. for the generation of hourly reports or the train-
ing of machine-learning models.



For example, user-tracking data, such as click streams and ac-
tions, is generated by front-end web servers and stored in a DFS.
ETL-like jobs transform the data according to the requirements of
different back-end systems and deliver it for processing. After the
required results are obtained, e.g. recommendations for individual
users, the result data is loaded into serving layers, such as key-value
stores, from which applications can access it with low latency.

When the input data changes, back-end systems require the latest
data, which typically means that the processing pipeline must re-
execute from scratch. This includes the final loading of result data
into serving layers, which incurs a high overhead. To avoid that
users are presented with increasingly stale results as data amounts
grow, the hardware footprint of the infrastructure increases to re-
duce the re-execution time of the pipeline. In practice, different
product teams therefore introduce their own incremental process-
ing systems, which have to be maintained independently.

Additional requirements. Most back-end systems accessing a
data integration stack have additional requirements. For certain
jobs, it is important to have access to the data lineage, i.e. infor-
mation about how the data was computed. In addition, access con-
trol is necessary to ensure that no faulty or misconfigured back-end
systems can compromise the data of other applications. Finally, the
data integration stack should be responsible for executing jobs with
adequate service guarantees through resource isolation, which we
refer to as “ETL-as-a-service”.

2.2 Current approaches
When attempting to support nearline back-end systems, there are

two common approaches that organizations adopt to improve data
access latency, both of which come at the cost of an increased hard-
ware footprint:
1. they bypass the data integration stack, sending data directly to

back-end systems. This has two problems: (i) each system re-
quires a new point-to-point connection to the data, which in-
creases operational complexity; and (ii) since data is not stored
in the stack, it is not available to other applications.

2. they duplicate the data so that back-end systems can access
their own copies [35]. This incurs the complexity of handling
replica divergence, and it does not guarantee low latency access
if processing pipelines are complex.

As organizations have discovered the limitations of today’s data
integration stacks, the above approaches have led to new architec-
tural patterns:
Lambda architecture [23]. In this pattern, input data is sent to
both an offline and an online processing system. Both systems exe-
cute the same processing logic and output results to a service layer.
Queries from back-end systems are executed based on the data in
the service layer, reconciling the results produced by the offline and
online processing systems.

This pattern allows organizations to adapt their current infras-
tructures to support nearline applications [21]. This comes at a cost,
though: developers must write, debug, and maintain the same pro-
cessing code for both the batch and stream layers, and the Lambda
architecture increases the hardware footprint.
Kappa architecture [20]. In this pattern, a single nearline sys-
tem, e.g. a stream processing platform, processes the input data. To
re-process data, a new job starts in parallel to an existing one. It
re-processes the data from scratch and outputs the results to a ser-
vice layer. After the job has finished, back-end systems read the
data loaded by the new job from the service layer. This approach
only requires a single processing path, but it has a higher storage
footprint, and applications access stale data while the system is re-
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Figure 2: Architecture of the Liquid data integration stack

processing data.
In summary, implementing the above architectural patterns in

current MR/DFS-based data integration stacks introduces a range
of problems, including an increased hardware footprint, data and
processing duplication and more complex management. To over-
come these issues and provide more flexibility for the new require-
ments of nearline applications, we describe a new data integration
stack that acts as a more efficient substrate for back-end systems by
providing low-latency data access by default.

3. LIQUID DESIGN
We describe the design of Liquid, a nearline data integration

stack with two independent, yet cooperating layers that achieve
the above requirements, as shown in Figure 2. A processing layer
(i) executes ETL-like jobs for different back-end systems accord-
ing to a stateful stream processing model [3]; (ii) guarantees service
levels through resource isolation; (iii) provides low latency results;
and (iv) enables incremental data processing. A messaging layer
supports the processing layer. It (i) stores high-volume data with
high availability; and (ii) offers rewindability, i.e. the ability to ac-
cess data through metadata annotations.

The two layers communicate by writing and reading data to and
from two types of feeds, stored in the messaging layer (see Figure 2):
source-of-truth feeds represent primary data, i.e. data that is not
generated within the system; and derived data feeds contain re-
sults from processed source-of-truth feeds or other derived feeds.
Derived feeds contain lineage information, i.e. annotations about
how the data was computed, which are stored by the messaging
layer. The processing layer must be able to access data according
to different annotations, e.g. by timestamp. It also produces such
annotations when writing data to the messaging layer.

Back-end systems read data from the input feeds, after Liquid
has pre-processed them to meet application-specific requirements.
These jobs are executed by the processing layer, which reads data
from input feeds and outputs processed data to new output feeds.

The division into two layers is an important design decision. By
keeping both layers separated, producers and consumers can be de-
coupled completely, i.e. a job at the processing layer can consume
from a feed more slowly than the rate at which another job pub-
lished the data without affecting each other’s performance. In addi-
tion, the separation improves the operational characteristics of the
data integration stack in a large organization, particularly when it is
developed and operated by independent teams: separation of con-
cerns allows for management flexibility, and each layer can evolve
without affecting the other.

3.1 Messaging layer
Next we describe the design of the messaging layer, which is

based on a topic-based publish/subscribe communication model.
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The goal of data integration is to make data available to an entire
organization. Each team in an organization is only interested in
consuming part of that data, and they only need to produce data of
certain types. Therefore they should be able to do this while being
unaware of other irrelevant data. A publish/subscribe model [8] fits
this requirement: teams can subscribe to particular topics—types of
data according to a schema or semantics—in order to access data,
which is offered as a function by the data integration stack.

Although other communication models provide similar decou-
pling between producers and consumers, a publish/subscribe model
has the advantage of abstracting data delivery, making it indepen-
dent of application usage. This allows the messaging layer to be
operated as a service, e.g. identifying misbehaving applications
or deciding which data is requested more for load-balancing pur-
poses. The use of publish/subscribe communication by the mes-
saging layer thus supports (i) high throughput for reads and writes;
(ii) high-availability for data access; and (iii) arbitrary data access
based on metadata.
Topic-based publish/subscribe. In a topic-based publish/subscribe
model, data is divided into messages, which are stored under differ-
ent topics. Topics separate data into categories that are meaningful
to applications, e.g. according to the system that produced the data.
Clients of the messaging layer are called producers and publish
data to different topics, such as front-end applications generating
events. The example in Figure 3 shows two producers: Producer-1
publishes data to Topic-a and Producer-2 publishes to both Topic-a
and Topic-b.

Consumers subscribe to topics, reading data from the messaging
layer, and are typically back-end applications. Figure 3 shows three
consumers: Consumer-1 is subscribed to Topic-a, and Consumer-2
and Consumer-3 are subscribed to Topic-b. Typically hundreds of
clients can produce and consume data to and from a topic.

To achieve high write/read throughput, topics are divided into
partitions, which are distributed on a cluster of brokers. Each bro-
ker runs on a different physical machine that handles topics and the
partitions for these topics by answering requests from clients, i.e.
producers and consumers.

Figure 3 shows how the two topics have two partitions each (Part-
ition-1 and Partition-2 for Topic-a, and Partition-2 and Partition-3
for Topic-b), which are stored across the two brokers. A single
broker may handle partitions for different topics, such as Broker-
1 handling Topic-a and Topic-b. Producers can choose to which
partition to publish data in a round-robin fashion or according to a
hash function for load-balancing or semantic routing.

Consumers are divided into consumer groups, which gives fur-
ther flexibility in how clients consume data. At the level of con-
sumer groups, the messaging layer behaves as a publish/subscribe
system, i.e. each consumer group receives messages from topics to
which it is subscribed. However, only one consumer within each
consumer group receives a given message, i.e. the system behaves
as a queue for the consumers within a consumer group.

In Figure 3, there are two consumer groups (CGs): CG-1 is sub-
scribed to Topic-a and CG-2 to Topic-b. When a new message is
published to Topic-b, only Consumer-1 or Consumer-2 receive that
message. All consumers in CG-2 read data from brokers as if it was
a queue, which helps load-balance the load across the consumers
in a consumer group. Now consider a case in which more than one
consumer group is subscribed to Topic-a. When a new message is
published to Topic-a, one consumer of each subscribed consumer
group is guaranteed to receive the message.
Distributed commit log. Each topic is realized as a distributed
commit log, in which each partition is append-only and keeps an
ordered, immutable sequence of messages with a unique identifier
called an offset. An append-only log therefore keeps both messages
and offsets in the natural order in which they were appended.

The distributed commit log is a crucial design feature of the mes-
saging layer: (i) its simplicity helps create a scalable and fault-
tolerant system; and (ii) its inherent notion of order allows for fine-
grained data access. While the append-only log only guarantees a
total order of messages per topic-partition but not across partitions,
we observe that, in practice, this is sufficient for most back-end
applications.

Clients of the messaging layer use offsets to keep track of the lat-
est consumed data per partition. Consumers pull data from brokers
by providing a set of offsets. After a pull request, brokers return
the latest data after the specified offsets. This approach makes it
efficient to maintain the latest consumed data, i.e. it requires only
storing a single integer per partition.
Metadata-based access. The messaging layer uses a highly-avail-
able, logically-centralized offset manager to maintain annotations
on the data, which can be queried by clients. For example, con-
sumers can checkpoint their last consumed offsets to save their
progress; after failure, they can ask for the last data that they pro-
cessed. To re-process data, clients can include metadata, such as
timestamps, with the offsets and retrieve data according to these
previously-stored timestamps. We discuss other use cases for the
offset manager in §4.2.

3.2 Processing layer
As shown in Figure 2, a job in the processing layer embodies

computation over streams, which are the input data coming from
feeds in the messaging layer. The job processes messages from an
input feed and produces output messages, which can be published
to a derived output feed. For parallel processing, a job is divided
into tasks that process different partitions of a topic. The data for
a stateless job is entirely contained in the input stream, while a
stateful job has explicit state that evolves as part of the computation.

Jobs can communicate with other jobs, forming a dataflow pro-
cessing graph. All jobs are decoupled by writing to and read-
ing from the messaging layer, which avoids the need for a back-
pressure mechanism. This is an important design decision that im-
proves the operational robustness of the system.
Stateful processing. Stateful jobs access state locally for effi-
ciency. State can be represented as arbitrary data structures, e.g.
a window of the most recent stream data, a dictionary of statistics
or an inverted index used for search queries.



Failure recovery is more challenging for stateful jobs. Our solu-
tion is for the processing layer to publish state updates to a changelog,
which is a derived feed stored by the messaging layer. After failure,
state is reconstructed from the changelog.
Incremental processing. The processing layer can process data in-
crementally by exploiting explicit state and the functionality of the
metadata manager. A job can periodically checkpoint the offsets
that it has consumed and maintain a summary of the input data as
its state. When new input data becomes available, the job can thus
ignore already processed data.

As a consequence, incremental processing reduces the load on
the back-end systems because only the latest results are incorpo-
rated, as opposed to bulk loading all data from scratch. This is par-
ticularly important in scenarios in which only a small percentage of
data changes periodically, such as user profile updates.
ETL-as-a-service. The processing layer executes multiple ETL-
like jobs submitted by different back-end systems, and therefore
can control the resources used by each at a fine granularity. To
isolate resources on a per-job basis, the processing layer can use
standard resource isolation mechanisms such as container-based
OS isolation (see §4.4).

4. IMPLEMENTATION
This section describes a range of implementation features of Liq-

uid, which enable it to achieve the desired requirements: (i) low-
latency data access; (ii) incremental processing; (iii) high avail-
ability; (iv) resource isolation; and (v) cost effectiveness. Liq-
uid is formed by Apache Kafka (approx. 25,000 lines of code),
Apache Samza (approx. 7,000 lines of code), and integration code
between both.

4.1 Low-latency data access
Despite accessing large amounts of data, Liquid must achieve

high-throughput and low-latency data reads and writes. It uses two
strategies to achieve this goal: efficient data distribution, i.e. par-
allel at both the messaging and processing layers, and fast storage.
We described its distributed design in §3.1—in this section, we fo-
cus on a single node and explain how Liquid achieves fast reads
and writes when using append-only disk-backed logs to store data.
Append-only log. Data is written to an append-only log that is
persisted to disk for durability. Since this is at odds with the need
for high-throughput writes and reads in the messaging layer, we
explain some implementation decisions that improve performance.

To achieve high-throughput writes, the messaging layer relies
on OS-level file system caching: the OS maintains data in RAM
first and flushes it to disk after a configurable timeout parameter,
as inspired by recent “anti-caching” designs [6]. The messaging
layer also exploits knowledge about the layout of data on disk to
define when data is evicted. Since the append-only log has a natural
sequential order, it becomes possible to determine which data has
to be flushed. This permits the head of the log to be maintained in
memory for back-end systems that need low-latency access.

For high-throughput reads, brokers maintain an incrementally-
built index file that is used to select the chunks of the log at which
requested offsets are stored. Once these are located, the initial reads
are slower due to the OS loading pages into RAM; after typically a
few seconds, successive reads become fast due to prefetching. Note
that prefetching is only needed for random access reads; sequential
reads can retrieve data from the file system cache.

The append-only design of the log has another important advan-
tage in a production environment: read/write throughput remains
constant independent of log size. This allows for larger logs, lead-

ing to good resource utilization—fewer machines can store more
data, which achieves cost-effective storage. As a result, data can
be kept for longer in the messaging layer, typically in the order of
weeks to months.
Log retention. To put a bound on the amount of data that is stored,
a retention period is configured per topic. This period is usually
expressed in terms of time, e.g. one month worth of data, but for
operational reasons it may also be configured as a maximum log
size. The disk-based message store maintains messages for longer
in a cost-effective way, which offers back-end systems a margin to
decide whether they need to consume data or not, thus enhancing
their capacity for rewindability.
Log compaction. Some applications only require the last update
for a specific key, e.g. a given user. In this case, there is a further
opportunity to reduce the total space consumed by the log through
compaction, which increases storage utilization. The log is scanned
asynchronously, de-duplicating messages with the same key and
keeping only the most recent data for each key.

Log compaction is particularly useful in order to reduce the size
of the changelogs that store state checkpoints (see §3.2). The state
used by the processing layer in the form of map, matrices or ar-
rays is typically keyed on an attribute. Therefore it is sufficient to
keep the latest update for each key to recover the state after fail-
ure. In this case, performing log compaction not only reduces the
changelog size, but it also allows for faster recovery.

4.2 Incremental processing
Liquid facilitates incremental processing by permitting the pro-

cessing layer to annotate incoming streams from the messaging
layer with arbitrary metadata. All annotations are stored by the
offset manager (see §3.1), which maintains a map of offsets to the
metadata, such as the software version that consumed a given off-
set, or the timestamp at which data was read. With this mechanism,
back-end systems can query for the latest offsets and retrieve the
newest data, thus only updating the state in the processing layer.

Consider the problem of maintaining statistics about the data for
a given topic that is periodically updated, e.g. every few hours.
In this case, reading all data each time that it changes would be
infeasible—the required time would increase linearly with data size.

Instead, the processing layer can read the available data, compute
such statistics and maintain them as state. After consuming some
data, the processing layer checkpoints the offsets in the offset man-
ager. When new data arrives, it fetches the offsets from the offset
manager and reads only the new data, appending new results to its
state. In the general case, such offsets are cached in the processing
layer, and fetching them from the offset manager is only necessary
after a failure in the processing layer.

4.3 High availability
Data is persisted in log files, but brokers may fail, leaving the

data unavailable. To avoid this situation, all partitions handled by a
lead broker are replicated across follower brokers. If a lead broker
fails, a hand-over process selects a new leader among its followers.

A follower broker acts as a normal consumer, reading data from
its lead broker and appending it to its local log. This means that the
followers for a given partition may not have incorporated all data
from the lead broker when it fails. A coordination service (Apache
Zookeeper [17]) is used to maintain a set of in-sync-replicas (ISRs),
which are the subset of followers that are above a configurable min-
imum up-to-date threshold. After a broker failure, a re-election
mechanism chooses a new leader from the set of ISRs.

This design guarantees that the messaging layer can tolerate up
to N-1 failures with N brokers in the set of ISRs. Maintaining a



large N, however, exposes a performance/durability trade-off: the
maximum durability is achieved when a lead broker sends data
to all followers and waits for all acknowledgments; the minimum
durability is obtained if acknowledgments are returned to clients
immediately after receiving a message. The chosen durability level
impacts the throughput and latency of the data integration stack.
Delivery guarantees. In the current implementation, the messag-
ing layer provides at-least-once delivery semantics. There is no
built-in support to detect duplicates that can occur after a failure
when replying data from an already processed offset. This is suffi-
cient for applications that only handle keyed data with idempotent
updates, because duplicates can be detected easily by the applica-
tion. This is not the case for all applications, however, and there is
an ongoing effort to design and implement support for exactly-once
semantics.

4.4 Resource isolation
To have Liquid offer ETL-as-a-service, the processing layer must

guarantee that all jobs achieve a minimum level of service. This is
challenging for two reasons: (i) resource-intensive jobs may affect
other jobs running on the same infrastructure; and (ii) the imple-
mentation executes in a Java VM, which means that garbage col-
lection impacts performance.

The Liquid implementation addresses these challenges as fol-
lows. In the messaging layer, partitions are load-balanced across
all available clusters, which achieves a better balance of jobs at the
processing layer. The processing layer uses OS-level resource iso-
lation, as realized by Linux containers in Apache YARN [38], thus
restricting the memory and CPU resources of each job.

For stateful processing jobs, the bulk of the memory consump-
tion is due to the maintained state. To avoid frequent invocation of
the garbage collector in the JVM when state is managed, the pro-
cessing layer allocates the state off-heap by using RocksDB [29], a
persistent key-value store.

4.5 Cost effectiveness
Keeping resource and operational costs low is an important re-

quirement for a system that is expected to store and process an
ever-increasing amount of data. Although the cost of RAM has de-
creased in recent years, it is still not cost-effective to store all data of
the data integration stack in memory. To achieve low-latency access
even when data is stored on disk, the messaging layer exhibits an
anti-caching behavior, therefore supporting high throughput reads
and writes while keeping data durable.

Multi-tenancy is the norm in data-intensive organizations. Mul-
tiple independent teams may be executing different applications on
the same cluster, leading to resource contention. To retain a given
quality-of-service per application, while maintaing a high cluster
utilization, Liquid uses a resource management layer that isolates
resources on a per-application basis.

5. EXPERIENCE WITH LIQUID
A Liquid deployment is pervasive across the back-end systems

at LinkedIn. The messaging layer, based on Apache Kafka, runs in
5 co-location centers, spanning different geographical areas. It in-
gests over 50 TB of input data and produces over 250 TB of output
data daily (including replication). For this, it uses around 30 dif-
ferent clusters, comprised of 300 machines in total that host over
25,000 topics and 200,000 partitions.

The processing layer, based on Apache Samza, spans across 8 clus-
ters with over 60 machines. Overall, Liquid is deployed on more
than 400 machines that perform data integration and adaptation for
back-end and front-end systems.

5.1 Real-world use cases
Next we describe a range of applications built on top of Liquid.

We also discuss some of the encountered problems and challenges.
Data cleaning and normalization. A crucial task in many orga-
nizations is to clean and normalize user-generated content. This
is typically done by specialized algorithms that, e.g. disambiguate
entities or detect synonyms in text data. To achieve best results, al-
gorithms must operatore on the latest content, which is challenging
because (i) users continuously generate new content; and (ii) engi-
neers continuously optimize their processing algorithms.

These two challenges require different system properties: when
users generate new content, the cleaning pipeline must have low-
latency, so that new information is incorporated quickly, e.g. ap-
pearing when users search the website; when the source code of the
cleaning pipeline changes, it is necessary to re-process data with the
new algorithm so that all data was cleaned with the same algorithm.

Before the deployment of Liquid, there were two different sub-
systems for data cleaning, one for the nearline case (i.e. new con-
tent from users) and another for the batch case (i.e. changes in the
pipeline code). This meant that each time that new cleaning code
was written, it had to be tested against both cases, which was time-
consuming and error-prone. Even worse, these sub-systems were
shared by different teams, making resource isolation impossible:
bugs in one sub-system, affected the other.

The use of Liquid brought several benefits: it achieved (i) more
efficient re-processing, i.e. it is now easier to integrate the latest
user-generated data with current results, or to clean past data with
new algorithms; (ii) resource isolation, i.e. multiple algorithms can
execute in parallel (e.g. as required for A/B testing), without affect-
ing each others performance; and (iii) lower data access latency,
which allows back-end systems to serve freshly cleaned data.
Site speed monitoring. To improve user experience, web compa-
nies monitor the page loading times by tracking client-generated
events, often referred to as real user monitoring (RUM). Events are
stored first and analyzed later to detect anomalies and performance
problems in the loading times. A fundamental issue with this ap-
proach is that problems are not detected promptly, which prevents
corrective actions to be issued in real-time. For example, if the root
cause of a page loading problem is quickly isolated to a particular
CDN, traffic can be re-routed to different servers.

With Liquid, when a client visits a webpage, an event is created
that contains a timestamp, the page or resource loaded, the time
that it took to load, the IP address location of the requesting client
and the content delivery network (CDN) used to serve the resource.
These events are consumed by Liquid, which groups them by loca-
tion, CDN, or other dimensions.

Based on this data, Liquid can feed back-end applications that
detect anomalies: e.g. CDNs that are performing particularly slowly,
or increased loading times from specific client locations. Back-end
applications can consume already pre-processed data that divides
user events per session. As a result, back-end applications can de-
tect anomalies within minutes as opposed to hours, permitting a
rapid response to incidents.
Call graph assembly. At LinkedIn, dynamic web pages are built
from thousands of REST calls, which are executed by distributed
machines. Each call can subsequently trigger other calls, and the
responses of all these calls constitute the generated web page. This
makes it important to detect slow calls, which indicate problems
with a particular service.

Before the Liquid deployment, the usual procedure was to an-
alyze all logs after they were stored in the DFS, i.e. a batch job
constructed a call graph hours after an incident was logged. Liquid



enabled to move such processing earlier in the pipeline, reducing
latency and identifying potential problems within seconds rather
than hours. Other organisations use purpose-built systems for this
task, such as Dapper [33] at Google, or Zipkin [37] at Twitter.

At LinkedIn, the call graph assembly is an application running
on top of Liquid. Liquid records each event produced by the REST
calls and stores them in the messaging layer with a unique id per
user call, as assigned by the front-end system, i.e. all REST calls for
a given request share the same id. The processing layer processes
these events to assemble the call graph. The call graph is used in
production to monitor the site in real-time, and to inform capacity
planning decisions.
Operational analysis. Analyzing operational data, such as met-
rics, alerts and logs, is crucial to react to potential problems quickly,
avoiding further damage. Not only malfunctioning software or
physical machines but also fraud attempts require prompt action.
The volume of data grows with the number of monitoring metrics
and logs, and increases due to new features and hardware resources.
Previously all this data was stored in the DFS, which meant that it
was retrieved and analyzed only after a problem was detected.

At LinkedIn, an internal service presents a range of business,
operational and user metrics as visualizations that help different
teams understand the current infrastructure status. With Liquid,
integrating new data, such as crash reports from mobile phones,
is straightforward: all data is transported by the messaging layer,
which only needs to produce a new metric. The processing layer
helps prepare data for visualizations and provides aggregate values
to facilitate analysis.

6. RELATED WORK
Data warehouses have been used traditionally to maintain data in
an organization under a single global schema that can be queried by
applications. With the rise of big data, systems such as HBase [15]
and Hive [34] focus on scale. None of these solutions, however,
are suitable for nearline processing [13] because they all store data
in a traditional DFS. More recently proposed systems exploit the
memory of a cluster to speed up query processing [40], and opti-
mize access to the DFS [18]. While such optimizations improve
performance, they do not address issues such as the complexity of
ETL, end-to-end latency or a large hardware footprint.

Stream data warehouses build queriable materialized views from
continuous data streams. Systems such as DataDepot [11] and Ac-
tive Data Warehouse [27] use a stream processing model to update
a data warehouse in real time. Instead of running costly ETL jobs
that process and load data in batches, updating the warehouse on-
the-fly leads to lower end-to-end latency. These approaches are
orthogonal to our solution because our focus is to provide an archi-
tecture in which new back-end applications that have varied pro-
cessing and data requirements, including stream warehouses, can
be implemented.
Enterprise information integration (EII) systems [41, 31] promise
a unified view of data across an organization. These solutions avoid
a single data warehouse and its associated costly ETL pipelines for
data collection. However, EII systems are typically used to prop-
agate data within an organization, and not to ingest high-volume
data generated externally. Furthermore, they suffer from a number
of problems that have prevented their wide adoption, such as their
reliance on structured data [12]. In contrast, Liquid is designed to
operate on unstructured data and transform it as required by back-
end applications.
Stream processing systems such as Apache Flume [9] and Puma/
Ptail [2] are used to collect and aggregate large amounts of log

data. They are similar in spirit to Liquid’s messaging layer, but
they do not focus on high availability, which make them unsuitable
for modern organizations.

Systems such as Storm [36] are general stream processing plat-
forms that execute distributed dataflow graphs, but they do not sup-
port stateful processing. In contrast, Liquid’s processing layer im-
plements a stateful stream processing model, as realized by systems
such as SEEP [3, 4], in order to support richer computation over
continuous data.
Incremental processing systems. The incremental processing of
continuously-changing data has received attention in both indus-
try [14, 26] and academia [28, 1]. Approaches are typically based
on either memoization techniques from programming languages or
on maintaining state implicitly in the system. Liquid is not re-
stricted to a particular approach, but rather focuses on the infras-
tructure needs for incremental processing, in particular support for
explicit state.

7. CONCLUSIONS
Current data integration stacks based on distributed file systems

fall short of the needs of modern data-intensive organizations. They
cannot satisfy the diverse latency and re-processing requirements
of different back-end data systems. As the advantages of analyzing
high volume data become evident, the need for fresh results has
grown. The default solution is to fit new nearline systems into the
current infrastructures of organizations—yet still relying on offline
data integration stacks, resulting in ad-hoc solutions.

In this paper, we have presented Liquid, a nearline big data in-
tegration stack that permits organizations to support new nearline
back-end data processing applications. We showed the benefits of
a stateful stream processing model on top of a highly-available
messaging layer, and reported our experience of using Liquid at
LinkedIn, where it transfers terabytes of data daily across different
back-end systems with low latency.
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